File size: 7,350 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Iterator
from typing import Any, Optional

from typing_extensions import override

from lightning_fabric.utilities.data import sized_len
from pytorch_lightning.utilities.combined_loader import _ITERATOR_RETURN, CombinedLoader
from pytorch_lightning.utilities.exceptions import MisconfigurationException


def _profile_nothing() -> None:
    pass


class _DataFetcher(Iterator):
    def __init__(self) -> None:
        self._combined_loader: Optional[CombinedLoader] = None
        self.iterator: Optional[Iterator] = None
        self.fetched: int = 0
        self.done: bool = False
        self.length: Optional[int] = None
        self._start_profiler = _profile_nothing
        self._stop_profiler = _profile_nothing

    @property
    def combined_loader(self) -> CombinedLoader:
        if self._combined_loader is None:
            raise MisconfigurationException(
                f"`{self.__class__.__name__}` should have been `setup` with a `CombinedLoader`."
            )
        return self._combined_loader

    def setup(self, combined_loader: CombinedLoader) -> None:
        self._combined_loader = combined_loader

    @override
    def __iter__(self) -> "_DataFetcher":
        self.iterator = iter(self.combined_loader)
        self.reset()
        return self

    @override
    def __next__(self) -> _ITERATOR_RETURN:
        assert self.iterator is not None
        self._start_profiler()
        try:
            batch = next(self.iterator)
        except StopIteration:
            self.done = True
            raise
        finally:
            self._stop_profiler()
        self.fetched += 1
        if self.length is not None:
            self.done = self.fetched >= self.length
        return batch

    def reset(self) -> None:
        self.fetched = 0
        # teardown calls `reset()`, and if it happens early, `combined_loader` can still be None
        if self._combined_loader is not None:
            self.length = sized_len(self.combined_loader)
            self.done = self.length == 0

    def teardown(self) -> None:
        self.reset()
        if self._combined_loader is not None:
            self._combined_loader.reset()
        self.iterator = None


class _PrefetchDataFetcher(_DataFetcher):
    """This class is used to control batch fetching flow.

    Args:
        prefetch_batches: Number of batches to pre-fetch. Pre-fetching at least 1 batch is necessary to properly track
            whether a batch is the last one (available with :attr:`self.done`) when the length is not available. The
            value of this argument is ignored when the length is available.

    """

    def __init__(self, prefetch_batches: int = 1) -> None:
        super().__init__()
        if prefetch_batches < 0:
            raise ValueError("`prefetch_batches` should at least be 0.")
        self.prefetch_batches = prefetch_batches
        self.batches: list[Any] = []

    @override
    def __iter__(self) -> "_PrefetchDataFetcher":
        super().__iter__()
        if self.length is not None:
            # ignore pre-fetching, it's not necessary
            return self
        # prefetch batches to know when the iterator will be exhausted in advance
        for _ in range(self.prefetch_batches):
            try:
                batch = super().__next__()
                self.batches.append(batch)
            except StopIteration:
                # this would only happen when prefetch_batches > the number of batches available and makes
                # `__next__` jump directly to the empty iterator case without trying to fetch again
                break
        return self

    @override
    def __next__(self) -> _ITERATOR_RETURN:
        if self.batches:
            # there are pre-fetched batches already from a previous `prefetching` call.
            # consume one
            batch = self.batches.pop(0)
            try:
                # refill the consumed batch
                self.batches.append(super().__next__())
            except StopIteration:
                # no more batches to fetch. we are done only if all pre-fetched batches were returned
                self.done = not self.batches
        elif not self.done:
            # this will run only when no pre-fetching was done.
            batch = super().__next__()
        else:
            # the iterator is empty
            raise StopIteration
        return batch

    @override
    def reset(self) -> None:
        super().reset()
        self.batches = []


class _DataLoaderIterDataFetcher(_DataFetcher):
    """This class is used to return directly the `dataloader_iter` to the ``LightningModule`` training_step for users
    to implement their own pre-fetching logic. This feature can be activated as follows:

    Example::

        Class MyModel(LightningModule):
            def training_step(self, dataloader_iter: Iterator) -> None:
                # it is the user responsibility to fetch and move the batch to the right device.
                batch, batch_idx, dataloader_idx = next(dataloader_iter)
                batch = batch.to(self.device)
                ...

    """

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
        self._batch: Any = None
        self._batch_idx: int = 0
        self._dataloader_idx: int = 0

    @override
    def __iter__(self) -> "_DataLoaderIterDataFetcher":
        super().__iter__()
        self.iterator_wrapper = iter(_DataFetcherWrapper(self))
        return self

    @override
    def __next__(self) -> Iterator["_DataFetcherWrapper"]:  # type: ignore[override]
        if self.done:
            raise StopIteration
        return self.iterator_wrapper

    @override
    def reset(self) -> None:
        super().reset()
        self._batch = None
        self._batch_idx = 0
        self._dataloader_idx = 0


class _DataFetcherWrapper(Iterator):
    def __init__(self, data_fetcher: _DataLoaderIterDataFetcher) -> None:
        self.data_fetcher = data_fetcher

    @property
    def done(self) -> bool:
        return self.data_fetcher.done

    @property
    def fetched(self) -> int:
        return self.data_fetcher.fetched

    @property
    def length(self) -> Optional[int]:
        return self.data_fetcher.length

    @override
    def __next__(self) -> _ITERATOR_RETURN:
        fetcher = self.data_fetcher
        if fetcher.done:
            raise StopIteration
        batch, batch_idx, dataloader_idx = super(_DataLoaderIterDataFetcher, fetcher).__next__()
        # save the state so the loops can access it
        fetcher._batch = batch
        fetcher._batch_idx = batch_idx
        fetcher._dataloader_idx = dataloader_idx
        return batch, batch_idx, dataloader_idx