File size: 16,398 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import datetime
import io
import warnings
try:
import numpy as np
except ImportError:
np = None
import pytest
import pyarrow as pa
from pyarrow.tests.parquet.common import _check_roundtrip
try:
import pyarrow.parquet as pq
from pyarrow.tests.parquet.common import _read_table, _write_table
except ImportError:
pq = None
try:
import pandas as pd
import pandas.testing as tm
from pyarrow.tests.parquet.common import _roundtrip_pandas_dataframe
except ImportError:
pd = tm = None
# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet
@pytest.mark.pandas
def test_pandas_parquet_datetime_tz():
# Pandas v2 defaults to [ns], but Arrow defaults to [us] time units
# so we need to cast the pandas dtype. Pandas v1 will always silently
# coerce to [ns] due to lack of non-[ns] support.
s = pd.Series([datetime.datetime(2017, 9, 6)], dtype='datetime64[us]')
s = s.dt.tz_localize('utc')
s.index = s
# Both a column and an index to hit both use cases
df = pd.DataFrame({'tz_aware': s,
'tz_eastern': s.dt.tz_convert('US/Eastern')},
index=s)
f = io.BytesIO()
arrow_table = pa.Table.from_pandas(df)
_write_table(arrow_table, f)
f.seek(0)
table_read = pq.read_pandas(f)
df_read = table_read.to_pandas()
tm.assert_frame_equal(df, df_read)
@pytest.mark.pandas
def test_datetime_timezone_tzinfo():
value = datetime.datetime(2018, 1, 1, 1, 23, 45,
tzinfo=datetime.timezone.utc)
df = pd.DataFrame({'foo': [value]})
_roundtrip_pandas_dataframe(df, write_kwargs={})
@pytest.mark.pandas
def test_coerce_timestamps(tempdir):
from collections import OrderedDict
# ARROW-622
arrays = OrderedDict()
fields = [pa.field('datetime64',
pa.list_(pa.timestamp('ms')))]
arrays['datetime64'] = [
np.array(['2007-07-13T01:23:34.123456789',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
None,
None,
np.array(['2007-07-13T02',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
]
df = pd.DataFrame(arrays)
schema = pa.schema(fields)
filename = tempdir / 'pandas_roundtrip.parquet'
arrow_table = pa.Table.from_pandas(df, schema=schema)
_write_table(arrow_table, filename, version='2.6', coerce_timestamps='us')
table_read = _read_table(filename)
df_read = table_read.to_pandas()
df_expected = df.copy()
for i, x in enumerate(df_expected['datetime64']):
if isinstance(x, np.ndarray):
df_expected.loc[i, 'datetime64'] = x.astype('M8[us]')
tm.assert_frame_equal(df_expected, df_read)
with pytest.raises(ValueError):
_write_table(arrow_table, filename, version='2.6',
coerce_timestamps='unknown')
@pytest.mark.pandas
def test_coerce_timestamps_truncated(tempdir):
"""
ARROW-2555: Test that we can truncate timestamps when coercing if
explicitly allowed.
"""
dt_us = datetime.datetime(year=2017, month=1, day=1, hour=1, minute=1,
second=1, microsecond=1)
dt_ms = datetime.datetime(year=2017, month=1, day=1, hour=1, minute=1,
second=1)
fields_us = [pa.field('datetime64', pa.timestamp('us'))]
arrays_us = {'datetime64': [dt_us, dt_ms]}
df_us = pd.DataFrame(arrays_us)
schema_us = pa.schema(fields_us)
filename = tempdir / 'pandas_truncated.parquet'
table_us = pa.Table.from_pandas(df_us, schema=schema_us)
_write_table(table_us, filename, version='2.6', coerce_timestamps='ms',
allow_truncated_timestamps=True)
table_ms = _read_table(filename)
df_ms = table_ms.to_pandas()
arrays_expected = {'datetime64': [dt_ms, dt_ms]}
df_expected = pd.DataFrame(arrays_expected, dtype='datetime64[ms]')
tm.assert_frame_equal(df_expected, df_ms)
@pytest.mark.pandas
def test_date_time_types(tempdir):
t1 = pa.date32()
data1 = np.array([17259, 17260, 17261], dtype='int32')
a1 = pa.array(data1, type=t1)
t2 = pa.date64()
data2 = data1.astype('int64') * 86400000
a2 = pa.array(data2, type=t2)
t3 = pa.timestamp('us')
start = pd.Timestamp('2001-01-01').value / 1000
data3 = np.array([start, start + 1, start + 2], dtype='int64')
a3 = pa.array(data3, type=t3)
t4 = pa.time32('ms')
data4 = np.arange(3, dtype='i4')
a4 = pa.array(data4, type=t4)
t5 = pa.time64('us')
a5 = pa.array(data4.astype('int64'), type=t5)
t6 = pa.time32('s')
a6 = pa.array(data4, type=t6)
ex_t6 = pa.time32('ms')
ex_a6 = pa.array(data4 * 1000, type=ex_t6)
t7 = pa.timestamp('ns')
start = pd.Timestamp('2001-01-01').value
data7 = np.array([start, start + 1000, start + 2000],
dtype='int64')
a7 = pa.array(data7, type=t7)
table = pa.Table.from_arrays([a1, a2, a3, a4, a5, a6, a7],
['date32', 'date64', 'timestamp[us]',
'time32[s]', 'time64[us]',
'time32_from64[s]',
'timestamp[ns]'])
# date64 as date32
# time32[s] to time32[ms]
expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7],
['date32', 'date64', 'timestamp[us]',
'time32[s]', 'time64[us]',
'time32_from64[s]',
'timestamp[ns]'])
_check_roundtrip(table, expected=expected, version='2.6')
t0 = pa.timestamp('ms')
data0 = np.arange(4, dtype='int64')
a0 = pa.array(data0, type=t0)
t1 = pa.timestamp('us')
data1 = np.arange(4, dtype='int64')
a1 = pa.array(data1, type=t1)
t2 = pa.timestamp('ns')
data2 = np.arange(4, dtype='int64')
a2 = pa.array(data2, type=t2)
table = pa.Table.from_arrays([a0, a1, a2],
['ts[ms]', 'ts[us]', 'ts[ns]'])
expected = pa.Table.from_arrays([a0, a1, a2],
['ts[ms]', 'ts[us]', 'ts[ns]'])
# int64 for all timestamps supported by default
filename = tempdir / 'int64_timestamps.parquet'
_write_table(table, filename, version='2.6')
parquet_schema = pq.ParquetFile(filename).schema
for i in range(3):
assert parquet_schema.column(i).physical_type == 'INT64'
read_table = _read_table(filename)
assert read_table.equals(expected)
t0_ns = pa.timestamp('ns')
data0_ns = np.array(data0 * 1000000, dtype='int64')
a0_ns = pa.array(data0_ns, type=t0_ns)
t1_ns = pa.timestamp('ns')
data1_ns = np.array(data1 * 1000, dtype='int64')
a1_ns = pa.array(data1_ns, type=t1_ns)
expected = pa.Table.from_arrays([a0_ns, a1_ns, a2],
['ts[ms]', 'ts[us]', 'ts[ns]'])
# int96 nanosecond timestamps produced upon request
filename = tempdir / 'explicit_int96_timestamps.parquet'
_write_table(table, filename, version='2.6',
use_deprecated_int96_timestamps=True)
parquet_schema = pq.ParquetFile(filename).schema
for i in range(3):
assert parquet_schema.column(i).physical_type == 'INT96'
read_table = _read_table(filename)
assert read_table.equals(expected)
# int96 nanosecond timestamps implied by flavor 'spark'
filename = tempdir / 'spark_int96_timestamps.parquet'
_write_table(table, filename, version='2.6',
flavor='spark')
parquet_schema = pq.ParquetFile(filename).schema
for i in range(3):
assert parquet_schema.column(i).physical_type == 'INT96'
read_table = _read_table(filename)
assert read_table.equals(expected)
@pytest.mark.pandas
@pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns'])
def test_coerce_int96_timestamp_unit(unit):
i_s = pd.Timestamp('2010-01-01').value / 1000000000 # := 1262304000
d_s = np.arange(i_s, i_s + 10, 1, dtype='int64')
d_ms = d_s * 1000
d_us = d_ms * 1000
d_ns = d_us * 1000
a_s = pa.array(d_s, type=pa.timestamp('s'))
a_ms = pa.array(d_ms, type=pa.timestamp('ms'))
a_us = pa.array(d_us, type=pa.timestamp('us'))
a_ns = pa.array(d_ns, type=pa.timestamp('ns'))
arrays = {"s": a_s, "ms": a_ms, "us": a_us, "ns": a_ns}
names = ['ts_s', 'ts_ms', 'ts_us', 'ts_ns']
table = pa.Table.from_arrays([a_s, a_ms, a_us, a_ns], names)
# For either Parquet version, coercing to nanoseconds is allowed
# if Int96 storage is used
expected = pa.Table.from_arrays([arrays.get(unit)]*4, names)
read_table_kwargs = {"coerce_int96_timestamp_unit": unit}
_check_roundtrip(table, expected,
read_table_kwargs=read_table_kwargs,
use_deprecated_int96_timestamps=True)
_check_roundtrip(table, expected, version='2.6',
read_table_kwargs=read_table_kwargs,
use_deprecated_int96_timestamps=True)
@pytest.mark.pandas
@pytest.mark.parametrize('pq_reader_method', ['ParquetFile', 'read_table'])
def test_coerce_int96_timestamp_overflow(pq_reader_method, tempdir):
def get_table(pq_reader_method, filename, **kwargs):
if pq_reader_method == "ParquetFile":
return pq.ParquetFile(filename, **kwargs).read()
elif pq_reader_method == "read_table":
return pq.read_table(filename, **kwargs)
# Recreating the initial JIRA issue referenced in ARROW-12096
oob_dts = [
datetime.datetime(1000, 1, 1),
datetime.datetime(2000, 1, 1),
datetime.datetime(3000, 1, 1)
]
df = pd.DataFrame({"a": oob_dts})
table = pa.table(df)
filename = tempdir / "test_round_trip_overflow.parquet"
pq.write_table(table, filename, use_deprecated_int96_timestamps=True,
version="1.0")
# with the default resolution of ns, we get wrong values for INT96
# that are out of bounds for nanosecond range
tab_error = get_table(pq_reader_method, filename)
with warnings.catch_warnings():
warnings.filterwarnings("ignore",
"Discarding nonzero nanoseconds in conversion",
UserWarning)
assert tab_error["a"].to_pylist() != oob_dts
# avoid this overflow by specifying the resolution to use for INT96 values
tab_correct = get_table(
pq_reader_method, filename, coerce_int96_timestamp_unit="s"
)
df_correct = tab_correct.to_pandas(timestamp_as_object=True)
df["a"] = df["a"].astype(object)
tm.assert_frame_equal(df, df_correct)
@pytest.mark.parametrize('unit', ['ms', 'us', 'ns'])
def test_timestamp_restore_timezone(unit):
# ARROW-5888, restore timezone from serialized metadata
ty = pa.timestamp(unit, tz='America/New_York')
arr = pa.array([1, 2, 3], type=ty)
t = pa.table([arr], names=['f0'])
_check_roundtrip(t)
def test_timestamp_restore_timezone_nanosecond():
# ARROW-9634, also restore timezone for nanosecond data that get stored
# as microseconds in the parquet file for Parquet ver 2.4 and less
ty = pa.timestamp('ns', tz='America/New_York')
arr = pa.array([1000, 2000, 3000], type=ty)
table = pa.table([arr], names=['f0'])
ty_us = pa.timestamp('us', tz='America/New_York')
expected = pa.table([arr.cast(ty_us)], names=['f0'])
_check_roundtrip(table, expected=expected, version='2.4')
@pytest.mark.pandas
def test_list_of_datetime_time_roundtrip():
# ARROW-4135
times = pd.to_datetime(['09:00', '09:30', '10:00', '10:30', '11:00',
'11:30', '12:00'], format="%H:%M")
df = pd.DataFrame({'time': [times.time]})
_roundtrip_pandas_dataframe(df, write_kwargs={})
@pytest.mark.pandas
def test_parquet_version_timestamp_differences():
i_s = pd.Timestamp('2010-01-01').value / 1000000000 # := 1262304000
d_s = np.arange(i_s, i_s + 10, 1, dtype='int64')
d_ms = d_s * 1000
d_us = d_ms * 1000
d_ns = d_us * 1000
a_s = pa.array(d_s, type=pa.timestamp('s'))
a_ms = pa.array(d_ms, type=pa.timestamp('ms'))
a_us = pa.array(d_us, type=pa.timestamp('us'))
a_ns = pa.array(d_ns, type=pa.timestamp('ns'))
all_versions = ['1.0', '2.4', '2.6']
names = ['ts:s', 'ts:ms', 'ts:us', 'ts:ns']
table = pa.Table.from_arrays([a_s, a_ms, a_us, a_ns], names)
# Using Parquet version 1.0 and 2.4, seconds should be coerced to milliseconds
# and nanoseconds should be coerced to microseconds by default
expected = pa.Table.from_arrays([a_ms, a_ms, a_us, a_us], names)
_check_roundtrip(table, expected, version='1.0')
_check_roundtrip(table, expected, version='2.4')
# Using Parquet version 2.6, seconds should be coerced to milliseconds
# and nanoseconds should be retained by default
expected = pa.Table.from_arrays([a_ms, a_ms, a_us, a_ns], names)
_check_roundtrip(table, expected, version='2.6')
# For either Parquet version coercing to milliseconds or microseconds
# is allowed
expected = pa.Table.from_arrays([a_ms, a_ms, a_ms, a_ms], names)
for ver in all_versions:
_check_roundtrip(table, expected, coerce_timestamps='ms', version=ver)
expected = pa.Table.from_arrays([a_us, a_us, a_us, a_us], names)
for ver in all_versions:
_check_roundtrip(table, expected, version=ver, coerce_timestamps='us')
# TODO: after pyarrow allows coerce_timestamps='ns', tests like the
# following should pass ...
# Using Parquet version 1.0, coercing to nanoseconds is not allowed
# expected = None
# with pytest.raises(NotImplementedError):
# _roundtrip_table(table, coerce_timestamps='ns')
# Using Parquet version 2.0, coercing to nanoseconds is allowed
# expected = pa.Table.from_arrays([a_ns, a_ns, a_ns, a_ns], names)
# _check_roundtrip(table, expected, version='2.6', coerce_timestamps='ns')
# For either Parquet version, coercing to nanoseconds is allowed
# if Int96 storage is used
expected = pa.Table.from_arrays([a_ns, a_ns, a_ns, a_ns], names)
for ver in all_versions:
_check_roundtrip(table, expected, version=ver,
use_deprecated_int96_timestamps=True)
@pytest.mark.pandas
def test_noncoerced_nanoseconds_written_without_exception(tempdir):
# ARROW-1957: the Parquet version 2.0 writer preserves Arrow
# nanosecond timestamps by default
n = 9
df = pd.DataFrame({'x': range(n)},
index=pd.date_range('2017-01-01', freq='ns', periods=n))
tb = pa.Table.from_pandas(df)
filename = tempdir / 'written.parquet'
try:
pq.write_table(tb, filename, version='2.6')
except Exception:
pass
assert filename.exists()
recovered_table = pq.read_table(filename)
assert tb.equals(recovered_table)
# Loss of data through coercion (without explicit override) still an error
filename = tempdir / 'not_written.parquet'
with pytest.raises(ValueError):
pq.write_table(tb, filename, coerce_timestamps='ms', version='2.6')
def test_duration_type():
# ARROW-6780
arrays = [pa.array([0, 1, 2, 3], type=pa.duration(unit))
for unit in ["s", "ms", "us", "ns"]]
table = pa.Table.from_arrays(arrays, ["d[s]", "d[ms]", "d[us]", "d[ns]"])
_check_roundtrip(table)
|