File size: 16,644 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
"""Provide an enhanced dataclass that performs validation."""
from __future__ import annotations as _annotations
import dataclasses
import sys
import types
from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, NoReturn, TypeVar, overload
from warnings import warn
from typing_extensions import TypeGuard, dataclass_transform
from ._internal import _config, _decorators, _namespace_utils, _typing_extra
from ._internal import _dataclasses as _pydantic_dataclasses
from ._migration import getattr_migration
from .config import ConfigDict
from .errors import PydanticUserError
from .fields import Field, FieldInfo, PrivateAttr
if TYPE_CHECKING:
from ._internal._dataclasses import PydanticDataclass
from ._internal._namespace_utils import MappingNamespace
__all__ = 'dataclass', 'rebuild_dataclass'
_T = TypeVar('_T')
if sys.version_info >= (3, 10):
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
kw_only: bool = ...,
slots: bool = ...,
) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
_cls: type[_T], # type: ignore
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
kw_only: bool = ...,
slots: bool = ...,
) -> type[PydanticDataclass]: ...
else:
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
_cls: type[_T], # type: ignore
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
) -> type[PydanticDataclass]: ...
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
def dataclass(
_cls: type[_T] | None = None,
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
kw_only: bool = False,
slots: bool = False,
) -> Callable[[type[_T]], type[PydanticDataclass]] | type[PydanticDataclass]:
"""!!! abstract "Usage Documentation"
[`dataclasses`](../concepts/dataclasses.md)
A decorator used to create a Pydantic-enhanced dataclass, similar to the standard Python `dataclass`,
but with added validation.
This function should be used similarly to `dataclasses.dataclass`.
Args:
_cls: The target `dataclass`.
init: Included for signature compatibility with `dataclasses.dataclass`, and is passed through to
`dataclasses.dataclass` when appropriate. If specified, must be set to `False`, as pydantic inserts its
own `__init__` function.
repr: A boolean indicating whether to include the field in the `__repr__` output.
eq: Determines if a `__eq__` method should be generated for the class.
order: Determines if comparison magic methods should be generated, such as `__lt__`, but not `__eq__`.
unsafe_hash: Determines if a `__hash__` method should be included in the class, as in `dataclasses.dataclass`.
frozen: Determines if the generated class should be a 'frozen' `dataclass`, which does not allow its
attributes to be modified after it has been initialized. If not set, the value from the provided `config` argument will be used (and will default to `False` otherwise).
config: The Pydantic config to use for the `dataclass`.
validate_on_init: A deprecated parameter included for backwards compatibility; in V2, all Pydantic dataclasses
are validated on init.
kw_only: Determines if `__init__` method parameters must be specified by keyword only. Defaults to `False`.
slots: Determines if the generated class should be a 'slots' `dataclass`, which does not allow the addition of
new attributes after instantiation.
Returns:
A decorator that accepts a class as its argument and returns a Pydantic `dataclass`.
Raises:
AssertionError: Raised if `init` is not `False` or `validate_on_init` is `False`.
"""
assert init is False, 'pydantic.dataclasses.dataclass only supports init=False'
assert validate_on_init is not False, 'validate_on_init=False is no longer supported'
if sys.version_info >= (3, 10):
kwargs = {'kw_only': kw_only, 'slots': slots}
else:
kwargs = {}
def make_pydantic_fields_compatible(cls: type[Any]) -> None:
"""Make sure that stdlib `dataclasses` understands `Field` kwargs like `kw_only`
To do that, we simply change
`x: int = pydantic.Field(..., kw_only=True)`
into
`x: int = dataclasses.field(default=pydantic.Field(..., kw_only=True), kw_only=True)`
"""
for annotation_cls in cls.__mro__:
annotations: dict[str, Any] = getattr(annotation_cls, '__annotations__', {})
for field_name in annotations:
field_value = getattr(cls, field_name, None)
# Process only if this is an instance of `FieldInfo`.
if not isinstance(field_value, FieldInfo):
continue
# Initialize arguments for the standard `dataclasses.field`.
field_args: dict = {'default': field_value}
# Handle `kw_only` for Python 3.10+
if sys.version_info >= (3, 10) and field_value.kw_only:
field_args['kw_only'] = True
# Set `repr` attribute if it's explicitly specified to be not `True`.
if field_value.repr is not True:
field_args['repr'] = field_value.repr
setattr(cls, field_name, dataclasses.field(**field_args))
# In Python 3.9, when subclassing, information is pulled from cls.__dict__['__annotations__']
# for annotations, so we must make sure it's initialized before we add to it.
if cls.__dict__.get('__annotations__') is None:
cls.__annotations__ = {}
cls.__annotations__[field_name] = annotations[field_name]
def create_dataclass(cls: type[Any]) -> type[PydanticDataclass]:
"""Create a Pydantic dataclass from a regular dataclass.
Args:
cls: The class to create the Pydantic dataclass from.
Returns:
A Pydantic dataclass.
"""
from ._internal._utils import is_model_class
if is_model_class(cls):
raise PydanticUserError(
f'Cannot create a Pydantic dataclass from {cls.__name__} as it is already a Pydantic model',
code='dataclass-on-model',
)
original_cls = cls
# we warn on conflicting config specifications, but only if the class doesn't have a dataclass base
# because a dataclass base might provide a __pydantic_config__ attribute that we don't want to warn about
has_dataclass_base = any(dataclasses.is_dataclass(base) for base in cls.__bases__)
if not has_dataclass_base and config is not None and hasattr(cls, '__pydantic_config__'):
warn(
f'`config` is set via both the `dataclass` decorator and `__pydantic_config__` for dataclass {cls.__name__}. '
f'The `config` specification from `dataclass` decorator will take priority.',
category=UserWarning,
stacklevel=2,
)
# if config is not explicitly provided, try to read it from the type
config_dict = config if config is not None else getattr(cls, '__pydantic_config__', None)
config_wrapper = _config.ConfigWrapper(config_dict)
decorators = _decorators.DecoratorInfos.build(cls)
# Keep track of the original __doc__ so that we can restore it after applying the dataclasses decorator
# Otherwise, classes with no __doc__ will have their signature added into the JSON schema description,
# since dataclasses.dataclass will set this as the __doc__
original_doc = cls.__doc__
if _pydantic_dataclasses.is_builtin_dataclass(cls):
# Don't preserve the docstring for vanilla dataclasses, as it may include the signature
# This matches v1 behavior, and there was an explicit test for it
original_doc = None
# We don't want to add validation to the existing std lib dataclass, so we will subclass it
# If the class is generic, we need to make sure the subclass also inherits from Generic
# with all the same parameters.
bases = (cls,)
if issubclass(cls, Generic):
generic_base = Generic[cls.__parameters__] # type: ignore
bases = bases + (generic_base,)
cls = types.new_class(cls.__name__, bases)
make_pydantic_fields_compatible(cls)
# Respect frozen setting from dataclass constructor and fallback to config setting if not provided
if frozen is not None:
frozen_ = frozen
if config_wrapper.frozen:
# It's not recommended to define both, as the setting from the dataclass decorator will take priority.
warn(
f'`frozen` is set via both the `dataclass` decorator and `config` for dataclass {cls.__name__!r}.'
'This is not recommended. The `frozen` specification on `dataclass` will take priority.',
category=UserWarning,
stacklevel=2,
)
else:
frozen_ = config_wrapper.frozen or False
cls = dataclasses.dataclass( # type: ignore[call-overload]
cls,
# the value of init here doesn't affect anything except that it makes it easier to generate a signature
init=True,
repr=repr,
eq=eq,
order=order,
unsafe_hash=unsafe_hash,
frozen=frozen_,
**kwargs,
)
# This is an undocumented attribute to distinguish stdlib/Pydantic dataclasses.
# It should be set as early as possible:
cls.__is_pydantic_dataclass__ = True
cls.__pydantic_decorators__ = decorators # type: ignore
cls.__doc__ = original_doc
cls.__module__ = original_cls.__module__
cls.__qualname__ = original_cls.__qualname__
cls.__pydantic_fields_complete__ = classmethod(_pydantic_fields_complete)
cls.__pydantic_complete__ = False # `complete_dataclass` will set it to `True` if successful.
# TODO `parent_namespace` is currently None, but we could do the same thing as Pydantic models:
# fetch the parent ns using `parent_frame_namespace` (if the dataclass was defined in a function),
# and possibly cache it (see the `__pydantic_parent_namespace__` logic for models).
_pydantic_dataclasses.complete_dataclass(cls, config_wrapper, raise_errors=False)
return cls
return create_dataclass if _cls is None else create_dataclass(_cls)
def _pydantic_fields_complete(cls: type[PydanticDataclass]) -> bool:
"""Return whether the fields where successfully collected (i.e. type hints were successfully resolves).
This is a private property, not meant to be used outside Pydantic.
"""
return all(field_info._complete for field_info in cls.__pydantic_fields__.values())
__getattr__ = getattr_migration(__name__)
if sys.version_info < (3, 11):
# Monkeypatch dataclasses.InitVar so that typing doesn't error if it occurs as a type when evaluating type hints
# Starting in 3.11, typing.get_type_hints will not raise an error if the retrieved type hints are not callable.
def _call_initvar(*args: Any, **kwargs: Any) -> NoReturn:
"""This function does nothing but raise an error that is as similar as possible to what you'd get
if you were to try calling `InitVar[int]()` without this monkeypatch. The whole purpose is just
to ensure typing._type_check does not error if the type hint evaluates to `InitVar[<parameter>]`.
"""
raise TypeError("'InitVar' object is not callable")
dataclasses.InitVar.__call__ = _call_initvar
def rebuild_dataclass(
cls: type[PydanticDataclass],
*,
force: bool = False,
raise_errors: bool = True,
_parent_namespace_depth: int = 2,
_types_namespace: MappingNamespace | None = None,
) -> bool | None:
"""Try to rebuild the pydantic-core schema for the dataclass.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
the initial attempt to build the schema, and automatic rebuilding fails.
This is analogous to `BaseModel.model_rebuild`.
Args:
cls: The class to rebuild the pydantic-core schema for.
force: Whether to force the rebuilding of the schema, defaults to `False`.
raise_errors: Whether to raise errors, defaults to `True`.
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
_types_namespace: The types namespace, defaults to `None`.
Returns:
Returns `None` if the schema is already "complete" and rebuilding was not required.
If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
"""
if not force and cls.__pydantic_complete__:
return None
for attr in ('__pydantic_core_schema__', '__pydantic_validator__', '__pydantic_serializer__'):
if attr in cls.__dict__:
# Deleting the validator/serializer is necessary as otherwise they can get reused in
# pydantic-core. Same applies for the core schema that can be reused in schema generation.
delattr(cls, attr)
cls.__pydantic_complete__ = False
if _types_namespace is not None:
rebuild_ns = _types_namespace
elif _parent_namespace_depth > 0:
rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {}
else:
rebuild_ns = {}
ns_resolver = _namespace_utils.NsResolver(
parent_namespace=rebuild_ns,
)
return _pydantic_dataclasses.complete_dataclass(
cls,
_config.ConfigWrapper(cls.__pydantic_config__, check=False),
raise_errors=raise_errors,
ns_resolver=ns_resolver,
# We could provide a different config instead (with `'defer_build'` set to `True`)
# of this explicit `_force_build` argument, but because config can come from the
# decorator parameter or the `__pydantic_config__` attribute, `complete_dataclass`
# will overwrite `__pydantic_config__` with the provided config above:
_force_build=True,
)
def is_pydantic_dataclass(class_: type[Any], /) -> TypeGuard[type[PydanticDataclass]]:
"""Whether a class is a pydantic dataclass.
Args:
class_: The class.
Returns:
`True` if the class is a pydantic dataclass, `False` otherwise.
"""
try:
return '__is_pydantic_dataclass__' in class_.__dict__ and dataclasses.is_dataclass(class_)
except AttributeError:
return False
|