File size: 30,567 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import shutil
from collections.abc import Generator, Mapping
from contextlib import contextmanager, nullcontext
from datetime import timedelta
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Literal,
    Optional,
    Union,
)

import torch
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
from typing_extensions import override

import pytorch_lightning as pl
from lightning_fabric.plugins import CheckpointIO, ClusterEnvironment
from lightning_fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning_fabric.strategies import _StrategyRegistry
from lightning_fabric.strategies.fsdp import (
    _METADATA_FILENAME,
    _activation_checkpointing_kwargs,
    _auto_wrap_policy_kwargs,
    _distributed_checkpoint_load,
    _distributed_checkpoint_save,
    _get_full_state_dict_context,
    _get_sharded_state_dict_context,
    _init_cpu_offload,
    _init_sharding_strategy,
    _is_full_checkpoint,
    _is_sharded_checkpoint,
    _move_torchmetrics_to_device,
    _optimizer_has_flat_params,
    _setup_activation_checkpointing,
)
from lightning_fabric.strategies.model_parallel import _load_raw_module_state
from lightning_fabric.utilities.distributed import (
    _distributed_is_initialized,
    _get_default_process_group_backend_for_device,
    _init_dist_connection,
    _sync_ddp_if_available,
)
from lightning_fabric.utilities.distributed import group as _group
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_2
from lightning_fabric.utilities.init import _has_meta_device_parameters_or_buffers
from lightning_fabric.utilities.load import _lazy_load, _materialize_tensors
from lightning_fabric.utilities.optimizer import _optimizers_to_device
from lightning_fabric.utilities.seed import reset_seed
from lightning_fabric.utilities.types import _PATH, ReduceOp
from pytorch_lightning.core.optimizer import LightningOptimizer
from pytorch_lightning.plugins.precision import Precision
from pytorch_lightning.plugins.precision.fsdp import FSDPPrecision
from pytorch_lightning.strategies.launchers.subprocess_script import _SubprocessScriptLauncher
from pytorch_lightning.strategies.parallel import ParallelStrategy
from pytorch_lightning.strategies.strategy import TBroadcast
from pytorch_lightning.trainer.states import TrainerFn
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.rank_zero import rank_zero_info, rank_zero_only, rank_zero_warn

if TYPE_CHECKING:
    from torch.distributed.device_mesh import DeviceMesh
    from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision, ShardingStrategy
    from torch.distributed.fsdp.wrap import ModuleWrapPolicy

    _POLICY = Union[set[type[Module]], Callable[[Module, bool, int], bool], ModuleWrapPolicy]
    _SHARDING_STRATEGY = Union[ShardingStrategy, Literal["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD"]]


log = logging.getLogger(__name__)


class FSDPStrategy(ParallelStrategy):
    r"""Strategy for Fully Sharded Data Parallel provided by torch.distributed.

    Fully Sharded Training shards the entire model across all available GPUs, allowing you to scale model
    size, whilst using efficient communication to reduce overhead. In practice, this means we can remain
    at parity with PyTorch DDP, whilst scaling our model sizes dramatically. The technique is similar
    to ZeRO-Stage 3.

    For more information check out
    `this blogpost <https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api>`__.

    Defaults have been set and options have been exposed, but may require configuration
    based on your level of memory/speed efficiency. We suggest having a look at
    `this tutorial <https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html>`__ for more information.

    Arguments:
        cpu_offload: See ``cpu_offload`` parameter in :class:`torch.distributed.fsdp.FullyShardedDataParallel`.
        mixed_precision: See ``mixed_precision`` parameter in :class:`torch.distributed.fsdp.FullyShardedDataParallel`.
        auto_wrap_policy: Same as ``auto_wrap_policy`` parameter in
            :class:`torch.distributed.fsdp.FullyShardedDataParallel`. For convenience, this also accepts a set of the
            layer classes to wrap.
        activation_checkpointing: Deprecated. Use ``activation_checkpointing_policy``.
        activation_checkpointing_policy: Same as ``auto_wrap_policy`` parameter in
            :class:`torch.distributed.fsdp.FullyShardedDataParallel` but used when selecting the modules for which you
            want to enable activation checkpointing. Enabling this can free up a significant amount of memory at the
            cost of speed since activations in these layers need to be recomputed during backpropagation. For
            convenience, this also accepts a set of the layer classes to wrap.
        sharding_strategy: Select whether to shard model parameters, gradients, optimizer states, or a combination of
            them. Available values are:

            - ``"FULL_SHARD"``: Shards model parameters, gradients, and optimizer states (default).
            - ``"SHARD_GRAD_OP"``: Shards gradients and optimizer states only. Model parameters get replicated.
            - ``"NO_SHARD"``: No sharding (identical to regular DDP).
            - ``"HYBRID_SHARD"``: Shards model parameters, gradients, and optimizer states within a single machine, but
              replicates across machines. See also the `device_mesh` parameter below.

            Also accepts a :class:`torch.distributed.fsdp.ShardingStrategy` enum value.

        device_mesh: A tuple `(replication size, sharding size)` that defines over how many devices to shard and
            replicate the model. The product of the two numbers must equal the world size. Only valid in combination
            with the `HYBRID_SHARD` sharding strategy.

        state_dict_type: The format in which the state of the model and optimizers gets saved into the checkpoint.

            - ``"full"``: The full weights and optimizer states get assembled on rank 0 and saved to a single file.
            - ``"sharded"``: Each rank saves its shard of weights and optimizer states to a file. The checkpoint is
              a folder with as many files as the world size.

        \**kwargs: See available parameters in :class:`torch.distributed.fsdp.FullyShardedDataParallel`.

    """

    strategy_name = "fsdp"
    _registered_strategies: list[str] = []

    def __init__(
        self,
        accelerator: Optional["pl.accelerators.Accelerator"] = None,
        parallel_devices: Optional[list[torch.device]] = None,
        cluster_environment: Optional[ClusterEnvironment] = None,
        checkpoint_io: Optional[CheckpointIO] = None,
        precision_plugin: Optional[Precision] = None,
        process_group_backend: Optional[str] = None,
        timeout: Optional[timedelta] = default_pg_timeout,
        cpu_offload: Union[bool, "CPUOffload", None] = None,
        mixed_precision: Optional["MixedPrecision"] = None,
        auto_wrap_policy: Optional["_POLICY"] = None,
        activation_checkpointing: Optional[Union[type[Module], list[type[Module]]]] = None,
        activation_checkpointing_policy: Optional["_POLICY"] = None,
        sharding_strategy: "_SHARDING_STRATEGY" = "FULL_SHARD",
        state_dict_type: Literal["full", "sharded"] = "full",
        device_mesh: Optional[Union[tuple[int], "DeviceMesh"]] = None,
        **kwargs: Any,
    ) -> None:
        super().__init__(
            accelerator=accelerator,
            parallel_devices=parallel_devices,
            cluster_environment=cluster_environment,
            checkpoint_io=checkpoint_io,
            precision_plugin=precision_plugin,
        )
        self.num_nodes = 1
        self._process_group_backend = process_group_backend
        self._timeout: Optional[timedelta] = timeout
        self.cpu_offload = _init_cpu_offload(cpu_offload)
        self.mixed_precision = mixed_precision
        self.kwargs = _auto_wrap_policy_kwargs(auto_wrap_policy, kwargs)

        if device_mesh is not None:
            if not _TORCH_GREATER_EQUAL_2_2:
                raise ValueError("The `device_mesh` argument is only supported in torch >= 2.2.")
            self.kwargs["device_mesh"] = device_mesh

        self.sharding_strategy = _init_sharding_strategy(sharding_strategy, self.kwargs)

        # Avoids the need for user to reference params in `configure_optimizers` via
        # `self.trainer.model.parameters()` and enables support for multiple parameter groups.
        self.kwargs.setdefault("use_orig_params", True)

        self._activation_checkpointing_kwargs = _activation_checkpointing_kwargs(
            activation_checkpointing, activation_checkpointing_policy
        )
        self._state_dict_type = state_dict_type

    @property
    @override
    def root_device(self) -> torch.device:
        assert self.parallel_devices is not None
        return self.parallel_devices[self.local_rank]

    @property
    def num_processes(self) -> int:
        return len(self.parallel_devices) if self.parallel_devices is not None else 0

    @property
    def process_group_backend(self) -> Optional[str]:
        return self._process_group_backend

    @property
    def mixed_precision_config(self) -> Optional["MixedPrecision"]:
        if self.mixed_precision:
            return self.mixed_precision
        plugin = self.precision_plugin
        if isinstance(plugin, FSDPPrecision):
            return plugin.mixed_precision_config
        return None

    @property
    @override
    def precision_plugin(self) -> FSDPPrecision:
        plugin = self._precision_plugin
        if plugin is not None:
            assert isinstance(plugin, FSDPPrecision)
            return plugin
        return FSDPPrecision("32-true")

    @precision_plugin.setter
    @override
    def precision_plugin(self, precision_plugin: Optional[Precision]) -> None:
        if precision_plugin is not None and not isinstance(precision_plugin, FSDPPrecision):
            raise TypeError(
                f"The FSDP strategy can only work with the `FSDPPrecision` plugin, found {precision_plugin}"
            )
        self._precision_plugin = precision_plugin

    @property
    @override
    def distributed_sampler_kwargs(self) -> dict:
        return {"num_replicas": (self.num_nodes * self.num_processes), "rank": self.global_rank}

    @property
    @override
    def restore_checkpoint_after_setup(self) -> bool:
        return True

    @property
    @override
    def lightning_restore_optimizer(self) -> bool:
        return False

    @override
    def setup_environment(self) -> None:
        super().setup_environment()
        log.debug(f"{self.__class__.__name__}: setting up distributed...")
        reset_seed()

        # determine which process we are and world size
        self.set_world_ranks()

        self._process_group_backend = self._get_process_group_backend()
        assert self.cluster_environment is not None
        _init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout)

        # if 'device_mesh' in the `kwargs` is provided as a tuple, update it into the `DeviceMesh` object here
        if isinstance(self.kwargs.get("device_mesh"), tuple):
            from torch.distributed.device_mesh import init_device_mesh

            self.kwargs["device_mesh"] = init_device_mesh("cuda", self.kwargs["device_mesh"])

    def _get_process_group_backend(self) -> str:
        return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device)

    def set_world_ranks(self) -> None:
        if self.cluster_environment is not None:
            self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank)
            self.cluster_environment.set_world_size(self.num_nodes * self.num_processes)
        # `LightningEnvironment.set_global_rank` will do this too, but we cannot rely on that implementation detail
        # additionally, for some implementations, the setter is a no-op, so it's safer to access the getter
        rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank

    @override
    def _configure_launcher(self) -> None:
        assert self.cluster_environment is not None
        if not self.cluster_environment.creates_processes_externally:
            self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes)

    @override
    def _setup_model(self, model: Module) -> Module:
        """Wraps the model into a :class:`~torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel`
        module."""
        from torch.distributed.fsdp import FullyShardedDataParallel

        if any(isinstance(mod, FullyShardedDataParallel) for mod in model.modules()):
            if _has_meta_device_parameters_or_buffers(model):
                rank_zero_warn(
                    "The model is already wrapped in `FSDP` but there are still parameters on the meta device."
                )
            if "auto_wrap_policy" in self.kwargs:
                # The user has wrapped their submodules manually, don't apply the auto wrap policy.
                rank_zero_warn(
                    "A FSDP `auto_wrap_policy` is set, but the model is already wrapped. The policy will be ignored."
                )
                del self.kwargs["auto_wrap_policy"]
        else:
            log.debug(f"setting up FSDP model with device id: {self.root_device.index}, kwargs: {self.kwargs}")
            model = FullyShardedDataParallel(
                module=model,
                cpu_offload=self.cpu_offload,
                mixed_precision=self.mixed_precision_config,
                sharding_strategy=self.sharding_strategy,
                device_id=self.root_device.index,
                **self.kwargs,
            )

        _move_torchmetrics_to_device(model, self.root_device)

        # activation checkpointing needs to be set up after wrapping the model
        _setup_activation_checkpointing(model, self._activation_checkpointing_kwargs)

        return model

    @override
    def setup(self, trainer: "pl.Trainer") -> None:
        assert self.accelerator is not None
        self.accelerator.setup(trainer)

        assert self.model is not None
        if trainer.state.fn == TrainerFn.FITTING and self._layer_sync:
            self.model = self._layer_sync.apply(self.model)

        self.model = self.precision_plugin.convert_module(self.model)

        if is_overridden("configure_sharded_model", self.lightning_module):
            # legacy: we don't skip setup with the `configure_model` alternative
            rank_zero_info(
                "You have overridden `LightningModule.configure_sharded_model` hook. It will assume that all the layers"
                " are already wrapped for sharding and won't wrap the entire model using `FullyShardedDataParallel`."
            )
        else:
            self.model = self._setup_model(self.model)
        self.barrier()

        if trainer.state.fn == TrainerFn.FITTING:
            self.setup_optimizers(trainer)
        self.setup_precision_plugin()
        if trainer.state.fn == TrainerFn.FITTING:
            _optimizers_to_device(self.optimizers, self.root_device)

    @override
    def setup_optimizers(self, trainer: "pl.Trainer") -> None:
        # If we're setting up for evaluation after fitting, we need to discard the optimizers
        # since we're rewrapping the model, otherwise optimizer param references are no longer valid
        # and subsequent checkpoint saving can fail
        self._reset_optimizers_and_schedulers()

        if self.kwargs.get("use_orig_params"):
            return super().setup_optimizers(trainer)

        invalid_params_error = False
        try:
            # If `use_orig_params=False` the user needs to do access `self.trainer.model.parameters()` in
            # `configure_optimizers()`
            super().setup_optimizers(trainer)
        except ValueError as ex:
            if "optimizer got an empty parameter list" not in str(ex):
                raise
            invalid_params_error = True

        if invalid_params_error or any(not _optimizer_has_flat_params(optimizer) for optimizer in self.optimizers):
            # We avoid this limitation by setting `use_orig_params=True`
            raise ValueError(
                "The optimizer does not seem to reference any FSDP parameters. HINT: Make sure to create the"
                " optimizer after setting up the model by referencing `self.trainer.model.parameters()` in the"
                " `configure_optimizers()` hook."
            )
        return None

    @override
    def model_to_device(self) -> None:
        # FSDP takes care of moving the model to device
        pass

    @contextmanager
    @override
    def tensor_init_context(self, empty_init: Optional[bool] = None) -> Generator[None, None, None]:
        # Materialization happens in `setup`. When modules get wrapped by FSDP, the sequence of operations is:
        # 1) materialize module 2) call `reset_parameters()` 3) shard the module.
        # These operations are applied to each submodule 'bottom up' in the module hierarchy.
        empty_init_context = torch.device("meta") if empty_init else nullcontext()
        with empty_init_context, self.precision_plugin.tensor_init_context():
            yield

    @contextmanager
    @override
    def model_sharded_context(self) -> Generator[None, None, None]:
        log.debug(f"{self.__class__.__name__}: entered model_sharded_context.")
        from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
        from torch.distributed.fsdp.wrap import enable_wrap

        with enable_wrap(
            wrapper_cls=FullyShardedDataParallel,
            cpu_offload=self.cpu_offload,
            mixed_precision=self.mixed_precision_config,
            sharding_strategy=self.sharding_strategy,
            device_id=self.root_device.index,
            **self.kwargs,
        ):
            yield

    @override
    def barrier(self, name: Optional[str] = None) -> None:
        if not _distributed_is_initialized():
            return
        if torch.distributed.get_backend() == "nccl":
            torch.distributed.barrier(device_ids=self._determine_device_ids())
        else:
            torch.distributed.barrier()

    @override
    def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
        if not _distributed_is_initialized():
            return obj

        obj = [obj]
        torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD)
        return obj[0]

    @override
    def reduce(
        self,
        tensor: Union[Tensor, Any],
        group: Optional[Any] = None,
        reduce_op: Optional[Union[ReduceOp, str]] = "mean",
    ) -> Tensor:
        """Reduces a tensor from several distributed processes to one aggregated tensor.

        Args:
            tensor: the tensor to sync and reduce
            group: the process group to gather results from. Defaults to all processes (world)
            reduce_op: the reduction operation. Defaults to 'mean'/'avg'.
                Can also be a string 'sum' to calculate the sum during reduction.

        Return:
            reduced value, except when the input was not a tensor the output remains is unchanged

        """
        if isinstance(tensor, Tensor):
            return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
        return tensor

    def _determine_device_ids(self) -> list[int]:
        return [self.root_device.index]

    @override
    def teardown(self) -> None:
        log.debug(f"{self.__class__.__name__}: tearing down strategy...")

        pl_module = self.lightning_module
        if (
            pl_module is not None
            # `self.lightning_module._trainer` can be None if teardown gets called on an exception before
            # the trainer gets set on the LightningModule
            and pl_module._trainer is not None
            and pl_module._trainer.state.fn == TrainerFn.FITTING
            and self._layer_sync
        ):
            assert self.model is not None
            self.model = self._layer_sync.revert(self.model)

        assert self.cluster_environment is not None
        assert self.accelerator is not None
        self.cluster_environment.teardown()
        self.precision_plugin.teardown()
        self.accelerator.teardown()

    @classmethod
    def get_registered_strategies(cls) -> list[str]:
        return cls._registered_strategies

    @classmethod
    @override
    def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
        if not torch.distributed.is_available():
            return
        strategy_registry.register(
            "fsdp",
            cls,
            description="Fully Sharded Data Parallel (FSDP) training",
        )
        cls._registered_strategies.append("fsdp")

        strategy_registry.register(
            "fsdp_cpu_offload",
            cls,
            description="Fully Sharded Data Parallel (FSDP) training with Full Sharding and CPU Offloading",
            cpu_offload=True,
        )
        cls._registered_strategies.append("fsdp_cpu_offload")

    @override
    def lightning_module_state_dict(self) -> dict[str, Any]:
        assert self.model is not None
        if self._state_dict_type == "sharded":
            state_dict_ctx = _get_sharded_state_dict_context(self.model)
        elif self._state_dict_type == "full":
            state_dict_ctx = _get_full_state_dict_context(self.model, world_size=self.world_size)
        else:
            raise ValueError(f"Unknown state_dict_type: {self._state_dict_type}")
        with state_dict_ctx:
            return self.model.state_dict()

    @override
    def load_model_state_dict(self, checkpoint: Mapping[str, Any], strict: bool = True) -> None:
        # Override to do nothing, FSDP already loaded the states in `load_checkpoint()`
        pass

    @override
    def optimizer_state(self, optimizer: Optimizer) -> dict[str, Tensor]:
        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
        from torch.distributed.fsdp import OptimStateKeyType

        if isinstance(optimizer, LightningOptimizer):
            optimizer = optimizer._optimizer

        assert self.model is not None
        if self._state_dict_type == "sharded":
            with _get_sharded_state_dict_context(self.model):
                return FSDP.optim_state_dict(self.model, optimizer)

        elif self._state_dict_type == "full":
            with _get_full_state_dict_context(self.model, world_size=self.world_size):
                state_dict = FSDP.optim_state_dict(self.model, optimizer)
                if self.global_rank == 0:
                    # Store the optimizer state dict in standard format
                    state_dict = FSDP.rekey_optim_state_dict(state_dict, OptimStateKeyType.PARAM_ID, self.model)
                return state_dict

        raise ValueError(f"Unknown state_dict_type: {self._state_dict_type}")

    @override
    def load_optimizer_state_dict(self, checkpoint: Mapping[str, Any]) -> None:
        # Override to do nothing, the FSDP already loaded the states in `load_checkpoint()`
        pass

    @override
    def save_checkpoint(
        self, checkpoint: dict[str, Any], filepath: _PATH, storage_options: Optional[Any] = None
    ) -> None:
        if storage_options is not None:
            raise TypeError(
                "`FSDPStrategy.save_checkpoint(..., storage_options=...)` is not supported because"
                " `FSDPStrategy` does not use the `CheckpointIO`."
            )

        path = Path(self.broadcast(filepath))
        if path.is_dir() and self._state_dict_type == "full" and not _is_sharded_checkpoint(path):
            raise IsADirectoryError(f"The checkpoint path exists and is a directory: {path}")

        if self._state_dict_type == "sharded":
            if path.is_file():
                path.unlink()
            path.mkdir(parents=True, exist_ok=True)

            converted_state = {"model": checkpoint.pop("state_dict")}
            converted_state.update({
                f"optimizer_{idx}": optim_state
                for idx, optim_state in enumerate(checkpoint.pop("optimizer_states", []))
            })

            _distributed_checkpoint_save(converted_state, path)

            if self.global_rank == 0:
                torch.save(checkpoint, path / _METADATA_FILENAME)
        elif self._state_dict_type == "full":
            if _is_sharded_checkpoint(path):
                shutil.rmtree(path)
            return super().save_checkpoint(checkpoint=checkpoint, filepath=path)
        else:
            raise ValueError(f"Unknown state_dict_type: {self._state_dict_type}")

    @override
    def load_checkpoint(self, checkpoint_path: _PATH) -> dict[str, Any]:
        # broadcast the path from rank 0 to ensure all the states are loaded from a common path
        path = Path(self.broadcast(checkpoint_path))

        from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

        assert self.model is not None
        assert self.lightning_module is not None

        if _is_sharded_checkpoint(path):
            from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict

            state_dict_ctx = _get_sharded_state_dict_context(self.model)

            with state_dict_ctx:
                module_state = {"model": self.model.state_dict()}
                _distributed_checkpoint_load(module_state, path)
                self.model.load_state_dict(module_state["model"], strict=self.lightning_module.strict_loading)

                if self.lightning_module.trainer.state.fn == TrainerFn.FITTING and self.optimizers:
                    from torch.distributed.checkpoint import FileSystemReader

                    # TODO: replace with newer APIs
                    # https://github.com/pytorch/pytorch/issues/119800#issuecomment-1942156271
                    reader = FileSystemReader(path=path)
                    # the optimizer states must be loaded separately
                    for idx, optim in enumerate(self.optimizers):
                        optim_key = f"optimizer_{idx}"
                        optim_state = load_sharded_optimizer_state_dict(
                            model_state_dict=module_state["model"],
                            optimizer_key=optim_key,
                            storage_reader=reader,
                        )
                        flattened_osd = FSDP.optim_state_dict_to_load(
                            optim_state_dict=optim_state[optim_key],
                            model=self.model,
                            optim=optim,
                        )
                        optim.load_state_dict(flattened_osd)

            # Load metadata (anything not a module or optimizer)
            metadata = torch.load(path / _METADATA_FILENAME)
            return metadata

        if _is_full_checkpoint(path):
            checkpoint = _lazy_load(path)
            _load_raw_module_state(
                checkpoint.pop("state_dict"),
                module=self.model,
                world_size=self.world_size,
                strict=self.lightning_module.strict_loading,
            )

            # Materialize lazy tensors if there are any left in the checkpoint
            # The `torch.Optimizer.load_state_dict` method can't load lazy tensors because of deepcopy pickle issues
            checkpoint = _materialize_tensors(checkpoint)

            from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
            from torch.distributed.fsdp import OptimStateKeyType

            optimizer_states = checkpoint.get("optimizer_states")
            if optimizer_states is None or self.lightning_module.trainer.state.fn != TrainerFn.FITTING:
                # If the optimizer states are not present, we don't need to do anything (backward compatibility)
                return checkpoint
            if len(self.optimizers) != len(optimizer_states):
                raise RuntimeError(
                    f"You have configured {len(self.optimizers)} optimizers but the checkpoint contains"
                    f" {len(optimizer_states)} optimizers to load. Please resume training with the same number"
                    " of optimizers or edit the checkpoint manually to remove states."
                )

            # rank0_only should be false because we need to load the optimizer state on all ranks
            with _get_full_state_dict_context(self.model, world_size=self.world_size, rank0_only=False):
                for optimizer, opt_state in zip(self.optimizers, optimizer_states):
                    if isinstance(list(opt_state["state"].keys())[0], int):
                        # Handling the case where the optimizer state is saved from a normal optimizer
                        opt_state = FSDP.rekey_optim_state_dict(opt_state, OptimStateKeyType.PARAM_NAME, self.model)

                    opt_state = FSDP.optim_state_dict_to_load(
                        optim_state_dict=opt_state,
                        model=self.model,
                        optim=optimizer,
                    )
                    optimizer.load_state_dict(opt_state)

            return checkpoint

        raise ValueError(
            f"The path {str(path)!r} does not point to a valid checkpoint. Make sure the path points to either a"
            " directory with FSDP checkpoint shards, or a single file with a full checkpoint."
        )