File size: 16,398 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import datetime
import io
import warnings

try:
    import numpy as np
except ImportError:
    np = None
import pytest

import pyarrow as pa
from pyarrow.tests.parquet.common import _check_roundtrip

try:
    import pyarrow.parquet as pq
    from pyarrow.tests.parquet.common import _read_table, _write_table
except ImportError:
    pq = None


try:
    import pandas as pd
    import pandas.testing as tm

    from pyarrow.tests.parquet.common import _roundtrip_pandas_dataframe
except ImportError:
    pd = tm = None


# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet


@pytest.mark.pandas
def test_pandas_parquet_datetime_tz():
    # Pandas v2 defaults to [ns], but Arrow defaults to [us] time units
    # so we need to cast the pandas dtype. Pandas v1 will always silently
    # coerce to [ns] due to lack of non-[ns] support.
    s = pd.Series([datetime.datetime(2017, 9, 6)], dtype='datetime64[us]')
    s = s.dt.tz_localize('utc')
    s.index = s

    # Both a column and an index to hit both use cases
    df = pd.DataFrame({'tz_aware': s,
                       'tz_eastern': s.dt.tz_convert('US/Eastern')},
                      index=s)

    f = io.BytesIO()

    arrow_table = pa.Table.from_pandas(df)

    _write_table(arrow_table, f)
    f.seek(0)

    table_read = pq.read_pandas(f)

    df_read = table_read.to_pandas()
    tm.assert_frame_equal(df, df_read)


@pytest.mark.pandas
def test_datetime_timezone_tzinfo():
    value = datetime.datetime(2018, 1, 1, 1, 23, 45,
                              tzinfo=datetime.timezone.utc)
    df = pd.DataFrame({'foo': [value]})

    _roundtrip_pandas_dataframe(df, write_kwargs={})


@pytest.mark.pandas
def test_coerce_timestamps(tempdir):
    from collections import OrderedDict

    # ARROW-622
    arrays = OrderedDict()
    fields = [pa.field('datetime64',
                       pa.list_(pa.timestamp('ms')))]
    arrays['datetime64'] = [
        np.array(['2007-07-13T01:23:34.123456789',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
        None,
        None,
        np.array(['2007-07-13T02',
                  None,
                  '2010-08-13T05:46:57.437699912'],
                 dtype='datetime64[ms]'),
    ]

    df = pd.DataFrame(arrays)
    schema = pa.schema(fields)

    filename = tempdir / 'pandas_roundtrip.parquet'
    arrow_table = pa.Table.from_pandas(df, schema=schema)

    _write_table(arrow_table, filename, version='2.6', coerce_timestamps='us')
    table_read = _read_table(filename)
    df_read = table_read.to_pandas()

    df_expected = df.copy()
    for i, x in enumerate(df_expected['datetime64']):
        if isinstance(x, np.ndarray):
            df_expected.loc[i, 'datetime64'] = x.astype('M8[us]')

    tm.assert_frame_equal(df_expected, df_read)

    with pytest.raises(ValueError):
        _write_table(arrow_table, filename, version='2.6',
                     coerce_timestamps='unknown')


@pytest.mark.pandas
def test_coerce_timestamps_truncated(tempdir):
    """
    ARROW-2555: Test that we can truncate timestamps when coercing if
    explicitly allowed.
    """
    dt_us = datetime.datetime(year=2017, month=1, day=1, hour=1, minute=1,
                              second=1, microsecond=1)
    dt_ms = datetime.datetime(year=2017, month=1, day=1, hour=1, minute=1,
                              second=1)

    fields_us = [pa.field('datetime64', pa.timestamp('us'))]
    arrays_us = {'datetime64': [dt_us, dt_ms]}

    df_us = pd.DataFrame(arrays_us)
    schema_us = pa.schema(fields_us)

    filename = tempdir / 'pandas_truncated.parquet'
    table_us = pa.Table.from_pandas(df_us, schema=schema_us)

    _write_table(table_us, filename, version='2.6', coerce_timestamps='ms',
                 allow_truncated_timestamps=True)
    table_ms = _read_table(filename)
    df_ms = table_ms.to_pandas()

    arrays_expected = {'datetime64': [dt_ms, dt_ms]}
    df_expected = pd.DataFrame(arrays_expected, dtype='datetime64[ms]')
    tm.assert_frame_equal(df_expected, df_ms)


@pytest.mark.pandas
def test_date_time_types(tempdir):
    t1 = pa.date32()
    data1 = np.array([17259, 17260, 17261], dtype='int32')
    a1 = pa.array(data1, type=t1)

    t2 = pa.date64()
    data2 = data1.astype('int64') * 86400000
    a2 = pa.array(data2, type=t2)

    t3 = pa.timestamp('us')
    start = pd.Timestamp('2001-01-01').value / 1000
    data3 = np.array([start, start + 1, start + 2], dtype='int64')
    a3 = pa.array(data3, type=t3)

    t4 = pa.time32('ms')
    data4 = np.arange(3, dtype='i4')
    a4 = pa.array(data4, type=t4)

    t5 = pa.time64('us')
    a5 = pa.array(data4.astype('int64'), type=t5)

    t6 = pa.time32('s')
    a6 = pa.array(data4, type=t6)

    ex_t6 = pa.time32('ms')
    ex_a6 = pa.array(data4 * 1000, type=ex_t6)

    t7 = pa.timestamp('ns')
    start = pd.Timestamp('2001-01-01').value
    data7 = np.array([start, start + 1000, start + 2000],
                     dtype='int64')
    a7 = pa.array(data7, type=t7)

    table = pa.Table.from_arrays([a1, a2, a3, a4, a5, a6, a7],
                                 ['date32', 'date64', 'timestamp[us]',
                                  'time32[s]', 'time64[us]',
                                  'time32_from64[s]',
                                  'timestamp[ns]'])

    # date64 as date32
    # time32[s] to time32[ms]
    expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7],
                                    ['date32', 'date64', 'timestamp[us]',
                                     'time32[s]', 'time64[us]',
                                     'time32_from64[s]',
                                     'timestamp[ns]'])

    _check_roundtrip(table, expected=expected, version='2.6')

    t0 = pa.timestamp('ms')
    data0 = np.arange(4, dtype='int64')
    a0 = pa.array(data0, type=t0)

    t1 = pa.timestamp('us')
    data1 = np.arange(4, dtype='int64')
    a1 = pa.array(data1, type=t1)

    t2 = pa.timestamp('ns')
    data2 = np.arange(4, dtype='int64')
    a2 = pa.array(data2, type=t2)

    table = pa.Table.from_arrays([a0, a1, a2],
                                 ['ts[ms]', 'ts[us]', 'ts[ns]'])
    expected = pa.Table.from_arrays([a0, a1, a2],
                                    ['ts[ms]', 'ts[us]', 'ts[ns]'])

    # int64 for all timestamps supported by default
    filename = tempdir / 'int64_timestamps.parquet'
    _write_table(table, filename, version='2.6')
    parquet_schema = pq.ParquetFile(filename).schema
    for i in range(3):
        assert parquet_schema.column(i).physical_type == 'INT64'
    read_table = _read_table(filename)
    assert read_table.equals(expected)

    t0_ns = pa.timestamp('ns')
    data0_ns = np.array(data0 * 1000000, dtype='int64')
    a0_ns = pa.array(data0_ns, type=t0_ns)

    t1_ns = pa.timestamp('ns')
    data1_ns = np.array(data1 * 1000, dtype='int64')
    a1_ns = pa.array(data1_ns, type=t1_ns)

    expected = pa.Table.from_arrays([a0_ns, a1_ns, a2],
                                    ['ts[ms]', 'ts[us]', 'ts[ns]'])

    # int96 nanosecond timestamps produced upon request
    filename = tempdir / 'explicit_int96_timestamps.parquet'
    _write_table(table, filename, version='2.6',
                 use_deprecated_int96_timestamps=True)
    parquet_schema = pq.ParquetFile(filename).schema
    for i in range(3):
        assert parquet_schema.column(i).physical_type == 'INT96'
    read_table = _read_table(filename)
    assert read_table.equals(expected)

    # int96 nanosecond timestamps implied by flavor 'spark'
    filename = tempdir / 'spark_int96_timestamps.parquet'
    _write_table(table, filename, version='2.6',
                 flavor='spark')
    parquet_schema = pq.ParquetFile(filename).schema
    for i in range(3):
        assert parquet_schema.column(i).physical_type == 'INT96'
    read_table = _read_table(filename)
    assert read_table.equals(expected)


@pytest.mark.pandas
@pytest.mark.parametrize('unit', ['s', 'ms', 'us', 'ns'])
def test_coerce_int96_timestamp_unit(unit):
    i_s = pd.Timestamp('2010-01-01').value / 1000000000  # := 1262304000

    d_s = np.arange(i_s, i_s + 10, 1, dtype='int64')
    d_ms = d_s * 1000
    d_us = d_ms * 1000
    d_ns = d_us * 1000

    a_s = pa.array(d_s, type=pa.timestamp('s'))
    a_ms = pa.array(d_ms, type=pa.timestamp('ms'))
    a_us = pa.array(d_us, type=pa.timestamp('us'))
    a_ns = pa.array(d_ns, type=pa.timestamp('ns'))

    arrays = {"s": a_s, "ms": a_ms, "us": a_us, "ns": a_ns}
    names = ['ts_s', 'ts_ms', 'ts_us', 'ts_ns']
    table = pa.Table.from_arrays([a_s, a_ms, a_us, a_ns], names)

    # For either Parquet version, coercing to nanoseconds is allowed
    # if Int96 storage is used
    expected = pa.Table.from_arrays([arrays.get(unit)]*4, names)
    read_table_kwargs = {"coerce_int96_timestamp_unit": unit}
    _check_roundtrip(table, expected,
                     read_table_kwargs=read_table_kwargs,
                     use_deprecated_int96_timestamps=True)
    _check_roundtrip(table, expected, version='2.6',
                     read_table_kwargs=read_table_kwargs,
                     use_deprecated_int96_timestamps=True)


@pytest.mark.pandas
@pytest.mark.parametrize('pq_reader_method', ['ParquetFile', 'read_table'])
def test_coerce_int96_timestamp_overflow(pq_reader_method, tempdir):

    def get_table(pq_reader_method, filename, **kwargs):
        if pq_reader_method == "ParquetFile":
            return pq.ParquetFile(filename, **kwargs).read()
        elif pq_reader_method == "read_table":
            return pq.read_table(filename, **kwargs)

    # Recreating the initial JIRA issue referenced in ARROW-12096
    oob_dts = [
        datetime.datetime(1000, 1, 1),
        datetime.datetime(2000, 1, 1),
        datetime.datetime(3000, 1, 1)
    ]
    df = pd.DataFrame({"a": oob_dts})
    table = pa.table(df)

    filename = tempdir / "test_round_trip_overflow.parquet"
    pq.write_table(table, filename, use_deprecated_int96_timestamps=True,
                   version="1.0")

    # with the default resolution of ns, we get wrong values for INT96
    # that are out of bounds for nanosecond range
    tab_error = get_table(pq_reader_method, filename)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                "Discarding nonzero nanoseconds in conversion",
                                UserWarning)
        assert tab_error["a"].to_pylist() != oob_dts

    # avoid this overflow by specifying the resolution to use for INT96 values
    tab_correct = get_table(
        pq_reader_method, filename, coerce_int96_timestamp_unit="s"
    )
    df_correct = tab_correct.to_pandas(timestamp_as_object=True)
    df["a"] = df["a"].astype(object)
    tm.assert_frame_equal(df, df_correct)


@pytest.mark.parametrize('unit', ['ms', 'us', 'ns'])
def test_timestamp_restore_timezone(unit):
    # ARROW-5888, restore timezone from serialized metadata
    ty = pa.timestamp(unit, tz='America/New_York')
    arr = pa.array([1, 2, 3], type=ty)
    t = pa.table([arr], names=['f0'])
    _check_roundtrip(t)


def test_timestamp_restore_timezone_nanosecond():
    # ARROW-9634, also restore timezone for nanosecond data that get stored
    # as microseconds in the parquet file for Parquet ver 2.4 and less
    ty = pa.timestamp('ns', tz='America/New_York')
    arr = pa.array([1000, 2000, 3000], type=ty)
    table = pa.table([arr], names=['f0'])
    ty_us = pa.timestamp('us', tz='America/New_York')
    expected = pa.table([arr.cast(ty_us)], names=['f0'])
    _check_roundtrip(table, expected=expected, version='2.4')


@pytest.mark.pandas
def test_list_of_datetime_time_roundtrip():
    # ARROW-4135
    times = pd.to_datetime(['09:00', '09:30', '10:00', '10:30', '11:00',
                            '11:30', '12:00'], format="%H:%M")
    df = pd.DataFrame({'time': [times.time]})
    _roundtrip_pandas_dataframe(df, write_kwargs={})


@pytest.mark.pandas
def test_parquet_version_timestamp_differences():
    i_s = pd.Timestamp('2010-01-01').value / 1000000000  # := 1262304000

    d_s = np.arange(i_s, i_s + 10, 1, dtype='int64')
    d_ms = d_s * 1000
    d_us = d_ms * 1000
    d_ns = d_us * 1000

    a_s = pa.array(d_s, type=pa.timestamp('s'))
    a_ms = pa.array(d_ms, type=pa.timestamp('ms'))
    a_us = pa.array(d_us, type=pa.timestamp('us'))
    a_ns = pa.array(d_ns, type=pa.timestamp('ns'))

    all_versions = ['1.0', '2.4', '2.6']

    names = ['ts:s', 'ts:ms', 'ts:us', 'ts:ns']
    table = pa.Table.from_arrays([a_s, a_ms, a_us, a_ns], names)

    # Using Parquet version 1.0 and 2.4, seconds should be coerced to milliseconds
    # and nanoseconds should be coerced to microseconds by default
    expected = pa.Table.from_arrays([a_ms, a_ms, a_us, a_us], names)
    _check_roundtrip(table, expected, version='1.0')
    _check_roundtrip(table, expected, version='2.4')

    # Using Parquet version 2.6, seconds should be coerced to milliseconds
    # and nanoseconds should be retained by default
    expected = pa.Table.from_arrays([a_ms, a_ms, a_us, a_ns], names)
    _check_roundtrip(table, expected, version='2.6')

    # For either Parquet version coercing to milliseconds or microseconds
    # is allowed
    expected = pa.Table.from_arrays([a_ms, a_ms, a_ms, a_ms], names)
    for ver in all_versions:
        _check_roundtrip(table, expected, coerce_timestamps='ms', version=ver)

    expected = pa.Table.from_arrays([a_us, a_us, a_us, a_us], names)
    for ver in all_versions:
        _check_roundtrip(table, expected, version=ver, coerce_timestamps='us')

    # TODO: after pyarrow allows coerce_timestamps='ns', tests like the
    # following should pass ...

    # Using Parquet version 1.0, coercing to nanoseconds is not allowed
    # expected = None
    # with pytest.raises(NotImplementedError):
    #     _roundtrip_table(table, coerce_timestamps='ns')

    # Using Parquet version 2.0, coercing to nanoseconds is allowed
    # expected = pa.Table.from_arrays([a_ns, a_ns, a_ns, a_ns], names)
    # _check_roundtrip(table, expected, version='2.6', coerce_timestamps='ns')

    # For either Parquet version, coercing to nanoseconds is allowed
    # if Int96 storage is used
    expected = pa.Table.from_arrays([a_ns, a_ns, a_ns, a_ns], names)
    for ver in all_versions:
        _check_roundtrip(table, expected, version=ver,
                         use_deprecated_int96_timestamps=True)


@pytest.mark.pandas
def test_noncoerced_nanoseconds_written_without_exception(tempdir):
    # ARROW-1957: the Parquet version 2.0 writer preserves Arrow
    # nanosecond timestamps by default
    n = 9
    df = pd.DataFrame({'x': range(n)},
                      index=pd.date_range('2017-01-01', freq='ns', periods=n))
    tb = pa.Table.from_pandas(df)

    filename = tempdir / 'written.parquet'
    try:
        pq.write_table(tb, filename, version='2.6')
    except Exception:
        pass
    assert filename.exists()

    recovered_table = pq.read_table(filename)
    assert tb.equals(recovered_table)

    # Loss of data through coercion (without explicit override) still an error
    filename = tempdir / 'not_written.parquet'
    with pytest.raises(ValueError):
        pq.write_table(tb, filename, coerce_timestamps='ms', version='2.6')


def test_duration_type():
    # ARROW-6780
    arrays = [pa.array([0, 1, 2, 3], type=pa.duration(unit))
              for unit in ["s", "ms", "us", "ns"]]
    table = pa.Table.from_arrays(arrays, ["d[s]", "d[ms]", "d[us]", "d[ns]"])

    _check_roundtrip(table)