File size: 40,849 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import sys
from collections.abc import Iterable
from functools import partial, update_wrapper
from types import MethodType
from typing import Any, Callable, Optional, TypeVar, Union
import torch
import yaml
from lightning_utilities.core.imports import RequirementCache
from lightning_utilities.core.rank_zero import _warn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from typing_extensions import override
import pytorch_lightning as pl
from lightning_fabric.utilities.cloud_io import get_filesystem
from pytorch_lightning import Callback, LightningDataModule, LightningModule, Trainer, seed_everything
from pytorch_lightning.core.mixins.hparams_mixin import _given_hyperparameters_context
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.rank_zero import rank_zero_warn
_JSONARGPARSE_SIGNATURES_AVAILABLE = RequirementCache("jsonargparse[signatures]>=4.27.7")
if _JSONARGPARSE_SIGNATURES_AVAILABLE:
import docstring_parser
from jsonargparse import (
ActionConfigFile,
ArgumentParser,
Namespace,
class_from_function,
register_unresolvable_import_paths,
)
register_unresolvable_import_paths(torch) # Required until fix https://github.com/pytorch/pytorch/issues/74483
try:
from jsonargparse import set_parsing_settings
set_parsing_settings(config_read_mode_fsspec_enabled=True)
except ImportError:
from jsonargparse import set_config_read_mode
set_config_read_mode(fsspec_enabled=True)
else:
locals()["ArgumentParser"] = object
locals()["Namespace"] = object
ModuleType = TypeVar("ModuleType")
class ReduceLROnPlateau(torch.optim.lr_scheduler.ReduceLROnPlateau):
def __init__(self, optimizer: Optimizer, monitor: str, *args: Any, **kwargs: Any) -> None:
super().__init__(optimizer, *args, **kwargs)
self.monitor = monitor
# LightningCLI requires the ReduceLROnPlateau defined here, thus it shouldn't accept the one from pytorch:
LRSchedulerTypeTuple = (LRScheduler, ReduceLROnPlateau)
LRSchedulerTypeUnion = Union[LRScheduler, ReduceLROnPlateau]
LRSchedulerType = Union[type[LRScheduler], type[ReduceLROnPlateau]]
# Type aliases intended for convenience of CLI developers
ArgsType = Optional[Union[list[str], dict[str, Any], Namespace]]
OptimizerCallable = Callable[[Iterable], Optimizer]
LRSchedulerCallable = Callable[[Optimizer], Union[LRScheduler, ReduceLROnPlateau]]
class LightningArgumentParser(ArgumentParser):
"""Extension of jsonargparse's ArgumentParser for pytorch-lightning."""
def __init__(
self,
*args: Any,
description: str = "Lightning Trainer command line tool",
env_prefix: str = "PL",
default_env: bool = False,
**kwargs: Any,
) -> None:
"""Initialize argument parser that supports configuration file input.
For full details of accepted arguments see `ArgumentParser.__init__
<https://jsonargparse.readthedocs.io/en/stable/#jsonargparse.ArgumentParser.__init__>`_.
Args:
description: Description of the tool shown when running ``--help``.
env_prefix: Prefix for environment variables. Set ``default_env=True`` to enable env parsing.
default_env: Whether to parse environment variables.
"""
if not _JSONARGPARSE_SIGNATURES_AVAILABLE:
raise ModuleNotFoundError(f"{_JSONARGPARSE_SIGNATURES_AVAILABLE}")
super().__init__(*args, description=description, env_prefix=env_prefix, default_env=default_env, **kwargs)
self.callback_keys: list[str] = []
# separate optimizers and lr schedulers to know which were added
self._optimizers: dict[str, tuple[Union[type, tuple[type, ...]], str]] = {}
self._lr_schedulers: dict[str, tuple[Union[type, tuple[type, ...]], str]] = {}
def add_lightning_class_args(
self,
lightning_class: Union[
Callable[..., Union[Trainer, LightningModule, LightningDataModule, Callback]],
type[Trainer],
type[LightningModule],
type[LightningDataModule],
type[Callback],
],
nested_key: str,
subclass_mode: bool = False,
required: bool = True,
) -> list[str]:
"""Adds arguments from a lightning class to a nested key of the parser.
Args:
lightning_class: A callable or any subclass of {Trainer, LightningModule, LightningDataModule, Callback}.
nested_key: Name of the nested namespace to store arguments.
subclass_mode: Whether allow any subclass of the given class.
required: Whether the argument group is required.
Returns:
A list with the names of the class arguments added.
"""
if callable(lightning_class) and not isinstance(lightning_class, type):
lightning_class = class_from_function(lightning_class)
if isinstance(lightning_class, type) and issubclass(
lightning_class, (Trainer, LightningModule, LightningDataModule, Callback)
):
if issubclass(lightning_class, Callback):
self.callback_keys.append(nested_key)
if subclass_mode:
return self.add_subclass_arguments(lightning_class, nested_key, fail_untyped=False, required=required)
return self.add_class_arguments(
lightning_class,
nested_key,
fail_untyped=False,
instantiate=not issubclass(lightning_class, Trainer),
sub_configs=True,
)
raise MisconfigurationException(
f"Cannot add arguments from: {lightning_class}. You should provide either a callable or a subclass of: "
"Trainer, LightningModule, LightningDataModule, or Callback."
)
def add_optimizer_args(
self,
optimizer_class: Union[type[Optimizer], tuple[type[Optimizer], ...]] = (Optimizer,),
nested_key: str = "optimizer",
link_to: str = "AUTOMATIC",
) -> None:
"""Adds arguments from an optimizer class to a nested key of the parser.
Args:
optimizer_class: Any subclass of :class:`torch.optim.Optimizer`. Use tuple to allow subclasses.
nested_key: Name of the nested namespace to store arguments.
link_to: Dot notation of a parser key to set arguments or AUTOMATIC.
"""
if isinstance(optimizer_class, tuple):
assert all(issubclass(o, Optimizer) for o in optimizer_class)
else:
assert issubclass(optimizer_class, Optimizer)
kwargs: dict[str, Any] = {"instantiate": False, "fail_untyped": False, "skip": {"params"}}
if isinstance(optimizer_class, tuple):
self.add_subclass_arguments(optimizer_class, nested_key, **kwargs)
else:
self.add_class_arguments(optimizer_class, nested_key, sub_configs=True, **kwargs)
self._optimizers[nested_key] = (optimizer_class, link_to)
def add_lr_scheduler_args(
self,
lr_scheduler_class: Union[LRSchedulerType, tuple[LRSchedulerType, ...]] = LRSchedulerTypeTuple,
nested_key: str = "lr_scheduler",
link_to: str = "AUTOMATIC",
) -> None:
"""Adds arguments from a learning rate scheduler class to a nested key of the parser.
Args:
lr_scheduler_class: Any subclass of ``torch.optim.lr_scheduler.{_LRScheduler, ReduceLROnPlateau}``. Use
tuple to allow subclasses.
nested_key: Name of the nested namespace to store arguments.
link_to: Dot notation of a parser key to set arguments or AUTOMATIC.
"""
if isinstance(lr_scheduler_class, tuple):
assert all(issubclass(o, LRSchedulerTypeTuple) for o in lr_scheduler_class)
else:
assert issubclass(lr_scheduler_class, LRSchedulerTypeTuple)
kwargs: dict[str, Any] = {"instantiate": False, "fail_untyped": False, "skip": {"optimizer"}}
if isinstance(lr_scheduler_class, tuple):
self.add_subclass_arguments(lr_scheduler_class, nested_key, **kwargs)
else:
self.add_class_arguments(lr_scheduler_class, nested_key, sub_configs=True, **kwargs)
self._lr_schedulers[nested_key] = (lr_scheduler_class, link_to)
class SaveConfigCallback(Callback):
"""Saves a LightningCLI config to the log_dir when training starts.
Args:
parser: The parser object used to parse the configuration.
config: The parsed configuration that will be saved.
config_filename: Filename for the config file.
overwrite: Whether to overwrite an existing config file.
multifile: When input is multiple config files, saved config preserves this structure.
save_to_log_dir: Whether to save the config to the log_dir.
Raises:
RuntimeError: If the config file already exists in the directory to avoid overwriting a previous run
"""
def __init__(
self,
parser: LightningArgumentParser,
config: Namespace,
config_filename: str = "config.yaml",
overwrite: bool = False,
multifile: bool = False,
save_to_log_dir: bool = True,
) -> None:
self.parser = parser
self.config = config
self.config_filename = config_filename
self.overwrite = overwrite
self.multifile = multifile
self.save_to_log_dir = save_to_log_dir
self.already_saved = False
if not save_to_log_dir and not is_overridden("save_config", self, SaveConfigCallback):
raise ValueError(
"`save_to_log_dir=False` only makes sense when subclassing SaveConfigCallback to implement "
"`save_config` and it is desired to disable the standard behavior of saving to log_dir."
)
@override
def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None:
if self.already_saved:
return
if self.save_to_log_dir:
log_dir = trainer.log_dir # this broadcasts the directory
assert log_dir is not None
config_path = os.path.join(log_dir, self.config_filename)
fs = get_filesystem(log_dir)
if not self.overwrite:
# check if the file exists on rank 0
file_exists = fs.isfile(config_path) if trainer.is_global_zero else False
# broadcast whether to fail to all ranks
file_exists = trainer.strategy.broadcast(file_exists)
if file_exists:
raise RuntimeError(
f"{self.__class__.__name__} expected {config_path} to NOT exist. Aborting to avoid overwriting"
" results of a previous run. You can delete the previous config file,"
" set `LightningCLI(save_config_callback=None)` to disable config saving,"
' or set `LightningCLI(save_config_kwargs={"overwrite": True})` to overwrite the config file.'
)
if trainer.is_global_zero:
# save only on rank zero to avoid race conditions.
# the `log_dir` needs to be created as we rely on the logger to do it usually
# but it hasn't logged anything at this point
fs.makedirs(log_dir, exist_ok=True)
self.parser.save(
self.config, config_path, skip_none=False, overwrite=self.overwrite, multifile=self.multifile
)
if trainer.is_global_zero:
self.save_config(trainer, pl_module, stage)
self.already_saved = True
# broadcast so that all ranks are in sync on future calls to .setup()
self.already_saved = trainer.strategy.broadcast(self.already_saved)
def save_config(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None:
"""Implement to save the config in some other place additional to the standard log_dir.
Example:
def save_config(self, trainer, pl_module, stage):
if isinstance(trainer.logger, Logger):
config = self.parser.dump(self.config, skip_none=False) # Required for proper reproducibility
trainer.logger.log_hyperparams({"config": config})
Note:
This method is only called on rank zero. This allows to implement a custom save config without having to
worry about ranks or race conditions. Since it only runs on rank zero, any collective call will make the
process hang waiting for a broadcast. If you need to make collective calls, implement the setup method
instead.
"""
class LightningCLI:
"""Implementation of a configurable command line tool for pytorch-lightning."""
def __init__(
self,
model_class: Optional[Union[type[LightningModule], Callable[..., LightningModule]]] = None,
datamodule_class: Optional[Union[type[LightningDataModule], Callable[..., LightningDataModule]]] = None,
save_config_callback: Optional[type[SaveConfigCallback]] = SaveConfigCallback,
save_config_kwargs: Optional[dict[str, Any]] = None,
trainer_class: Union[type[Trainer], Callable[..., Trainer]] = Trainer,
trainer_defaults: Optional[dict[str, Any]] = None,
seed_everything_default: Union[bool, int] = True,
parser_kwargs: Optional[Union[dict[str, Any], dict[str, dict[str, Any]]]] = None,
parser_class: type[LightningArgumentParser] = LightningArgumentParser,
subclass_mode_model: bool = False,
subclass_mode_data: bool = False,
args: ArgsType = None,
run: bool = True,
auto_configure_optimizers: bool = True,
load_from_checkpoint_support: bool = True,
) -> None:
"""Receives as input pytorch-lightning classes (or callables which return pytorch-lightning classes), which are
called / instantiated using a parsed configuration file and / or command line args.
Parsing of configuration from environment variables can be enabled by setting ``parser_kwargs={"default_env":
True}``. A full configuration yaml would be parsed from ``PL_CONFIG`` if set. Individual settings are so parsed
from variables named for example ``PL_TRAINER__MAX_EPOCHS``.
For more info, read :ref:`the CLI docs <lightning-cli>`.
Args:
model_class: An optional :class:`~pytorch_lightning.core.LightningModule` class to train on or a
callable which returns a :class:`~pytorch_lightning.core.LightningModule` instance when
called. If ``None``, you can pass a registered model with ``--model=MyModel``.
datamodule_class: An optional :class:`~pytorch_lightning.core.datamodule.LightningDataModule` class or a
callable which returns a :class:`~pytorch_lightning.core.datamodule.LightningDataModule` instance when
called. If ``None``, you can pass a registered datamodule with ``--data=MyDataModule``.
save_config_callback: A callback class to save the config.
save_config_kwargs: Parameters that will be used to instantiate the save_config_callback.
trainer_class: An optional subclass of the :class:`~pytorch_lightning.trainer.trainer.Trainer` class or a
callable which returns a :class:`~pytorch_lightning.trainer.trainer.Trainer` instance when called.
trainer_defaults: Set to override Trainer defaults or add persistent callbacks. The callbacks added through
this argument will not be configurable from a configuration file and will always be present for
this particular CLI. Alternatively, configurable callbacks can be added as explained in
:ref:`the CLI docs <lightning-cli>`.
seed_everything_default: Number for the :func:`~lightning_fabric.utilities.seed.seed_everything`
seed value. Set to True to automatically choose a seed value.
Setting it to False will avoid calling ``seed_everything``.
parser_kwargs: Additional arguments to instantiate each ``LightningArgumentParser``.
subclass_mode_model: Whether model can be any `subclass
<https://jsonargparse.readthedocs.io/en/stable/#class-type-and-sub-classes>`_
of the given class.
subclass_mode_data: Whether datamodule can be any `subclass
<https://jsonargparse.readthedocs.io/en/stable/#class-type-and-sub-classes>`_
of the given class.
args: Arguments to parse. If ``None`` the arguments are taken from ``sys.argv``. Command line style
arguments can be given in a ``list``. Alternatively, structured config options can be given in a
``dict`` or ``jsonargparse.Namespace``.
run: Whether subcommands should be added to run a :class:`~pytorch_lightning.trainer.trainer.Trainer`
method. If set to ``False``, the trainer and model classes will be instantiated only.
auto_configure_optimizers: Whether to automatically add default optimizer and lr_scheduler arguments.
load_from_checkpoint_support: Whether ``save_hyperparameters`` should save the original parsed
hyperparameters (instead of what ``__init__`` receives), such that it is possible for
``load_from_checkpoint`` to correctly instantiate classes even when using complex nesting and
dependency injection.
"""
self.save_config_callback = save_config_callback
self.save_config_kwargs = save_config_kwargs or {}
self.trainer_class = trainer_class
self.trainer_defaults = trainer_defaults or {}
self.seed_everything_default = seed_everything_default
self.parser_kwargs = parser_kwargs or {}
self.parser_class = parser_class
self.auto_configure_optimizers = auto_configure_optimizers
self.model_class = model_class
# used to differentiate between the original value and the processed value
self._model_class = model_class or LightningModule
self.subclass_mode_model = (model_class is None) or subclass_mode_model
self.datamodule_class = datamodule_class
# used to differentiate between the original value and the processed value
self._datamodule_class = datamodule_class or LightningDataModule
self.subclass_mode_data = (datamodule_class is None) or subclass_mode_data
main_kwargs, subparser_kwargs = self._setup_parser_kwargs(self.parser_kwargs)
self.setup_parser(run, main_kwargs, subparser_kwargs)
self.parse_arguments(self.parser, args)
self.subcommand = self.config["subcommand"] if run else None
self._set_seed()
if load_from_checkpoint_support:
self._add_instantiators()
self.before_instantiate_classes()
self.instantiate_classes()
self.after_instantiate_classes()
if self.subcommand is not None:
self._run_subcommand(self.subcommand)
def _setup_parser_kwargs(self, parser_kwargs: dict[str, Any]) -> tuple[dict[str, Any], dict[str, Any]]:
subcommand_names = self.subcommands().keys()
main_kwargs = {k: v for k, v in parser_kwargs.items() if k not in subcommand_names}
subparser_kwargs = {k: v for k, v in parser_kwargs.items() if k in subcommand_names}
return main_kwargs, subparser_kwargs
def init_parser(self, **kwargs: Any) -> LightningArgumentParser:
"""Method that instantiates the argument parser."""
kwargs.setdefault("dump_header", [f"pytorch_lightning=={pl.__version__}"])
parser = self.parser_class(**kwargs)
parser.add_argument(
"-c", "--config", action=ActionConfigFile, help="Path to a configuration file in json or yaml format."
)
return parser
def setup_parser(
self, add_subcommands: bool, main_kwargs: dict[str, Any], subparser_kwargs: dict[str, Any]
) -> None:
"""Initialize and setup the parser, subcommands, and arguments."""
self.parser = self.init_parser(**main_kwargs)
if add_subcommands:
self._subcommand_method_arguments: dict[str, list[str]] = {}
self._add_subcommands(self.parser, **subparser_kwargs)
else:
self._add_arguments(self.parser)
def add_default_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
"""Adds default arguments to the parser."""
parser.add_argument(
"--seed_everything",
type=Union[bool, int],
default=self.seed_everything_default,
help=(
"Set to an int to run seed_everything with this value before classes instantiation."
"Set to True to use a random seed."
),
)
def add_core_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
"""Adds arguments from the core classes to the parser."""
parser.add_lightning_class_args(self.trainer_class, "trainer")
trainer_defaults = {"trainer." + k: v for k, v in self.trainer_defaults.items() if k != "callbacks"}
parser.set_defaults(trainer_defaults)
parser.add_lightning_class_args(self._model_class, "model", subclass_mode=self.subclass_mode_model)
if self.datamodule_class is not None:
parser.add_lightning_class_args(self._datamodule_class, "data", subclass_mode=self.subclass_mode_data)
else:
# this should not be required because the user might want to use the `LightningModule` dataloaders
parser.add_lightning_class_args(
self._datamodule_class, "data", subclass_mode=self.subclass_mode_data, required=False
)
def _add_arguments(self, parser: LightningArgumentParser) -> None:
# default + core + custom arguments
self.add_default_arguments_to_parser(parser)
self.add_core_arguments_to_parser(parser)
self.add_arguments_to_parser(parser)
# add default optimizer args if necessary
if self.auto_configure_optimizers:
if not parser._optimizers: # already added by the user in `add_arguments_to_parser`
parser.add_optimizer_args((Optimizer,))
if not parser._lr_schedulers: # already added by the user in `add_arguments_to_parser`
parser.add_lr_scheduler_args(LRSchedulerTypeTuple)
self.link_optimizers_and_lr_schedulers(parser)
def add_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
"""Implement to add extra arguments to the parser or link arguments.
Args:
parser: The parser object to which arguments can be added
"""
@staticmethod
def subcommands() -> dict[str, set[str]]:
"""Defines the list of available subcommands and the arguments to skip."""
return {
"fit": {"model", "train_dataloaders", "val_dataloaders", "datamodule"},
"validate": {"model", "dataloaders", "datamodule"},
"test": {"model", "dataloaders", "datamodule"},
"predict": {"model", "dataloaders", "datamodule"},
}
def _add_subcommands(self, parser: LightningArgumentParser, **kwargs: Any) -> None:
"""Adds subcommands to the input parser."""
self._subcommand_parsers: dict[str, LightningArgumentParser] = {}
parser_subcommands = parser.add_subcommands()
# the user might have passed a builder function
trainer_class = (
self.trainer_class if isinstance(self.trainer_class, type) else class_from_function(self.trainer_class)
)
# register all subcommands in separate subcommand parsers under the main parser
for subcommand in self.subcommands():
fn = getattr(trainer_class, subcommand)
# extract the first line description in the docstring for the subcommand help message
description = _get_short_description(fn)
subparser_kwargs = kwargs.get(subcommand, {})
subparser_kwargs.setdefault("description", description)
subcommand_parser = self._prepare_subcommand_parser(trainer_class, subcommand, **subparser_kwargs)
self._subcommand_parsers[subcommand] = subcommand_parser
parser_subcommands.add_subcommand(subcommand, subcommand_parser, help=description)
def _prepare_subcommand_parser(self, klass: type, subcommand: str, **kwargs: Any) -> LightningArgumentParser:
parser = self.init_parser(**kwargs)
self._add_arguments(parser)
# subcommand arguments
skip: set[Union[str, int]] = set(self.subcommands()[subcommand])
added = parser.add_method_arguments(klass, subcommand, skip=skip)
# need to save which arguments were added to pass them to the method later
self._subcommand_method_arguments[subcommand] = added
return parser
@staticmethod
def link_optimizers_and_lr_schedulers(parser: LightningArgumentParser) -> None:
"""Creates argument links for optimizers and learning rate schedulers that specified a ``link_to``."""
optimizers_and_lr_schedulers = {**parser._optimizers, **parser._lr_schedulers}
for key, (class_type, link_to) in optimizers_and_lr_schedulers.items():
if link_to == "AUTOMATIC":
continue
if isinstance(class_type, tuple):
parser.link_arguments(key, link_to)
else:
add_class_path = _add_class_path_generator(class_type)
parser.link_arguments(key, link_to, compute_fn=add_class_path)
def parse_arguments(self, parser: LightningArgumentParser, args: ArgsType) -> None:
"""Parses command line arguments and stores it in ``self.config``."""
if args is not None and len(sys.argv) > 1:
rank_zero_warn(
"LightningCLI's args parameter is intended to run from within Python like if it were from the command "
"line. To prevent mistakes it is not recommended to provide both args and command line arguments, got: "
f"sys.argv[1:]={sys.argv[1:]}, args={args}."
)
if isinstance(args, (dict, Namespace)):
self.config = parser.parse_object(args)
else:
self.config = parser.parse_args(args)
def _dump_config(self) -> None:
if hasattr(self, "config_dump"):
return
self.config_dump = yaml.safe_load(
self.parser.dump(self.config, skip_link_targets=False, skip_none=False, format="yaml")
)
if "subcommand" in self.config:
self.config_dump = self.config_dump[self.config.subcommand]
def _add_instantiators(self) -> None:
self.parser.add_instantiator(
_InstantiatorFn(cli=self, key="model"),
_get_module_type(self._model_class),
subclasses=self.subclass_mode_model,
)
self.parser.add_instantiator(
_InstantiatorFn(cli=self, key="data"),
_get_module_type(self._datamodule_class),
subclasses=self.subclass_mode_data,
)
def before_instantiate_classes(self) -> None:
"""Implement to run some code before instantiating the classes."""
def instantiate_classes(self) -> None:
"""Instantiates the classes and sets their attributes."""
self.config_init = self.parser.instantiate_classes(self.config)
self.datamodule = self._get(self.config_init, "data")
self.model = self._get(self.config_init, "model")
self._add_configure_optimizers_method_to_model(self.subcommand)
self.trainer = self.instantiate_trainer()
def after_instantiate_classes(self) -> None:
"""Implement to run some code after instantiating the classes."""
def instantiate_trainer(self, **kwargs: Any) -> Trainer:
"""Instantiates the trainer.
Args:
kwargs: Any custom trainer arguments.
"""
extra_callbacks = [self._get(self.config_init, c) for c in self._parser(self.subcommand).callback_keys]
trainer_config = {**self._get(self.config_init, "trainer", default={}), **kwargs}
return self._instantiate_trainer(trainer_config, extra_callbacks)
def _instantiate_trainer(self, config: dict[str, Any], callbacks: list[Callback]) -> Trainer:
key = "callbacks"
if key in config:
if config[key] is None:
config[key] = []
elif not isinstance(config[key], list):
config[key] = [config[key]]
config[key].extend(callbacks)
if key in self.trainer_defaults:
value = self.trainer_defaults[key]
config[key] += value if isinstance(value, list) else [value]
if self.save_config_callback and not config.get("fast_dev_run", False):
config_callback = self.save_config_callback(
self._parser(self.subcommand),
self.config.get(str(self.subcommand), self.config),
**self.save_config_kwargs,
)
config[key].append(config_callback)
else:
rank_zero_warn(
f"The `{self.trainer_class.__qualname__}` class does not expose the `{key}` argument so they will"
" not be included."
)
return self.trainer_class(**config)
def _parser(self, subcommand: Optional[str]) -> LightningArgumentParser:
if subcommand is None:
return self.parser
# return the subcommand parser for the subcommand passed
return self._subcommand_parsers[subcommand]
@staticmethod
def configure_optimizers(
lightning_module: LightningModule, optimizer: Optimizer, lr_scheduler: Optional[LRSchedulerTypeUnion] = None
) -> Any:
"""Override to customize the :meth:`~pytorch_lightning.core.LightningModule.configure_optimizers` method.
Args:
lightning_module: A reference to the model.
optimizer: The optimizer.
lr_scheduler: The learning rate scheduler (if used).
"""
if lr_scheduler is None:
return optimizer
if isinstance(lr_scheduler, ReduceLROnPlateau):
return {
"optimizer": optimizer,
"lr_scheduler": {"scheduler": lr_scheduler, "monitor": lr_scheduler.monitor},
}
return [optimizer], [lr_scheduler]
def _add_configure_optimizers_method_to_model(self, subcommand: Optional[str]) -> None:
"""Overrides the model's :meth:`~pytorch_lightning.core.LightningModule.configure_optimizers` method if a
single optimizer and optionally a scheduler argument groups are added to the parser as 'AUTOMATIC'."""
if not self.auto_configure_optimizers:
return
parser = self._parser(subcommand)
def get_automatic(
class_type: Union[type, tuple[type, ...]], register: dict[str, tuple[Union[type, tuple[type, ...]], str]]
) -> list[str]:
automatic = []
for key, (base_class, link_to) in register.items():
if not isinstance(base_class, tuple):
base_class = (base_class,)
if link_to == "AUTOMATIC" and any(issubclass(c, class_type) for c in base_class):
automatic.append(key)
return automatic
optimizers = get_automatic(Optimizer, parser._optimizers)
lr_schedulers = get_automatic(LRSchedulerTypeTuple, parser._lr_schedulers)
if len(optimizers) == 0:
return
if len(optimizers) > 1 or len(lr_schedulers) > 1:
raise MisconfigurationException(
f"`{self.__class__.__name__}.add_configure_optimizers_method_to_model` expects at most one optimizer "
f"and one lr_scheduler to be 'AUTOMATIC', but found {optimizers + lr_schedulers}. In this case the "
"user is expected to link the argument groups and implement `configure_optimizers`, see "
"https://lightning.ai/docs/pytorch/stable/common/lightning_cli.html"
"#optimizers-and-learning-rate-schedulers"
)
optimizer_class = parser._optimizers[optimizers[0]][0]
optimizer_init = self._get(self.config_init, optimizers[0])
if not isinstance(optimizer_class, tuple):
optimizer_init = _global_add_class_path(optimizer_class, optimizer_init)
if not optimizer_init:
# optimizers were registered automatically but not passed by the user
return
lr_scheduler_init = None
if lr_schedulers:
lr_scheduler_class = parser._lr_schedulers[lr_schedulers[0]][0]
lr_scheduler_init = self._get(self.config_init, lr_schedulers[0])
if not isinstance(lr_scheduler_class, tuple):
lr_scheduler_init = _global_add_class_path(lr_scheduler_class, lr_scheduler_init)
if is_overridden("configure_optimizers", self.model):
_warn(
f"`{self.model.__class__.__name__}.configure_optimizers` will be overridden by "
f"`{self.__class__.__name__}.configure_optimizers`."
)
optimizer = instantiate_class(self.model.parameters(), optimizer_init)
lr_scheduler = instantiate_class(optimizer, lr_scheduler_init) if lr_scheduler_init else None
fn = partial(self.configure_optimizers, optimizer=optimizer, lr_scheduler=lr_scheduler)
update_wrapper(fn, self.configure_optimizers) # necessary for `is_overridden`
# override the existing method
self.model.configure_optimizers = MethodType(fn, self.model)
def _get(self, config: Namespace, key: str, default: Optional[Any] = None) -> Any:
"""Utility to get a config value which might be inside a subcommand."""
return config.get(str(self.subcommand), config).get(key, default)
def _run_subcommand(self, subcommand: str) -> None:
"""Run the chosen subcommand."""
before_fn = getattr(self, f"before_{subcommand}", None)
if callable(before_fn):
before_fn()
default = getattr(self.trainer, subcommand)
fn = getattr(self, subcommand, default)
fn_kwargs = self._prepare_subcommand_kwargs(subcommand)
fn(**fn_kwargs)
after_fn = getattr(self, f"after_{subcommand}", None)
if callable(after_fn):
after_fn()
def _prepare_subcommand_kwargs(self, subcommand: str) -> dict[str, Any]:
"""Prepares the keyword arguments to pass to the subcommand to run."""
fn_kwargs = {
k: v for k, v in self.config_init[subcommand].items() if k in self._subcommand_method_arguments[subcommand]
}
fn_kwargs["model"] = self.model
if self.datamodule is not None:
fn_kwargs["datamodule"] = self.datamodule
return fn_kwargs
def _set_seed(self) -> None:
"""Sets the seed."""
config_seed = self._get(self.config, "seed_everything")
if config_seed is False:
return
if config_seed is True:
# user requested seeding, choose randomly
config_seed = seed_everything(workers=True)
else:
config_seed = seed_everything(config_seed, workers=True)
if self.subcommand:
self.config[self.subcommand]["seed_everything"] = config_seed
else:
self.config["seed_everything"] = config_seed
def _class_path_from_class(class_type: type) -> str:
return class_type.__module__ + "." + class_type.__name__
def _global_add_class_path(
class_type: type, init_args: Optional[Union[Namespace, dict[str, Any]]] = None
) -> dict[str, Any]:
if isinstance(init_args, Namespace):
init_args = init_args.as_dict()
return {"class_path": _class_path_from_class(class_type), "init_args": init_args or {}}
def _add_class_path_generator(class_type: type) -> Callable[[Namespace], dict[str, Any]]:
def add_class_path(init_args: Namespace) -> dict[str, Any]:
return _global_add_class_path(class_type, init_args)
return add_class_path
def instantiate_class(args: Union[Any, tuple[Any, ...]], init: dict[str, Any]) -> Any:
"""Instantiates a class with the given args and init.
Args:
args: Positional arguments required for instantiation.
init: Dict of the form {"class_path":...,"init_args":...}.
Returns:
The instantiated class object.
"""
kwargs = init.get("init_args", {})
if not isinstance(args, tuple):
args = (args,)
class_module, class_name = init["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(*args, **kwargs)
def _get_short_description(component: object) -> Optional[str]:
if component.__doc__ is None:
return None
try:
docstring = docstring_parser.parse(component.__doc__)
return docstring.short_description
except (ValueError, docstring_parser.ParseError) as ex:
rank_zero_warn(f"Failed parsing docstring for {component}: {ex}")
def _get_module_type(value: Union[Callable, type]) -> type:
if callable(value) and not isinstance(value, type):
return inspect.signature(value).return_annotation
return value
def _set_dict_nested(data: dict, key: str, value: Any) -> None:
keys = key.split(".")
for k in keys[:-1]:
assert k in data, f"Expected key {key} to be in data"
data = data[k]
data[keys[-1]] = value
class _InstantiatorFn:
def __init__(self, cli: LightningCLI, key: str) -> None:
self.cli = cli
self.key = key
def __call__(
self,
class_type: type[ModuleType],
*args: Any,
applied_instantiation_links: dict,
**kwargs: Any,
) -> ModuleType:
self.cli._dump_config()
hparams = self.cli.config_dump.get(self.key, {})
if "class_path" in hparams:
# To make hparams backwards compatible, and so that it is the same irrespective of subclass_mode, the
# parameters are stored directly, and the class_path in a special key `_class_path` to clarify its internal
# use.
hparams = {
"_class_path": hparams["class_path"],
**hparams.get("init_args", {}),
**hparams.get("dict_kwargs", {}),
}
# get instantiation link target values from kwargs
for key, value in applied_instantiation_links.items():
if not key.startswith(f"{self.key}."):
continue
key = key[len(f"{self.key}.") :]
if key.startswith("init_args."):
key = key[len("init_args.") :]
_set_dict_nested(hparams, key, value)
with _given_hyperparameters_context(
hparams=hparams,
instantiator="pytorch_lightning.cli.instantiate_module",
):
return class_type(*args, **kwargs)
def instantiate_module(class_type: type[ModuleType], config: dict[str, Any]) -> ModuleType:
parser = ArgumentParser(exit_on_error=False)
if "_class_path" in config:
parser.add_subclass_arguments(class_type, "module", fail_untyped=False)
config = {
"class_path": config["_class_path"],
"dict_kwargs": {k: v for k, v in config.items() if k != "_class_path"},
}
else:
parser.add_class_arguments(class_type, "module", fail_untyped=False)
cfg = parser.parse_object({"module": config})
init = parser.instantiate_classes(cfg)
return init.module
|