File size: 23,063 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
ModelPruning
^^^^^^^^^^^^
"""

import inspect
import logging
from collections.abc import Sequence
from copy import deepcopy
from functools import partial
from typing import Any, Callable, Optional, Union

import torch.nn.utils.prune as pytorch_prune
from lightning_utilities.core.apply_func import apply_to_collection
from torch import Tensor, nn
from typing_extensions import TypedDict, override

import pytorch_lightning as pl
from pytorch_lightning.callbacks.callback import Callback
from pytorch_lightning.core.module import LightningModule
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.rank_zero import rank_zero_debug, rank_zero_only

log = logging.getLogger(__name__)

_PYTORCH_PRUNING_FUNCTIONS = {
    "ln_structured": pytorch_prune.ln_structured,
    "l1_unstructured": pytorch_prune.l1_unstructured,
    "random_structured": pytorch_prune.random_structured,
    "random_unstructured": pytorch_prune.random_unstructured,
}

_PYTORCH_PRUNING_METHOD = {
    "ln_structured": pytorch_prune.LnStructured,
    "l1_unstructured": pytorch_prune.L1Unstructured,
    "random_structured": pytorch_prune.RandomStructured,
    "random_unstructured": pytorch_prune.RandomUnstructured,
}

_PARAM_TUPLE = tuple[nn.Module, str]
_PARAM_LIST = Sequence[_PARAM_TUPLE]
_MODULE_CONTAINERS = (LightningModule, nn.Sequential, nn.ModuleList, nn.ModuleDict)


class _LayerRef(TypedDict):
    data: nn.Module
    names: list[tuple[int, str]]


class ModelPruning(Callback):
    PARAMETER_NAMES = ("weight", "bias")

    def __init__(
        self,
        pruning_fn: Union[Callable, str],
        parameters_to_prune: _PARAM_LIST = (),
        parameter_names: Optional[list[str]] = None,
        use_global_unstructured: bool = True,
        amount: Union[int, float, Callable[[int], Union[int, float]]] = 0.5,
        apply_pruning: Union[bool, Callable[[int], bool]] = True,
        make_pruning_permanent: bool = True,
        use_lottery_ticket_hypothesis: Union[bool, Callable[[int], bool]] = True,
        resample_parameters: bool = False,
        pruning_dim: Optional[int] = None,
        pruning_norm: Optional[int] = None,
        verbose: int = 0,
        prune_on_train_epoch_end: bool = True,
    ) -> None:
        """Model pruning Callback, using PyTorch's prune utilities. This callback is responsible of pruning networks
        parameters during training.

        To learn more about pruning with PyTorch, please take a look at
        `this tutorial <https://pytorch.org/tutorials/intermediate/pruning_tutorial.html>`_.

        .. warning::  This is an :ref:`experimental <versioning:Experimental API>` feature.

        .. code-block:: python

            parameters_to_prune = [(model.mlp_1, "weight"), (model.mlp_2, "weight")]

            trainer = Trainer(
                callbacks=[
                    ModelPruning(
                        pruning_fn="l1_unstructured",
                        parameters_to_prune=parameters_to_prune,
                        amount=0.01,
                        use_global_unstructured=True,
                    )
                ]
            )

        When ``parameters_to_prune`` is ``None``, ``parameters_to_prune`` will contain all parameters from the model.
        The user can override ``filter_parameters_to_prune`` to filter any ``nn.Module`` to be pruned.

        Args:

            pruning_fn: Function from torch.nn.utils.prune module or your own PyTorch ``BasePruningMethod`` subclass.
                Can also be string e.g. `"l1_unstructured"`. See pytorch docs for more details.

            parameters_to_prune: List of tuples ``(nn.Module, "parameter_name_string")``.

            parameter_names: List of parameter names to be pruned from the nn.Module.
                Can either be ``"weight"`` or ``"bias"``.

            use_global_unstructured: Whether to apply pruning globally on the model.
                If ``parameters_to_prune`` is provided, global unstructured will be restricted on them.

            amount: Quantity of parameters to prune:

                - ``float``. Between 0.0 and 1.0. Represents the fraction of parameters to prune.
                - ``int``. Represents the absolute number of parameters to prune.
                - ``Callable``. For dynamic values. Will be called every epoch. Should return a value.

            apply_pruning: Whether to apply pruning.

                - ``bool``. Always apply it or not.
                - ``Callable[[epoch], bool]``. For dynamic values. Will be called every epoch.

            make_pruning_permanent: Whether to remove all reparameterization pre-hooks and apply masks
                when training ends or the model is saved.

            use_lottery_ticket_hypothesis: See `The lottery ticket hypothesis <https://arxiv.org/abs/1803.03635>`_:

                - ``bool``. Whether to apply it or not.
                - ``Callable[[epoch], bool]``. For dynamic values. Will be called every epoch.

            resample_parameters: Used with ``use_lottery_ticket_hypothesis``. If True, the model parameters will
                be resampled, otherwise, the exact original parameters will be used.

            pruning_dim: If you are using a structured pruning method you need to specify the dimension.

            pruning_norm: If you are using ``ln_structured`` you need to specify the norm.

            verbose: Verbosity level. 0 to disable, 1 to log overall sparsity, 2 to log per-layer sparsity

            prune_on_train_epoch_end: whether to apply pruning at the end of the training epoch.
                If this is ``False``, then the check runs at the end of the validation epoch.

        Raises:
            MisconfigurationException:
                If ``parameter_names`` is neither ``"weight"`` nor ``"bias"``,
                if the provided ``pruning_fn`` is not supported,
                if ``pruning_dim`` is not provided when ``"unstructured"``,
                if ``pruning_norm`` is not provided when ``"ln_structured"``,
                if ``pruning_fn`` is neither ``str`` nor :class:`torch.nn.utils.prune.BasePruningMethod`, or
                if ``amount`` is none of ``int``, ``float`` and ``Callable``.

        """

        self._use_global_unstructured = use_global_unstructured
        self._parameters_to_prune = parameters_to_prune
        self._use_lottery_ticket_hypothesis = use_lottery_ticket_hypothesis
        self._resample_parameters = resample_parameters
        self._prune_on_train_epoch_end = prune_on_train_epoch_end
        self._parameter_names = parameter_names or self.PARAMETER_NAMES
        self._global_kwargs: dict[str, Any] = {}
        self._original_layers: Optional[dict[int, _LayerRef]] = None
        self._pruning_method_name: Optional[str] = None

        for name in self._parameter_names:
            if name not in self.PARAMETER_NAMES:
                raise MisconfigurationException(
                    f"The provided `parameter_names` name: {name} isn't in {self.PARAMETER_NAMES}"
                )

        if isinstance(pruning_fn, str):
            pruning_kwargs = {}
            pruning_fn = pruning_fn.lower()
            if pruning_fn not in _PYTORCH_PRUNING_FUNCTIONS:
                raise MisconfigurationException(
                    f"The provided `pruning_fn` {pruning_fn} isn't available in PyTorch's"
                    f" built-in functions: {list(_PYTORCH_PRUNING_FUNCTIONS.keys())} "
                )
            if pruning_fn.endswith("_structured"):
                if pruning_dim is None:
                    raise MisconfigurationException(
                        "When requesting `structured` pruning, the `pruning_dim` should be provided."
                    )
                if pruning_fn == "ln_structured":
                    if pruning_norm is None:
                        raise MisconfigurationException(
                            "When requesting `ln_structured` pruning, the `pruning_norm` should be provided."
                        )
                    pruning_kwargs["n"] = pruning_norm
                pruning_kwargs["dim"] = pruning_dim
            pruning_fn = self._create_pruning_fn(pruning_fn, **pruning_kwargs)
        elif self._is_pruning_method(pruning_fn):
            if not use_global_unstructured:
                raise MisconfigurationException(
                    "PyTorch `BasePruningMethod` is currently only supported with `use_global_unstructured=True`."
                )
        else:
            raise MisconfigurationException(
                f"`pruning_fn` is expected to be a str in {list(_PYTORCH_PRUNING_FUNCTIONS.keys())}"
                f" or a PyTorch `BasePruningMethod`. Found: {pruning_fn}."
                " HINT: if passing a `BasePruningMethod`, pass the class, not an instance"
            )

        # need to ignore typing here since pytorch base class does not define the PRUNING_TYPE attribute
        if use_global_unstructured and pruning_fn.PRUNING_TYPE != "unstructured":  # type: ignore
            raise MisconfigurationException(
                'Only the "unstructured" PRUNING_TYPE is supported with `use_global_unstructured=True`.'
                f" Found method {pruning_fn} of type {pruning_fn.PRUNING_TYPE}. "  # type: ignore[union-attr]
            )

        self.pruning_fn = pruning_fn
        self._apply_pruning = apply_pruning
        self._make_pruning_permanent = make_pruning_permanent

        if not (isinstance(amount, (int, float)) or callable(amount)):
            raise MisconfigurationException(
                "`amount` should be provided and be either an int, a float or Callable function."
            )

        self.amount = amount

        if verbose not in (0, 1, 2):
            raise MisconfigurationException("`verbose` must be any of (0, 1, 2)")

        self._verbose = verbose

    def filter_parameters_to_prune(self, parameters_to_prune: _PARAM_LIST = ()) -> _PARAM_LIST:
        """This function can be overridden to control which module to prune."""
        return parameters_to_prune

    def _create_pruning_fn(self, pruning_fn: str, **kwargs: Any) -> Union[Callable, pytorch_prune.BasePruningMethod]:
        """This function takes `pruning_fn`, a function name.

        IF use_global_unstructured, pruning_fn will be resolved into its associated ``PyTorch BasePruningMethod`` ELSE,
        pruning_fn will be resolved into its function counterpart from `torch.nn.utils.prune`.

        """
        pruning_meth = (
            _PYTORCH_PRUNING_METHOD[pruning_fn]
            if self._use_global_unstructured
            else _PYTORCH_PRUNING_FUNCTIONS[pruning_fn]
        )
        assert callable(pruning_meth), "Selected pruning method is not callable"
        if self._use_global_unstructured:
            self._global_kwargs = kwargs
        # save the function __name__ now because partial does not include it
        # and there are issues setting the attribute manually in ddp.
        self._pruning_method_name = pruning_meth.__name__
        if self._use_global_unstructured:
            return pruning_meth
        return ModelPruning._wrap_pruning_fn(pruning_meth, **kwargs)

    @staticmethod
    def _wrap_pruning_fn(pruning_fn: Callable, **kwargs: Any) -> Callable:
        return partial(pruning_fn, **kwargs)

    def make_pruning_permanent(self, module: nn.Module) -> None:
        """Removes pruning buffers from any pruned modules.

        Adapted from https://github.com/pytorch/pytorch/blob/v1.7.1/torch/nn/utils/prune.py#L1118-L1122

        """
        for _, module in module.named_modules():
            for k in list(module._forward_pre_hooks):
                hook = module._forward_pre_hooks[k]
                if isinstance(hook, pytorch_prune.BasePruningMethod):
                    hook.remove(module)
                    del module._forward_pre_hooks[k]

    @staticmethod
    def _copy_param(new: nn.Module, old: nn.Module, name: str) -> None:
        dst = getattr(new, name)
        src = getattr(old, name)
        if dst is None or src is None or not isinstance(dst, Tensor) or not isinstance(src, Tensor):
            return
        dst.data = src.data.to(dst.device)

    def apply_lottery_ticket_hypothesis(self) -> None:
        r"""Lottery ticket hypothesis algorithm (see page 2 of the paper):

            1. Randomly initialize a neural network :math:`f(x; \theta_0)` (where :math:`\theta_0 \sim \mathcal{D}_\theta`).
            2. Train the network for :math:`j` iterations, arriving at parameters :math:`\theta_j`.
            3. Prune :math:`p\%` of the parameters in :math:`\theta_j`, creating a mask :math:`m`.
            4. Reset the remaining parameters to their values in :math:`\theta_0`, creating the winning ticket :math:`f(x; m \odot \theta_0)`.

        This function implements the step 4.

        The ``resample_parameters`` argument can be used to reset the parameters with a new :math:`\theta_z \sim \mathcal{D}_\theta`

        """  # noqa: E501
        assert self._original_layers is not None
        for d in self._original_layers.values():
            copy = d["data"]
            names = d["names"]
            if self._resample_parameters and hasattr(copy, "reset_parameters") and callable(copy.reset_parameters):
                copy = deepcopy(copy)  # keep the original parameters
                copy.reset_parameters()
            for i, name in names:
                new, _ = self._parameters_to_prune[i]
                self._copy_param(new, copy, name)

    def _apply_local_pruning(self, amount: float) -> None:
        for module, name in self._parameters_to_prune:
            self.pruning_fn(module, name=name, amount=amount)  # type: ignore[call-arg]

    def _resolve_global_kwargs(self, amount: float) -> dict[str, Any]:
        self._global_kwargs["amount"] = amount
        params = set(inspect.signature(self.pruning_fn).parameters)
        params.discard("self")
        return {k: v for k, v in self._global_kwargs.items() if k in params}

    def _apply_global_pruning(self, amount: float) -> None:
        pytorch_prune.global_unstructured(
            self._parameters_to_prune, pruning_method=self.pruning_fn, **self._resolve_global_kwargs(amount)
        )

    @staticmethod
    def _get_pruned_stats(module: nn.Module, name: str) -> tuple[int, int]:
        attr = f"{name}_mask"
        if not hasattr(module, attr):
            return 0, 1
        mask = getattr(module, attr)
        return (mask == 0).sum().item(), mask.numel()

    def apply_pruning(self, amount: Union[int, float]) -> None:
        """Applies pruning to ``parameters_to_prune``."""
        if self._verbose:
            prev_stats = [self._get_pruned_stats(m, n) for m, n in self._parameters_to_prune]

        if self._use_global_unstructured:
            self._apply_global_pruning(amount)
        else:
            self._apply_local_pruning(amount)

        if self._verbose:
            curr_stats = [self._get_pruned_stats(m, n) for m, n in self._parameters_to_prune]
            self._log_sparsity_stats(prev_stats, curr_stats, amount=amount)

    @rank_zero_only
    def _log_sparsity_stats(
        self, prev: list[tuple[int, int]], curr: list[tuple[int, int]], amount: Union[int, float] = 0
    ) -> None:
        total_params = sum(p.numel() for layer, _ in self._parameters_to_prune for p in layer.parameters())
        prev_total_zeros = sum(zeros for zeros, _ in prev)
        curr_total_zeros = sum(zeros for zeros, _ in curr)
        log.info(
            f"Applied `{self._pruning_method_name}`. Pruned:"
            f" {prev_total_zeros}/{total_params} ({prev_total_zeros / total_params:.2%}) ->"
            f" {curr_total_zeros}/{total_params} ({curr_total_zeros / total_params:.2%})"
        )
        if self._verbose == 2:
            for i, (module, name) in enumerate(self._parameters_to_prune):
                prev_mask_zeros, prev_mask_size = prev[i]
                curr_mask_zeros, curr_mask_size = curr[i]
                log.info(
                    f"Applied `{self._pruning_method_name}` to `{module!r}.{name}` with amount={amount}. Pruned:"
                    f" {prev_mask_zeros} ({prev_mask_zeros / prev_mask_size:.2%}) ->"
                    f" {curr_mask_zeros} ({curr_mask_zeros / curr_mask_size:.2%})"
                )

    @override
    def setup(self, trainer: "pl.Trainer", pl_module: LightningModule, stage: str) -> None:
        parameters_to_prune = self.sanitize_parameters_to_prune(
            pl_module, self._parameters_to_prune, parameter_names=self._parameter_names
        )

        self._parameters_to_prune = self.filter_parameters_to_prune(parameters_to_prune)

        if self._use_lottery_ticket_hypothesis:
            # group modules by id. Each entry has a copy of the initial data
            # and a list of the associated parameter names to prune
            self._original_layers = {}
            for i, (module, name) in enumerate(self._parameters_to_prune):
                id_ = id(module)
                self._original_layers.setdefault(id_, _LayerRef(data=deepcopy(module), names=[]))
                self._original_layers[id_]["names"].append((i, name))

    def _run_pruning(self, current_epoch: int) -> None:
        prune = self._apply_pruning(current_epoch) if callable(self._apply_pruning) else self._apply_pruning
        amount = self.amount(current_epoch) if callable(self.amount) else self.amount
        if not prune or not amount:
            return
        self.apply_pruning(amount)

        if (
            self._use_lottery_ticket_hypothesis(current_epoch)
            if callable(self._use_lottery_ticket_hypothesis)
            else self._use_lottery_ticket_hypothesis
        ):
            self.apply_lottery_ticket_hypothesis()

    @override
    def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: LightningModule) -> None:
        if self._prune_on_train_epoch_end:
            rank_zero_debug("`ModelPruning.on_train_epoch_end`. Applying pruning")
            self._run_pruning(pl_module.current_epoch)

    @override
    def on_validation_epoch_end(self, trainer: "pl.Trainer", pl_module: LightningModule) -> None:
        if not trainer.sanity_checking and not self._prune_on_train_epoch_end:
            rank_zero_debug("`ModelPruning.on_validation_epoch_end`. Applying pruning")
            self._run_pruning(pl_module.current_epoch)

    @override
    def on_train_end(self, trainer: "pl.Trainer", pl_module: LightningModule) -> None:
        if self._make_pruning_permanent:
            rank_zero_debug("`ModelPruning.on_train_end`. Pruning is made permanent for this checkpoint")
            self.make_pruning_permanent(pl_module)

    def _make_pruning_permanent_on_state_dict(self, pl_module: LightningModule) -> dict[str, Any]:
        state_dict = pl_module.state_dict()

        # find the mask and the original weights.
        map_pruned_params = {k.replace("_mask", "") for k in state_dict if k.endswith("_mask")}
        for tensor_name in map_pruned_params:
            orig = state_dict.pop(tensor_name + "_orig")
            mask = state_dict.pop(tensor_name + "_mask")
            # make weights permanent
            state_dict[tensor_name] = mask.to(dtype=orig.dtype) * orig

        def move_to_cpu(tensor: Tensor) -> Tensor:
            # each tensor and move them on cpu
            return tensor.cpu()

        return apply_to_collection(state_dict, Tensor, move_to_cpu)

    @override
    def on_save_checkpoint(self, trainer: "pl.Trainer", pl_module: LightningModule, checkpoint: dict[str, Any]) -> None:
        if self._make_pruning_permanent:
            rank_zero_debug("`ModelPruning.on_save_checkpoint`. Pruning is made permanent for this checkpoint")
            # manually prune the weights so training can keep going with the same buffers
            checkpoint["state_dict"] = self._make_pruning_permanent_on_state_dict(pl_module)

    @staticmethod
    def sanitize_parameters_to_prune(
        pl_module: LightningModule, parameters_to_prune: _PARAM_LIST = (), parameter_names: Sequence[str] = ()
    ) -> _PARAM_LIST:
        """This function is responsible of sanitizing ``parameters_to_prune`` and ``parameter_names``. If
        ``parameters_to_prune is None``, it will be generated with all parameters of the model.

        Raises:
            MisconfigurationException:
                If ``parameters_to_prune`` doesn't exist in the model, or
                if ``parameters_to_prune`` is neither a list nor a tuple.

        """
        parameters = parameter_names or ModelPruning.PARAMETER_NAMES

        current_modules = [m for m in pl_module.modules() if not isinstance(m, _MODULE_CONTAINERS)]

        if not parameters_to_prune:
            parameters_to_prune = [
                (m, p)
                for p in parameters
                for m in current_modules
                if getattr(m, p, None) is not None and isinstance(getattr(m, p, None), nn.Parameter)
            ]
        elif (
            isinstance(parameters_to_prune, (list, tuple))
            and len(parameters_to_prune) > 0
            and all(len(p) == 2 for p in parameters_to_prune)
            and all(isinstance(a, nn.Module) and isinstance(b, str) for a, b in parameters_to_prune)
        ):
            missing_modules, missing_parameters = [], []
            for module, name in parameters_to_prune:
                if module not in current_modules:
                    missing_modules.append(module)
                    continue
                if not hasattr(module, name):
                    missing_parameters.append(name)

            if missing_modules or missing_parameters:
                raise MisconfigurationException(
                    "Some provided `parameters_to_prune` don't exist in the model."
                    f" Found missing modules: {missing_modules} and missing parameters: {missing_parameters}"
                )
        else:
            raise MisconfigurationException(
                "The provided `parameters_to_prune` should either be list of tuple"
                " with 2 elements: (nn.Module, parameter_name_to_prune) or None"
            )

        return parameters_to_prune

    @staticmethod
    def _is_pruning_method(method: Any) -> bool:
        if not inspect.isclass(method):
            return False
        return issubclass(method, pytorch_prune.BasePruningMethod)