File size: 8,283 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Timer
^^^^^
"""
import logging
import re
import time
from datetime import timedelta
from typing import Any, Optional, Union
from typing_extensions import override
import pytorch_lightning as pl
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.trainer.states import RunningStage
from pytorch_lightning.utilities import LightningEnum
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.rank_zero import rank_zero_info
log = logging.getLogger(__name__)
class Interval(LightningEnum):
step = "step"
epoch = "epoch"
class Timer(Callback):
"""The Timer callback tracks the time spent in the training, validation, and test loops and interrupts the Trainer
if the given time limit for the training loop is reached.
Args:
duration: A string in the format DD:HH:MM:SS (days, hours, minutes seconds), or a :class:`datetime.timedelta`,
or a dict containing key-value compatible with :class:`~datetime.timedelta`.
interval: Determines if the interruption happens on epoch level or mid-epoch.
Can be either ``"epoch"`` or ``"step"``.
verbose: Set this to ``False`` to suppress logging messages.
Raises:
MisconfigurationException:
If ``duration`` is not in the expected format.
MisconfigurationException:
If ``interval`` is not one of the supported choices.
Example::
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Timer
# stop training after 12 hours
timer = Timer(duration="00:12:00:00")
# or provide a datetime.timedelta
from datetime import timedelta
timer = Timer(duration=timedelta(weeks=1))
# or provide a dictionary
timer = Timer(duration=dict(weeks=4, days=2))
# force training to stop after given time limit
trainer = Trainer(callbacks=[timer])
# query training/validation/test time (in seconds)
timer.time_elapsed("train")
timer.start_time("validate")
timer.end_time("test")
"""
def __init__(
self,
duration: Optional[Union[str, timedelta, dict[str, int]]] = None,
interval: str = Interval.step,
verbose: bool = True,
) -> None:
super().__init__()
if isinstance(duration, str):
duration_match = re.fullmatch(r"(\d+):(\d\d):(\d\d):(\d\d)", duration.strip())
if not duration_match:
raise MisconfigurationException(
f"`Timer(duration={duration!r})` is not a valid duration. "
"Expected a string in the format DD:HH:MM:SS."
)
duration = timedelta(
days=int(duration_match.group(1)),
hours=int(duration_match.group(2)),
minutes=int(duration_match.group(3)),
seconds=int(duration_match.group(4)),
)
elif isinstance(duration, dict):
duration = timedelta(**duration)
if interval not in set(Interval):
raise MisconfigurationException(
f"Unsupported parameter value `Timer(interval={interval})`. Possible choices are:"
f" {', '.join(set(Interval))}"
)
self._duration = duration.total_seconds() if duration is not None else None
self._interval = interval
self._verbose = verbose
self._start_time: dict[RunningStage, Optional[float]] = dict.fromkeys(RunningStage)
self._end_time: dict[RunningStage, Optional[float]] = dict.fromkeys(RunningStage)
self._offset = 0
def start_time(self, stage: str = RunningStage.TRAINING) -> Optional[float]:
"""Return the start time of a particular stage (in seconds)"""
stage = RunningStage(stage)
return self._start_time[stage]
def end_time(self, stage: str = RunningStage.TRAINING) -> Optional[float]:
"""Return the end time of a particular stage (in seconds)"""
stage = RunningStage(stage)
return self._end_time[stage]
def time_elapsed(self, stage: str = RunningStage.TRAINING) -> float:
"""Return the time elapsed for a particular stage (in seconds)"""
start = self.start_time(stage)
end = self.end_time(stage)
offset = self._offset if stage == RunningStage.TRAINING else 0
if start is None:
return offset
if end is None:
return time.monotonic() - start + offset
return end - start + offset
def time_remaining(self, stage: str = RunningStage.TRAINING) -> Optional[float]:
"""Return the time remaining for a particular stage (in seconds)"""
if self._duration is not None:
return self._duration - self.time_elapsed(stage)
return None
@override
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._start_time[RunningStage.TRAINING] = time.monotonic()
@override
def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._end_time[RunningStage.TRAINING] = time.monotonic()
@override
def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._start_time[RunningStage.VALIDATING] = time.monotonic()
@override
def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._end_time[RunningStage.VALIDATING] = time.monotonic()
@override
def on_test_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._start_time[RunningStage.TESTING] = time.monotonic()
@override
def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._end_time[RunningStage.TESTING] = time.monotonic()
@override
def on_fit_start(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None:
# this checks the time after the state is reloaded, regardless of the interval.
# this is necessary in case we load a state whose timer is already depleted
if self._duration is None:
return
self._check_time_remaining(trainer)
@override
def on_train_batch_end(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None:
if self._interval != Interval.step or self._duration is None:
return
self._check_time_remaining(trainer)
@override
def on_train_epoch_end(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None:
if self._interval != Interval.epoch or self._duration is None:
return
self._check_time_remaining(trainer)
@override
def state_dict(self) -> dict[str, Any]:
return {"time_elapsed": {stage.value: self.time_elapsed(stage) for stage in RunningStage}}
@override
def load_state_dict(self, state_dict: dict[str, Any]) -> None:
time_elapsed = state_dict.get("time_elapsed", {})
self._offset = time_elapsed.get(RunningStage.TRAINING.value, 0)
def _check_time_remaining(self, trainer: "pl.Trainer") -> None:
assert self._duration is not None
should_stop = self.time_elapsed() >= self._duration
should_stop = trainer.strategy.broadcast(should_stop)
trainer.should_stop = trainer.should_stop or should_stop
if should_stop and self._verbose:
elapsed = timedelta(seconds=int(self.time_elapsed(RunningStage.TRAINING)))
rank_zero_info(f"Time limit reached. Elapsed time is {elapsed}. Signaling Trainer to stop.")
|