File size: 15,147 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MLflow Logger
-------------
"""
import logging
import os
import re
import tempfile
from argparse import Namespace
from collections.abc import Mapping
from pathlib import Path
from time import time
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union
import yaml
from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from typing_extensions import override
from lightning_fabric.utilities.logger import _add_prefix, _convert_params, _flatten_dict
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers.logger import Logger, rank_zero_experiment
from pytorch_lightning.loggers.utilities import _scan_checkpoints
from pytorch_lightning.utilities.rank_zero import rank_zero_only, rank_zero_warn
if TYPE_CHECKING:
from mlflow.tracking import MlflowClient
log = logging.getLogger(__name__)
LOCAL_FILE_URI_PREFIX = "file:"
_MLFLOW_AVAILABLE = RequirementCache("mlflow>=1.0.0", "mlflow")
_MLFLOW_SYNCHRONOUS_AVAILABLE = RequirementCache("mlflow>=2.8.0", "mlflow")
class MLFlowLogger(Logger):
"""Log using `MLflow <https://mlflow.org>`_.
Install it with pip:
.. code-block:: bash
pip install mlflow # or mlflow-skinny
.. code-block:: python
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import MLFlowLogger
mlf_logger = MLFlowLogger(experiment_name="lightning_logs", tracking_uri="file:./ml-runs")
trainer = Trainer(logger=mlf_logger)
Use the logger anywhere in your :class:`~pytorch_lightning.core.LightningModule` as follows:
.. code-block:: python
from pytorch_lightning import LightningModule
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# example
self.logger.experiment.whatever_ml_flow_supports(...)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.whatever_ml_flow_supports(...)
Args:
experiment_name: The name of the experiment.
run_name: Name of the new run. The `run_name` is internally stored as a ``mlflow.runName`` tag.
If the ``mlflow.runName`` tag has already been set in `tags`, the value is overridden by the `run_name`.
tracking_uri: Address of local or remote tracking server.
If not provided, defaults to `MLFLOW_TRACKING_URI` environment variable if set, otherwise it falls
back to `file:<save_dir>`.
tags: A dictionary tags for the experiment.
save_dir: A path to a local directory where the MLflow runs get saved.
Defaults to `./mlruns` if `tracking_uri` is not provided.
Has no effect if `tracking_uri` is provided.
log_model: Log checkpoints created by :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
as MLFlow artifacts.
* if ``log_model == 'all'``, checkpoints are logged during training.
* if ``log_model == True``, checkpoints are logged at the end of training, except when
:paramref:`~pytorch_lightning.callbacks.Checkpoint.save_top_k` ``== -1``
which also logs every checkpoint during training.
* if ``log_model == False`` (default), no checkpoint is logged.
checkpoint_path_prefix: A string to prefix the checkpoint artifact's path.
prefix: A string to put at the beginning of metric keys.
artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate
default.
run_id: The run identifier of the experiment. If not provided, a new run is started.
synchronous: Hints mlflow whether to block the execution for every logging call until complete where
applicable. Requires mlflow >= 2.8.0
Raises:
ModuleNotFoundError:
If required MLFlow package is not installed on the device.
"""
LOGGER_JOIN_CHAR = "-"
def __init__(
self,
experiment_name: str = "lightning_logs",
run_name: Optional[str] = None,
tracking_uri: Optional[str] = os.getenv("MLFLOW_TRACKING_URI"),
tags: Optional[dict[str, Any]] = None,
save_dir: Optional[str] = "./mlruns",
log_model: Literal[True, False, "all"] = False,
checkpoint_path_prefix: str = "",
prefix: str = "",
artifact_location: Optional[str] = None,
run_id: Optional[str] = None,
synchronous: Optional[bool] = None,
):
if not _MLFLOW_AVAILABLE:
raise ModuleNotFoundError(str(_MLFLOW_AVAILABLE))
if synchronous is not None and not _MLFLOW_SYNCHRONOUS_AVAILABLE:
raise ModuleNotFoundError("`synchronous` requires mlflow>=2.8.0")
super().__init__()
if not tracking_uri:
tracking_uri = f"{LOCAL_FILE_URI_PREFIX}{save_dir}"
self._experiment_name = experiment_name
self._experiment_id: Optional[str] = None
self._tracking_uri = tracking_uri
self._run_name = run_name
self._run_id = run_id
self.tags = tags
self._log_model = log_model
self._logged_model_time: dict[str, float] = {}
self._checkpoint_callback: Optional[ModelCheckpoint] = None
self._prefix = prefix
self._artifact_location = artifact_location
self._log_batch_kwargs = {} if synchronous is None else {"synchronous": synchronous}
self._initialized = False
self._checkpoint_path_prefix = checkpoint_path_prefix
from mlflow.tracking import MlflowClient
self._mlflow_client = MlflowClient(tracking_uri)
@property
@rank_zero_experiment
def experiment(self) -> "MlflowClient":
r"""Actual MLflow object. To use MLflow features in your :class:`~pytorch_lightning.core.LightningModule` do the
following.
Example::
self.logger.experiment.some_mlflow_function()
"""
import mlflow
if self._initialized:
return self._mlflow_client
mlflow.set_tracking_uri(self._tracking_uri)
if self._run_id is not None:
run = self._mlflow_client.get_run(self._run_id)
self._experiment_id = run.info.experiment_id
self._initialized = True
return self._mlflow_client
if self._experiment_id is None:
expt = self._mlflow_client.get_experiment_by_name(self._experiment_name)
if expt is not None and expt.lifecycle_stage != "deleted":
self._experiment_id = expt.experiment_id
else:
log.warning(f"Experiment with name {self._experiment_name} not found. Creating it.")
self._experiment_id = self._mlflow_client.create_experiment(
name=self._experiment_name, artifact_location=self._artifact_location
)
if self._run_id is None:
if self._run_name is not None:
self.tags = self.tags or {}
from mlflow.utils.mlflow_tags import MLFLOW_RUN_NAME
if MLFLOW_RUN_NAME in self.tags:
log.warning(
f"The tag {MLFLOW_RUN_NAME} is found in tags. The value will be overridden by {self._run_name}."
)
self.tags[MLFLOW_RUN_NAME] = self._run_name
resolve_tags = _get_resolve_tags()
run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=resolve_tags(self.tags))
self._run_id = run.info.run_id
self._initialized = True
return self._mlflow_client
@property
def run_id(self) -> Optional[str]:
"""Create the experiment if it does not exist to get the run id.
Returns:
The run id.
"""
_ = self.experiment
return self._run_id
@property
def experiment_id(self) -> Optional[str]:
"""Create the experiment if it does not exist to get the experiment id.
Returns:
The experiment id.
"""
_ = self.experiment
return self._experiment_id
@override
@rank_zero_only
def log_hyperparams(self, params: Union[dict[str, Any], Namespace]) -> None:
params = _convert_params(params)
params = _flatten_dict(params)
from mlflow.entities import Param
# Truncate parameter values to 250 characters.
# TODO: MLflow 1.28 allows up to 500 characters: https://github.com/mlflow/mlflow/releases/tag/v1.28.0
params_list = [Param(key=k, value=str(v)[:250]) for k, v in params.items()]
# Log in chunks of 100 parameters (the maximum allowed by MLflow).
for idx in range(0, len(params_list), 100):
self.experiment.log_batch(run_id=self.run_id, params=params_list[idx : idx + 100], **self._log_batch_kwargs)
@override
@rank_zero_only
def log_metrics(self, metrics: Mapping[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0"
from mlflow.entities import Metric
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
metrics_list: list[Metric] = []
timestamp_ms = int(time() * 1000)
for k, v in metrics.items():
if isinstance(v, str):
log.warning(f"Discarding metric with string value {k}={v}.")
continue
new_k = re.sub("[^a-zA-Z0-9_/. -]+", "", k)
if k != new_k:
rank_zero_warn(
"MLFlow only allows '_', '/', '.' and ' ' special characters in metric name."
f" Replacing {k} with {new_k}.",
category=RuntimeWarning,
)
k = new_k
metrics_list.append(Metric(key=k, value=v, timestamp=timestamp_ms, step=step or 0))
self.experiment.log_batch(run_id=self.run_id, metrics=metrics_list, **self._log_batch_kwargs)
@override
@rank_zero_only
def finalize(self, status: str = "success") -> None:
if not self._initialized:
return
if status == "success":
status = "FINISHED"
elif status == "failed":
status = "FAILED"
elif status == "finished":
status = "FINISHED"
# log checkpoints as artifacts
if self._checkpoint_callback:
self._scan_and_log_checkpoints(self._checkpoint_callback)
if self.experiment.get_run(self.run_id):
self.experiment.set_terminated(self.run_id, status)
@property
@override
def save_dir(self) -> Optional[str]:
"""The root file directory in which MLflow experiments are saved.
Return:
Local path to the root experiment directory if the tracking uri is local.
Otherwise returns `None`.
"""
if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX):
return self._tracking_uri[len(LOCAL_FILE_URI_PREFIX) :]
return None
@property
@override
def name(self) -> Optional[str]:
"""Get the experiment id.
Returns:
The experiment id.
"""
return self.experiment_id
@property
@override
def version(self) -> Optional[str]:
"""Get the run id.
Returns:
The run id.
"""
return self.run_id
@override
def after_save_checkpoint(self, checkpoint_callback: ModelCheckpoint) -> None:
# log checkpoints as artifacts
if self._log_model == "all" or self._log_model is True and checkpoint_callback.save_top_k == -1:
self._scan_and_log_checkpoints(checkpoint_callback)
elif self._log_model is True:
self._checkpoint_callback = checkpoint_callback
def _scan_and_log_checkpoints(self, checkpoint_callback: ModelCheckpoint) -> None:
# get checkpoints to be saved with associated score
checkpoints = _scan_checkpoints(checkpoint_callback, self._logged_model_time)
# log iteratively all new checkpoints
for t, p, s, tag in checkpoints:
metadata = {
# Ensure .item() is called to store Tensor contents
"score": s.item() if isinstance(s, Tensor) else s,
"original_filename": Path(p).name,
"Checkpoint": {
k: getattr(checkpoint_callback, k)
for k in [
"monitor",
"mode",
"save_last",
"save_top_k",
"save_weights_only",
"_every_n_train_steps",
"_every_n_val_epochs",
]
# ensure it does not break if `Checkpoint` args change
if hasattr(checkpoint_callback, k)
},
}
aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"]
# Artifact path on mlflow
artifact_path = Path(self._checkpoint_path_prefix) / Path(p).stem
# Log the checkpoint
self.experiment.log_artifact(self._run_id, p, artifact_path)
# Create a temporary directory to log on mlflow
with tempfile.TemporaryDirectory() as tmp_dir:
# Log the metadata
with open(f"{tmp_dir}/metadata.yaml", "w") as tmp_file_metadata:
yaml.dump(metadata, tmp_file_metadata, default_flow_style=False)
# Log the aliases
with open(f"{tmp_dir}/aliases.txt", "w") as tmp_file_aliases:
tmp_file_aliases.write(str(aliases))
# Log the metadata and aliases
self.experiment.log_artifacts(self._run_id, tmp_dir, artifact_path)
# remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name)
self._logged_model_time[p] = t
def _get_resolve_tags() -> Callable:
from mlflow.tracking import context
# before v1.1.0
if hasattr(context, "resolve_tags"):
from mlflow.tracking.context import resolve_tags
# since v1.1.0
elif hasattr(context, "registry"):
from mlflow.tracking.context.registry import resolve_tags
else:
resolve_tags = lambda tags: tags
return resolve_tags
|