File size: 42,218 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import datetime
import inspect
import os
import pathlib
import sys

try:
    import numpy as np
except ImportError:
    np = None
import pytest
import unittest.mock as mock

import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.fs import (FileSelector, FileSystem, LocalFileSystem,
                        PyFileSystem, SubTreeFileSystem, FSSpecHandler)
from pyarrow.tests import util
from pyarrow.util import guid

try:
    import pyarrow.parquet as pq
    from pyarrow.tests.parquet.common import (
        _read_table, _test_dataframe, _write_table)
except ImportError:
    pq = None


try:
    import pandas as pd
    import pandas.testing as tm

except ImportError:
    pd = tm = None


# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = [pytest.mark.parquet, pytest.mark.dataset]


def test_filesystem_uri(tempdir):
    table = pa.table({"a": [1, 2, 3]})

    directory = tempdir / "data_dir"
    directory.mkdir()
    path = directory / "data.parquet"
    pq.write_table(table, str(path))

    # filesystem object
    result = pq.read_table(
        path, filesystem=LocalFileSystem())
    assert result.equals(table)

    # filesystem URI
    result = pq.read_table(
        "data_dir/data.parquet", filesystem=util._filesystem_uri(tempdir))
    assert result.equals(table)


@pytest.mark.pandas
def test_read_partitioned_directory(tempdir):
    local = LocalFileSystem()
    _partition_test_for_filesystem(local, tempdir)


@pytest.mark.pandas
def test_read_partitioned_columns_selection(tempdir):
    # ARROW-3861 - do not include partition columns in resulting table when
    # `columns` keyword was passed without those columns
    local = LocalFileSystem()
    base_path = tempdir
    _partition_test_for_filesystem(local, base_path)

    dataset = pq.ParquetDataset(base_path)
    result = dataset.read(columns=["values"])
    assert result.column_names == ["values"]


@pytest.mark.pandas
def test_filters_equivalency(tempdir):
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1]
    string_keys = ['a', 'b', 'c']
    boolean_keys = [True, False]
    partition_spec = [
        ['integer', integer_keys],
        ['string', string_keys],
        ['boolean', boolean_keys]
    ]

    df = pd.DataFrame({
        'integer': np.array(integer_keys, dtype='i4').repeat(15),
        'string': np.tile(np.tile(np.array(string_keys, dtype=object), 5), 2),
        'boolean': np.tile(np.tile(np.array(boolean_keys, dtype='bool'), 5), 3),
        'values': np.arange(30),
    })

    _generate_partition_directories(local, base_path, partition_spec, df)

    # Old filters syntax:
    #  integer == 1 AND string != b AND boolean == True
    dataset = pq.ParquetDataset(
        base_path, filesystem=local,
        filters=[('integer', '=', 1), ('string', '!=', 'b'),
                 ('boolean', '==', 'True')],
    )
    table = dataset.read()
    result_df = (table.to_pandas().reset_index(drop=True))

    assert 0 not in result_df['integer'].values
    assert 'b' not in result_df['string'].values
    assert False not in result_df['boolean'].values

    # filters in disjunctive normal form:
    #  (integer == 1 AND string != b AND boolean == True) OR
    #  (integer == 2 AND boolean == False)
    # TODO(ARROW-3388): boolean columns are reconstructed as string
    filters = [
        [
            ('integer', '=', 1),
            ('string', '!=', 'b'),
            ('boolean', '==', 'True')
        ],
        [('integer', '=', 0), ('boolean', '==', 'False')]
    ]
    dataset = pq.ParquetDataset(
        base_path, filesystem=local, filters=filters)
    table = dataset.read()
    result_df = table.to_pandas().reset_index(drop=True)

    # Check that all rows in the DF fulfill the filter
    df_filter_1 = (result_df['integer'] == 1) \
        & (result_df['string'] != 'b') \
        & (result_df['boolean'] == 'True')
    df_filter_2 = (np.array(result_df['integer']) == 0) \
        & (result_df['boolean'] == 'False')
    assert df_filter_1.sum() > 0
    assert df_filter_2.sum() > 0
    assert result_df.shape[0] == (df_filter_1.sum() + df_filter_2.sum())

    for filters in [[[('string', '==', b'1\0a')]],
                    [[('string', '==', '1\0a')]]]:
        dataset = pq.ParquetDataset(
            base_path, filesystem=local, filters=filters)
        assert dataset.read().num_rows == 0


@pytest.mark.pandas
def test_filters_cutoff_exclusive_integer(tempdir):
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1, 2, 3, 4]
    partition_spec = [
        ['integers', integer_keys],
    ]
    N = 5

    df = pd.DataFrame({
        'index': np.arange(N),
        'integers': np.array(integer_keys, dtype='i4'),
    }, columns=['index', 'integers'])

    _generate_partition_directories(local, base_path, partition_spec, df)

    dataset = pq.ParquetDataset(
        base_path, filesystem=local,
        filters=[
            ('integers', '<', 4),
            ('integers', '>', 1),
        ],
    )
    table = dataset.read()
    result_df = (table.to_pandas()
                      .sort_values(by='index')
                      .reset_index(drop=True))

    result_list = [x for x in map(int, result_df['integers'].values)]
    assert result_list == [2, 3]


@pytest.mark.xfail(
    # different error with use_legacy_datasets because result_df is no longer
    # categorical
    raises=(TypeError, AssertionError),
    reason='Loss of type information in creation of categoricals.'
)
@pytest.mark.pandas
def test_filters_cutoff_exclusive_datetime(tempdir):
    local = LocalFileSystem()
    base_path = tempdir

    date_keys = [
        datetime.date(2018, 4, 9),
        datetime.date(2018, 4, 10),
        datetime.date(2018, 4, 11),
        datetime.date(2018, 4, 12),
        datetime.date(2018, 4, 13)
    ]
    partition_spec = [
        ['dates', date_keys]
    ]
    N = 5

    df = pd.DataFrame({
        'index': np.arange(N),
        'dates': np.array(date_keys, dtype='datetime64'),
    }, columns=['index', 'dates'])

    _generate_partition_directories(local, base_path, partition_spec, df)

    dataset = pq.ParquetDataset(
        base_path, filesystem=local,
        filters=[
            ('dates', '<', "2018-04-12"),
            ('dates', '>', "2018-04-10")
        ],
    )
    table = dataset.read()
    result_df = (table.to_pandas()
                      .sort_values(by='index')
                      .reset_index(drop=True))

    expected = pd.Categorical(
        np.array([datetime.date(2018, 4, 11)], dtype='datetime64'),
        categories=np.array(date_keys, dtype='datetime64'))

    assert result_df['dates'].values == expected


@pytest.mark.pandas
def test_filters_inclusive_datetime(tempdir):
    # ARROW-11480
    path = tempdir / 'timestamps.parquet'

    pd.DataFrame({
        "dates": pd.date_range("2020-01-01", periods=10, freq="D"),
        "id": range(10)
    }).to_parquet(path, use_deprecated_int96_timestamps=True)

    table = pq.read_table(path, filters=[
        ("dates", "<=", datetime.datetime(2020, 1, 5))
    ])

    assert table.column('id').to_pylist() == [0, 1, 2, 3, 4]


@pytest.mark.pandas
def test_filters_inclusive_integer(tempdir):
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1, 2, 3, 4]
    partition_spec = [
        ['integers', integer_keys],
    ]
    N = 5

    df = pd.DataFrame({
        'index': np.arange(N),
        'integers': np.array(integer_keys, dtype='i4'),
    }, columns=['index', 'integers'])

    _generate_partition_directories(local, base_path, partition_spec, df)

    dataset = pq.ParquetDataset(
        base_path, filesystem=local,
        filters=[
            ('integers', '<=', 3),
            ('integers', '>=', 2),
        ],
    )
    table = dataset.read()
    result_df = (table.to_pandas()
                 .sort_values(by='index')
                 .reset_index(drop=True))

    result_list = [int(x) for x in map(int, result_df['integers'].values)]
    assert result_list == [2, 3]


@pytest.mark.pandas
def test_filters_inclusive_set(tempdir):
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1]
    string_keys = ['a', 'b', 'c']
    boolean_keys = [True, False]
    partition_spec = [
        ['integer', integer_keys],
        ['string', string_keys],
        ['boolean', boolean_keys]
    ]

    df = pd.DataFrame({
        'integer': np.array(integer_keys, dtype='i4').repeat(15),
        'string': np.tile(np.tile(np.array(string_keys, dtype=object), 5), 2),
        'boolean': np.tile(np.tile(np.array(boolean_keys, dtype='bool'), 5), 3),
        'values': np.arange(30),
    })

    _generate_partition_directories(local, base_path, partition_spec, df)

    dataset = pq.ParquetDataset(
        base_path, filesystem=local,
        filters=[('string', 'in', 'ab')],
    )
    table = dataset.read()
    result_df = (table.to_pandas().reset_index(drop=True))

    assert 'a' in result_df['string'].values
    assert 'b' in result_df['string'].values
    assert 'c' not in result_df['string'].values

    dataset = pq.ParquetDataset(
        base_path, filesystem=local,
        filters=[('integer', 'in', [1]), ('string', 'in', ('a', 'b')),
                 ('boolean', 'not in', {'False'})],
    )
    table = dataset.read()
    result_df = (table.to_pandas().reset_index(drop=True))

    assert 0 not in result_df['integer'].values
    assert 'c' not in result_df['string'].values
    assert False not in result_df['boolean'].values


@pytest.mark.pandas
def test_filters_invalid_pred_op(tempdir):
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1, 2, 3, 4]
    partition_spec = [
        ['integers', integer_keys],
    ]
    N = 5

    df = pd.DataFrame({
        'index': np.arange(N),
        'integers': np.array(integer_keys, dtype='i4'),
    }, columns=['index', 'integers'])

    _generate_partition_directories(local, base_path, partition_spec, df)

    with pytest.raises(TypeError):
        pq.ParquetDataset(base_path,
                          filesystem=local,
                          filters=[('integers', 'in', 3), ])

    with pytest.raises(ValueError):
        pq.ParquetDataset(base_path,
                          filesystem=local,
                          filters=[('integers', '=<', 3), ])

    # Dataset API returns empty table
    dataset = pq.ParquetDataset(base_path,
                                filesystem=local,
                                filters=[('integers', 'in', set()), ])
    assert dataset.read().num_rows == 0

    dataset = pq.ParquetDataset(base_path,
                                filesystem=local,
                                filters=[('integers', '!=', {3})])
    with pytest.raises(NotImplementedError):
        assert dataset.read().num_rows == 0


@pytest.mark.pandas
def test_filters_invalid_column(tempdir):
    # ARROW-5572 - raise error on invalid name in filter specification
    # works with new dataset
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1, 2, 3, 4]
    partition_spec = [['integers', integer_keys]]
    N = 5

    df = pd.DataFrame({
        'index': np.arange(N),
        'integers': np.array(integer_keys, dtype='i4'),
    }, columns=['index', 'integers'])

    _generate_partition_directories(local, base_path, partition_spec, df)

    msg = r"No match for FieldRef.Name\(non_existent_column\)"
    with pytest.raises(ValueError, match=msg):
        pq.ParquetDataset(base_path, filesystem=local,
                          filters=[('non_existent_column', '<', 3), ]).read()


@pytest.mark.pandas
@pytest.mark.parametrize("filters",
                         ([('integers', '<', 3)],
                          [[('integers', '<', 3)]],
                          pc.field('integers') < 3,
                          pc.field('nested', 'a') < 3,
                          pc.field('nested', 'b').cast(pa.int64()) < 3))
@pytest.mark.parametrize("read_method", ("read_table", "read_pandas"))
def test_filters_read_table(tempdir, filters, read_method):
    read = getattr(pq, read_method)
    # test that filters keyword is passed through in read_table
    local = LocalFileSystem()
    base_path = tempdir

    integer_keys = [0, 1, 2, 3, 4]
    partition_spec = [
        ['integers', integer_keys],
    ]
    N = len(integer_keys)

    df = pd.DataFrame({
        'index': np.arange(N),
        'integers': np.array(integer_keys, dtype='i4'),
        'nested': np.array([{'a': i, 'b': str(i)} for i in range(N)])
    })

    _generate_partition_directories(local, base_path, partition_spec, df)

    kwargs = dict(filesystem=local, filters=filters)

    table = read(base_path, **kwargs)
    assert table.num_rows == 3


@pytest.mark.pandas
def test_partition_keys_with_underscores(tempdir):
    # ARROW-5666 - partition field values with underscores preserve underscores
    local = LocalFileSystem()
    base_path = tempdir

    string_keys = ["2019_2", "2019_3"]
    partition_spec = [
        ['year_week', string_keys],
    ]
    N = 2

    df = pd.DataFrame({
        'index': np.arange(N),
        'year_week': np.array(string_keys, dtype='object'),
    }, columns=['index', 'year_week'])

    _generate_partition_directories(local, base_path, partition_spec, df)

    dataset = pq.ParquetDataset(base_path)
    result = dataset.read()
    assert result.column("year_week").to_pylist() == string_keys


@pytest.mark.s3
def test_read_s3fs(s3_example_s3fs, ):
    fs, path = s3_example_s3fs
    path = path + "/test.parquet"
    table = pa.table({"a": [1, 2, 3]})
    _write_table(table, path, filesystem=fs)

    result = _read_table(path, filesystem=fs)
    assert result.equals(table)


@pytest.mark.s3
def test_read_directory_s3fs(s3_example_s3fs):
    fs, directory = s3_example_s3fs
    path = directory + "/test.parquet"
    table = pa.table({"a": [1, 2, 3]})
    _write_table(table, path, filesystem=fs)

    result = _read_table(directory, filesystem=fs)
    assert result.equals(table)


@pytest.mark.pandas
def test_read_single_file_list(tempdir):
    data_path = str(tempdir / 'data.parquet')

    table = pa.table({"a": [1, 2, 3]})
    _write_table(table, data_path)

    result = pq.ParquetDataset([data_path]).read()
    assert result.equals(table)


@pytest.mark.pandas
@pytest.mark.s3
def test_read_partitioned_directory_s3fs(s3_example_s3fs):
    fs, path = s3_example_s3fs
    _partition_test_for_filesystem(fs, path)


def _partition_test_for_filesystem(fs, base_path):
    foo_keys = [0, 1]
    bar_keys = ['a', 'b', 'c']
    partition_spec = [
        ['foo', foo_keys],
        ['bar', bar_keys]
    ]
    N = 30

    df = pd.DataFrame({
        'index': np.arange(N),
        'foo': np.array(foo_keys, dtype='i4').repeat(15),
        'bar': np.tile(np.tile(np.array(bar_keys, dtype=object), 5), 2),
        'values': np.random.randn(N)
    }, columns=['index', 'foo', 'bar', 'values'])

    _generate_partition_directories(fs, base_path, partition_spec, df)

    dataset = pq.ParquetDataset(base_path, filesystem=fs)
    table = dataset.read()
    result_df = (table.to_pandas()
                 .sort_values(by='index')
                 .reset_index(drop=True))

    expected_df = (df.sort_values(by='index')
                   .reset_index(drop=True)
                   .reindex(columns=result_df.columns))

    # With pandas 2.0.0 Index can store all numeric dtypes (not just
    # int64/uint64/float64). Using astype() to create a categorical
    # column preserves original dtype (int32)
    expected_df['foo'] = expected_df['foo'].astype("category")
    expected_df['bar'] = expected_df['bar'].astype("category")

    assert (result_df.columns == ['index', 'values', 'foo', 'bar']).all()

    tm.assert_frame_equal(result_df, expected_df)


def _generate_partition_directories(fs, base_dir, partition_spec, df):
    # partition_spec : list of lists, e.g. [['foo', [0, 1, 2],
    #                                       ['bar', ['a', 'b', 'c']]
    # part_table : a pyarrow.Table to write to each partition
    if not isinstance(fs, FileSystem):
        fs = PyFileSystem(FSSpecHandler(fs))

    DEPTH = len(partition_spec)

    pathsep = getattr(fs, "pathsep", getattr(fs, "sep", "/"))

    def _visit_level(base_dir, level, part_keys):
        name, values = partition_spec[level]
        for value in values:
            this_part_keys = part_keys + [(name, value)]

            level_dir = pathsep.join([
                str(base_dir),
                '{}={}'.format(name, value)
            ])
            fs.create_dir(level_dir)

            if level == DEPTH - 1:
                # Generate example data
                from pyarrow.fs import FileType

                file_path = pathsep.join([level_dir, guid()])
                filtered_df = _filter_partition(df, this_part_keys)
                part_table = pa.Table.from_pandas(filtered_df)
                with fs.open_output_stream(file_path) as f:
                    _write_table(part_table, f)
                assert fs.get_file_info(file_path).type != FileType.NotFound
                assert fs.get_file_info(file_path).type == FileType.File

                file_success = pathsep.join([level_dir, '_SUCCESS'])
                with fs.open_output_stream(file_success) as f:
                    pass
            else:
                _visit_level(level_dir, level + 1, this_part_keys)
                file_success = pathsep.join([level_dir, '_SUCCESS'])
                with fs.open_output_stream(file_success) as f:
                    pass

    _visit_level(base_dir, 0, [])


def _filter_partition(df, part_keys):
    predicate = np.ones(len(df), dtype=bool)

    to_drop = []
    for name, value in part_keys:
        to_drop.append(name)

        # to avoid pandas warning
        if isinstance(value, (datetime.date, datetime.datetime)):
            value = pd.Timestamp(value)

        predicate &= df[name] == value

    return df[predicate].drop(to_drop, axis=1)


@pytest.mark.pandas
def test_filter_before_validate_schema(tempdir):
    # ARROW-4076 apply filter before schema validation
    # to avoid checking unneeded schemas

    # create partitioned dataset with mismatching schemas which would
    # otherwise raise if first validation all schemas
    dir1 = tempdir / 'A=0'
    dir1.mkdir()
    table1 = pa.Table.from_pandas(pd.DataFrame({'B': [1, 2, 3]}))
    pq.write_table(table1, dir1 / 'data.parquet')

    dir2 = tempdir / 'A=1'
    dir2.mkdir()
    table2 = pa.Table.from_pandas(pd.DataFrame({'B': ['a', 'b', 'c']}))
    pq.write_table(table2, dir2 / 'data.parquet')

    # read single file using filter
    table = pq.read_table(tempdir, filters=[[('A', '==', 0)]])
    assert table.column('B').equals(pa.chunked_array([[1, 2, 3]]))


@pytest.mark.pandas
def test_read_multiple_files(tempdir):
    nfiles = 10
    size = 5

    dirpath = tempdir / guid()
    dirpath.mkdir()

    test_data = []
    paths = []
    for i in range(nfiles):
        df = _test_dataframe(size, seed=i)

        # Hack so that we don't have a dtype cast in v1 files
        df['uint32'] = df['uint32'].astype(np.int64)

        path = dirpath / '{}.parquet'.format(i)

        table = pa.Table.from_pandas(df)
        _write_table(table, path)

        test_data.append(table)
        paths.append(path)

    # Write a _SUCCESS.crc file
    (dirpath / '_SUCCESS.crc').touch()

    def read_multiple_files(paths, columns=None, use_threads=True, **kwargs):
        dataset = pq.ParquetDataset(paths, **kwargs)
        return dataset.read(columns=columns, use_threads=use_threads)

    result = read_multiple_files(paths)
    expected = pa.concat_tables(test_data)

    assert result.equals(expected)

    # Read column subset
    to_read = [0, 2, 6, result.num_columns - 1]

    col_names = [result.field(i).name for i in to_read]
    out = pq.read_table(dirpath, columns=col_names)
    expected = pa.Table.from_arrays([result.column(i) for i in to_read],
                                    names=col_names,
                                    metadata=result.schema.metadata)
    assert out.equals(expected)

    # Read with multiple threads
    pq.read_table(dirpath, use_threads=True)

    # Test failure modes with non-uniform metadata
    bad_apple = _test_dataframe(size, seed=i).iloc[:, :4]
    bad_apple_path = tempdir / '{}.parquet'.format(guid())

    t = pa.Table.from_pandas(bad_apple)
    _write_table(t, bad_apple_path)

    # TODO(dataset) Dataset API skips bad files

    # bad_meta = pq.read_metadata(bad_apple_path)

    # with pytest.raises(ValueError):
    #     read_multiple_files(paths + [bad_apple_path])

    # with pytest.raises(ValueError):
    #     read_multiple_files(paths, metadata=bad_meta)

    # mixed_paths = [bad_apple_path, paths[0]]

    # with pytest.raises(ValueError):
    #     read_multiple_files(mixed_paths)


@pytest.mark.pandas
def test_dataset_read_pandas(tempdir):
    nfiles = 5
    size = 5

    dirpath = tempdir / guid()
    dirpath.mkdir()

    test_data = []
    frames = []
    paths = []
    for i in range(nfiles):
        df = _test_dataframe(size, seed=i)
        df.index = np.arange(i * size, (i + 1) * size)
        df.index.name = 'index'

        path = dirpath / '{}.parquet'.format(i)

        table = pa.Table.from_pandas(df)
        _write_table(table, path)
        test_data.append(table)
        frames.append(df)
        paths.append(path)

    dataset = pq.ParquetDataset(dirpath)
    columns = ['uint8', 'strings']
    result = dataset.read_pandas(columns=columns).to_pandas()
    expected = pd.concat([x[columns] for x in frames])

    tm.assert_frame_equal(result, expected)

    # also be able to pass the columns as a set (ARROW-12314)
    result = dataset.read_pandas(columns=set(columns)).to_pandas()
    assert result.shape == expected.shape
    # column order can be different because of using a set
    tm.assert_frame_equal(result.reindex(columns=expected.columns), expected)


@pytest.mark.pandas
def test_dataset_memory_map(tempdir):
    # ARROW-2627: Check that we can use ParquetDataset with memory-mapping
    dirpath = tempdir / guid()
    dirpath.mkdir()

    df = _test_dataframe(10, seed=0)
    path = dirpath / '{}.parquet'.format(0)
    table = pa.Table.from_pandas(df)
    _write_table(table, path, version='2.6')

    dataset = pq.ParquetDataset(
        dirpath, memory_map=True)
    assert dataset.read().equals(table)


@pytest.mark.pandas
def test_dataset_enable_buffered_stream(tempdir):
    dirpath = tempdir / guid()
    dirpath.mkdir()

    df = _test_dataframe(10, seed=0)
    path = dirpath / '{}.parquet'.format(0)
    table = pa.Table.from_pandas(df)
    _write_table(table, path, version='2.6')

    with pytest.raises(ValueError):
        pq.ParquetDataset(
            dirpath, buffer_size=-64)

    for buffer_size in [128, 1024]:
        dataset = pq.ParquetDataset(
            dirpath, buffer_size=buffer_size)
        assert dataset.read().equals(table)


@pytest.mark.pandas
def test_dataset_enable_pre_buffer(tempdir):
    dirpath = tempdir / guid()
    dirpath.mkdir()

    df = _test_dataframe(10, seed=0)
    path = dirpath / '{}.parquet'.format(0)
    table = pa.Table.from_pandas(df)
    _write_table(table, path, version='2.6')

    for pre_buffer in (True, False):
        dataset = pq.ParquetDataset(
            dirpath, pre_buffer=pre_buffer)
        assert dataset.read().equals(table)
        actual = pq.read_table(dirpath, pre_buffer=pre_buffer)
        assert actual.equals(table)


def _make_example_multifile_dataset(base_path, nfiles=10, file_nrows=5):
    test_data = []
    paths = []
    for i in range(nfiles):
        df = _test_dataframe(file_nrows, seed=i)
        path = base_path / '{}.parquet'.format(i)

        test_data.append(_write_table(df, path))
        paths.append(path)
    return paths


def _assert_dataset_paths(dataset, paths):
    paths = [str(path.as_posix()) for path in paths]
    assert set(paths) == set(dataset.files)


@pytest.mark.pandas
@pytest.mark.parametrize('dir_prefix', ['_', '.'])
def test_ignore_private_directories(tempdir, dir_prefix):
    dirpath = tempdir / guid()
    dirpath.mkdir()

    paths = _make_example_multifile_dataset(dirpath, nfiles=10,
                                            file_nrows=5)

    # private directory
    (dirpath / '{}staging'.format(dir_prefix)).mkdir()

    dataset = pq.ParquetDataset(dirpath)

    _assert_dataset_paths(dataset, paths)


@pytest.mark.pandas
def test_ignore_hidden_files_dot(tempdir):
    dirpath = tempdir / guid()
    dirpath.mkdir()

    paths = _make_example_multifile_dataset(dirpath, nfiles=10,
                                            file_nrows=5)

    with (dirpath / '.DS_Store').open('wb') as f:
        f.write(b'gibberish')

    with (dirpath / '.private').open('wb') as f:
        f.write(b'gibberish')

    dataset = pq.ParquetDataset(dirpath)

    _assert_dataset_paths(dataset, paths)


@pytest.mark.pandas
def test_ignore_hidden_files_underscore(tempdir):
    dirpath = tempdir / guid()
    dirpath.mkdir()

    paths = _make_example_multifile_dataset(dirpath, nfiles=10,
                                            file_nrows=5)

    with (dirpath / '_committed_123').open('wb') as f:
        f.write(b'abcd')

    with (dirpath / '_started_321').open('wb') as f:
        f.write(b'abcd')

    dataset = pq.ParquetDataset(dirpath)

    _assert_dataset_paths(dataset, paths)


@pytest.mark.pandas
@pytest.mark.parametrize('dir_prefix', ['_', '.'])
def test_ignore_no_private_directories_in_base_path(tempdir, dir_prefix):
    # ARROW-8427 - don't ignore explicitly listed files if parent directory
    # is a private directory
    dirpath = tempdir / "{0}data".format(dir_prefix) / guid()
    dirpath.mkdir(parents=True)

    paths = _make_example_multifile_dataset(dirpath, nfiles=10,
                                            file_nrows=5)

    dataset = pq.ParquetDataset(paths)
    _assert_dataset_paths(dataset, paths)

    # ARROW-9644 - don't ignore full directory with underscore in base path
    dataset = pq.ParquetDataset(dirpath)
    _assert_dataset_paths(dataset, paths)


def test_ignore_custom_prefixes(tempdir):
    # ARROW-9573 - allow override of default ignore_prefixes
    part = ["xxx"] * 3 + ["yyy"] * 3
    table = pa.table([
        pa.array(range(len(part))),
        pa.array(part).dictionary_encode(),
    ], names=['index', '_part'])

    pq.write_to_dataset(table, str(tempdir), partition_cols=['_part'])

    private_duplicate = tempdir / '_private_duplicate'
    private_duplicate.mkdir()
    pq.write_to_dataset(table, str(private_duplicate),
                        partition_cols=['_part'])

    read = pq.read_table(
        tempdir, ignore_prefixes=['_private'])

    assert read.equals(table)


def test_empty_directory(tempdir):
    # ARROW-5310
    empty_dir = tempdir / 'dataset'
    empty_dir.mkdir()

    dataset = pq.ParquetDataset(empty_dir)
    result = dataset.read()
    assert result.num_rows == 0
    assert result.num_columns == 0


def _test_write_to_dataset_with_partitions(base_path,
                                           filesystem=None,
                                           schema=None,
                                           index_name=None):
    import pandas as pd
    import pandas.testing as tm

    import pyarrow.parquet as pq

    # ARROW-1400
    output_df = pd.DataFrame({
        'group1': list('aaabbbbccc'),
        'group2': list('eefeffgeee'),
        'num': list(range(10)),
        'nan': [np.nan] * 10,
        'date': np.arange('2017-01-01', '2017-01-11', dtype='datetime64[D]').astype(
            'datetime64[ns]')
    })
    cols = output_df.columns.tolist()
    partition_by = ['group1', 'group2']
    output_table = pa.Table.from_pandas(output_df, schema=schema, safe=False,
                                        preserve_index=False)
    pq.write_to_dataset(output_table, base_path, partition_by,
                        filesystem=filesystem)

    metadata_path = os.path.join(str(base_path), '_common_metadata')

    if filesystem is not None:
        with filesystem.open(metadata_path, 'wb') as f:
            pq.write_metadata(output_table.schema, f)
    else:
        pq.write_metadata(output_table.schema, metadata_path)

    dataset = pq.ParquetDataset(base_path,
                                filesystem=filesystem)
    # ARROW-2209: Ensure the dataset schema also includes the partition columns
    # NB schema property is an arrow and not parquet schema
    dataset_cols = set(dataset.schema.names)

    assert dataset_cols == set(output_table.schema.names)

    input_table = dataset.read()
    input_df = input_table.to_pandas()

    # Read data back in and compare with original DataFrame
    # Partitioned columns added to the end of the DataFrame when read
    input_df_cols = input_df.columns.tolist()
    assert partition_by == input_df_cols[-1 * len(partition_by):]

    input_df = input_df[cols]
    # Partitioned columns become 'categorical' dtypes
    for col in partition_by:
        output_df[col] = output_df[col].astype('category')

    if schema:
        expected_date_type = schema.field('date').type.to_pandas_dtype()
        output_df["date"] = output_df["date"].astype(expected_date_type)

    tm.assert_frame_equal(output_df, input_df)


def _test_write_to_dataset_no_partitions(base_path,
                                         filesystem=None):
    import pandas as pd

    import pyarrow.parquet as pq

    # ARROW-1400
    output_df = pd.DataFrame({
        'group1': list('aaabbbbccc'),
        'group2': list('eefeffgeee'),
        'num': list(range(10)),
        'date': np.arange('2017-01-01', '2017-01-11', dtype='datetime64[D]').astype(
            'datetime64[ns]')
    })
    cols = output_df.columns.tolist()
    output_table = pa.Table.from_pandas(output_df)

    if filesystem is None:
        filesystem = LocalFileSystem()
    elif not isinstance(filesystem, FileSystem):
        filesystem = PyFileSystem(FSSpecHandler(filesystem))

    # Without partitions, append files to root_path
    n = 5
    for i in range(n):
        pq.write_to_dataset(output_table, base_path,
                            filesystem=filesystem)

    selector = FileSelector(str(base_path), allow_not_found=False,
                            recursive=True)

    infos = filesystem.get_file_info(selector)
    output_files = [info for info in infos if info.path.endswith(".parquet")]
    assert len(output_files) == n

    # Deduplicated incoming DataFrame should match
    # original outgoing Dataframe
    input_table = pq.ParquetDataset(
        base_path, filesystem=filesystem
    ).read()
    input_df = input_table.to_pandas()
    input_df = input_df.drop_duplicates()
    input_df = input_df[cols]
    tm.assert_frame_equal(output_df, input_df)


@pytest.mark.pandas
def test_write_to_dataset_with_partitions(tempdir):
    _test_write_to_dataset_with_partitions(str(tempdir))


@pytest.mark.pandas
def test_write_to_dataset_with_partitions_and_schema(tempdir):
    schema = pa.schema([pa.field('group1', type=pa.string()),
                        pa.field('group2', type=pa.string()),
                        pa.field('num', type=pa.int64()),
                        pa.field('nan', type=pa.int32()),
                        pa.field('date', type=pa.timestamp(unit='us'))])
    _test_write_to_dataset_with_partitions(
        str(tempdir), schema=schema)


@pytest.mark.pandas
def test_write_to_dataset_with_partitions_and_index_name(tempdir):
    _test_write_to_dataset_with_partitions(
        str(tempdir), index_name='index_name')


@pytest.mark.pandas
def test_write_to_dataset_no_partitions(tempdir):
    _test_write_to_dataset_no_partitions(str(tempdir))


@pytest.mark.pandas
def test_write_to_dataset_pathlib(tempdir):
    _test_write_to_dataset_with_partitions(tempdir / "test1")
    _test_write_to_dataset_no_partitions(tempdir / "test2")


@pytest.mark.pandas
@pytest.mark.s3
def test_write_to_dataset_pathlib_nonlocal(tempdir, s3_example_s3fs):
    # pathlib paths are only accepted for local files
    fs, _ = s3_example_s3fs

    with pytest.raises(TypeError, match="path-like objects are only allowed"):
        _test_write_to_dataset_with_partitions(
            tempdir / "test1", filesystem=fs)

    with pytest.raises(TypeError, match="path-like objects are only allowed"):
        _test_write_to_dataset_no_partitions(
            tempdir / "test2", filesystem=fs)


@pytest.mark.pandas
@pytest.mark.s3
# See https://github.com/apache/arrow/pull/44225#issuecomment-2378365291
@pytest.mark.skipif(sys.platform == "win32",
                    reason="test fails because of unsupported characters")
def test_write_to_dataset_with_partitions_s3fs(s3_example_s3fs):
    fs, path = s3_example_s3fs

    _test_write_to_dataset_with_partitions(
        path, filesystem=fs)


@pytest.mark.pandas
@pytest.mark.s3
def test_write_to_dataset_no_partitions_s3fs(s3_example_s3fs):
    fs, path = s3_example_s3fs

    _test_write_to_dataset_no_partitions(
        path, filesystem=fs)


@pytest.mark.pandas
def test_write_to_dataset_filesystem(tempdir):
    df = pd.DataFrame({'A': [1, 2, 3]})
    table = pa.Table.from_pandas(df)
    path = str(tempdir)

    pq.write_to_dataset(table, path, filesystem=LocalFileSystem())
    result = pq.read_table(path)
    assert result.equals(table)


def _make_dataset_for_pickling(tempdir, N=100):
    path = tempdir / 'data.parquet'
    local = LocalFileSystem()

    df = pd.DataFrame({
        'index': np.arange(N),
        'values': np.random.randn(N)
    }, columns=['index', 'values'])
    table = pa.Table.from_pandas(df)

    num_groups = 3
    with pq.ParquetWriter(path, table.schema) as writer:
        for i in range(num_groups):
            writer.write_table(table)

    reader = pq.ParquetFile(path)
    assert reader.metadata.num_row_groups == num_groups

    metadata_path = tempdir / '_metadata'
    with local.open_output_stream(str(metadata_path)) as f:
        pq.write_metadata(table.schema, f)

    dataset = pq.ParquetDataset(
        tempdir, filesystem=local)

    return dataset


@pytest.mark.pandas
def test_pickle_dataset(tempdir, pickle_module):
    def is_pickleable(obj):
        return obj == pickle_module.loads(pickle_module.dumps(obj))

    dataset = _make_dataset_for_pickling(tempdir)
    assert is_pickleable(dataset)


@pytest.mark.pandas
def test_partitioned_dataset(tempdir):
    # ARROW-3208: Segmentation fault when reading a Parquet partitioned dataset
    # to a Parquet file
    path = tempdir / "ARROW-3208"
    df = pd.DataFrame({
        'one': [-1, 10, 2.5, 100, 1000, 1, 29.2],
        'two': [-1, 10, 2, 100, 1000, 1, 11],
        'three': [0, 0, 0, 0, 0, 0, 0]
    })
    table = pa.Table.from_pandas(df)
    pq.write_to_dataset(table, root_path=str(path),
                        partition_cols=['one', 'two'])
    table = pq.ParquetDataset(path).read()
    pq.write_table(table, path / "output.parquet")


def test_dataset_read_dictionary(tempdir):
    path = tempdir / "ARROW-3325-dataset"
    t1 = pa.table([[util.rands(10) for i in range(5)] * 10], names=['f0'])
    t2 = pa.table([[util.rands(10) for i in range(5)] * 10], names=['f0'])
    pq.write_to_dataset(t1, root_path=str(path))
    pq.write_to_dataset(t2, root_path=str(path))

    result = pq.ParquetDataset(
        path, read_dictionary=['f0']).read()

    # The order of the chunks is non-deterministic
    ex_chunks = [t1[0].chunk(0).dictionary_encode(),
                 t2[0].chunk(0).dictionary_encode()]

    assert result[0].num_chunks == 2
    c0, c1 = result[0].chunk(0), result[0].chunk(1)
    if c0.equals(ex_chunks[0]):
        assert c1.equals(ex_chunks[1])
    else:
        assert c0.equals(ex_chunks[1])
        assert c1.equals(ex_chunks[0])


def test_read_table_schema(tempdir):
    # test that schema keyword is passed through in read_table
    table = pa.table({'a': pa.array([1, 2, 3], pa.int32())})
    pq.write_table(table, tempdir / "data1.parquet")
    pq.write_table(table, tempdir / "data2.parquet")

    schema = pa.schema([('a', 'int64')])

    # reading single file (which is special cased in the code)
    result = pq.read_table(tempdir / "data1.parquet", schema=schema)
    expected = pa.table({'a': [1, 2, 3]}, schema=schema)
    assert result.equals(expected)

    # reading multiple fields
    result = pq.read_table(tempdir, schema=schema)
    expected = pa.table({'a': [1, 2, 3, 1, 2, 3]}, schema=schema)
    assert result.equals(expected)

    result = pq.ParquetDataset(tempdir, schema=schema)
    expected = pa.table({'a': [1, 2, 3, 1, 2, 3]}, schema=schema)
    assert result.read().equals(expected)


def test_read_table_duplicate_column_selection(tempdir):
    # test that duplicate column selection gives duplicate columns
    table = pa.table({'a': pa.array([1, 2, 3], pa.int32()),
                      'b': pa.array([1, 2, 3], pa.uint8())})
    pq.write_table(table, tempdir / "data.parquet")

    result = pq.read_table(tempdir / "data.parquet", columns=['a', 'a'])
    expected_schema = pa.schema([('a', 'int32'), ('a', 'int32')])

    assert result.column_names == ['a', 'a']
    assert result.schema == expected_schema


def test_dataset_partitioning(tempdir):
    import pyarrow.dataset as ds

    # create small dataset with directory partitioning
    root_path = tempdir / "test_partitioning"
    (root_path / "2012" / "10" / "01").mkdir(parents=True)

    table = pa.table({'a': [1, 2, 3]})
    pq.write_table(
        table, str(root_path / "2012" / "10" / "01" / "data.parquet"))

    # This works with new dataset API

    # read_table
    part = ds.partitioning(field_names=["year", "month", "day"])
    result = pq.read_table(
        str(root_path), partitioning=part)
    assert result.column_names == ["a", "year", "month", "day"]

    result = pq.ParquetDataset(
        str(root_path), partitioning=part).read()
    assert result.column_names == ["a", "year", "month", "day"]


def test_parquet_dataset_new_filesystem(tempdir):
    # Ensure we can pass new FileSystem object to ParquetDataset
    table = pa.table({'a': [1, 2, 3]})
    pq.write_table(table, tempdir / 'data.parquet')
    filesystem = SubTreeFileSystem(str(tempdir), LocalFileSystem())
    dataset = pq.ParquetDataset('.', filesystem=filesystem)
    result = dataset.read()
    assert result.equals(table)


def test_parquet_dataset_partitions_piece_path_with_fsspec(tempdir):
    # ARROW-10462 ensure that on Windows we properly use posix-style paths
    # as used by fsspec
    fsspec = pytest.importorskip("fsspec")
    filesystem = fsspec.filesystem('file')
    table = pa.table({'a': [1, 2, 3]})
    pq.write_table(table, tempdir / 'data.parquet')

    # pass a posix-style path (using "/" also on Windows)
    path = str(tempdir).replace("\\", "/")
    dataset = pq.ParquetDataset(
        path, filesystem=filesystem)
    # ensure the piece path is also posix-style
    expected = path + "/data.parquet"
    assert dataset.fragments[0].path == expected


def test_parquet_write_to_dataset_exposed_keywords(tempdir):
    table = pa.table({'a': [1, 2, 3]})
    path = tempdir / 'partitioning'

    paths_written = []

    def file_visitor(written_file):
        paths_written.append(written_file.path)

    basename_template = 'part-{i}.parquet'

    pq.write_to_dataset(table, path, partitioning=["a"],
                        file_visitor=file_visitor,
                        basename_template=basename_template)

    expected_paths = {
        path / '1' / 'part-0.parquet',
        path / '2' / 'part-0.parquet',
        path / '3' / 'part-0.parquet'
    }
    paths_written_set = set(map(pathlib.Path, paths_written))
    assert paths_written_set == expected_paths


@pytest.mark.parametrize("write_dataset_kwarg", (
    ("create_dir", True),
    ("create_dir", False),
))
def test_write_to_dataset_kwargs_passed(tempdir, write_dataset_kwarg):
    """Verify kwargs in pq.write_to_dataset are passed onto ds.write_dataset"""
    import pyarrow.dataset as ds

    table = pa.table({"a": [1, 2, 3]})
    path = tempdir / 'out.parquet'

    signature = inspect.signature(ds.write_dataset)
    key, arg = write_dataset_kwarg

    # kwarg not in pq.write_to_dataset, but will be passed to ds.write_dataset
    assert key not in inspect.signature(pq.write_to_dataset).parameters
    assert key in signature.parameters

    with mock.patch.object(ds, "write_dataset", autospec=True)\
            as mock_write_dataset:
        pq.write_to_dataset(table, path, **{key: arg})
        _name, _args, kwargs = mock_write_dataset.mock_calls[0]
        assert kwargs[key] == arg


@pytest.mark.pandas
def test_write_to_dataset_category_observed(tempdir):
    # if we partition on a categorical variable with "unobserved" categories
    # (values present in the dictionary, but not in the actual data)
    # ensure those are not creating empty files/directories
    df = pd.DataFrame({
        "cat": pd.Categorical(["a", "b", "a"], categories=["a", "b", "c"]),
        "col": [1, 2, 3]
    })
    table = pa.table(df)
    path = tempdir / "dataset"
    pq.write_to_dataset(
        table, tempdir / "dataset", partition_cols=["cat"]
    )
    subdirs = [f.name for f in path.iterdir() if f.is_dir()]
    assert len(subdirs) == 2
    assert "cat=c" not in subdirs