File size: 35,786 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import os
from collections import OrderedDict
import io
import warnings
from shutil import copytree
from decimal import Decimal

import pytest

import pyarrow as pa
from pyarrow import fs
from pyarrow.tests import util
from pyarrow.tests.parquet.common import (_check_roundtrip, _roundtrip_table,
                                          _test_dataframe)

try:
    import pyarrow.parquet as pq
    from pyarrow.tests.parquet.common import _read_table, _write_table
except ImportError:
    pq = None


try:
    import pandas as pd
    import pandas.testing as tm

    from pyarrow.tests.pandas_examples import dataframe_with_lists
    from pyarrow.tests.parquet.common import alltypes_sample
except ImportError:
    pd = tm = None

try:
    import numpy as np
except ImportError:
    np = None

# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet


def test_parquet_invalid_version(tempdir):
    table = pa.table({'a': [1, 2, 3]})
    with pytest.raises(ValueError, match="Unsupported Parquet format version"):
        _write_table(table, tempdir / 'test_version.parquet', version="2.2")
    with pytest.raises(ValueError, match="Unsupported Parquet data page " +
                       "version"):
        _write_table(table, tempdir / 'test_version.parquet',
                     data_page_version="2.2")


def test_set_data_page_size():
    arr = pa.array([1, 2, 3] * 100000)
    t = pa.Table.from_arrays([arr], names=['f0'])

    # 128K, 512K
    page_sizes = [2 << 16, 2 << 18]
    for target_page_size in page_sizes:
        _check_roundtrip(t, data_page_size=target_page_size)


@pytest.mark.pandas
def test_set_write_batch_size():
    df = _test_dataframe(100)
    table = pa.Table.from_pandas(df, preserve_index=False)

    _check_roundtrip(
        table, data_page_size=10, write_batch_size=1, version='2.4'
    )


@pytest.mark.pandas
def test_set_dictionary_pagesize_limit():
    df = _test_dataframe(100)
    table = pa.Table.from_pandas(df, preserve_index=False)

    _check_roundtrip(table, dictionary_pagesize_limit=1,
                     data_page_size=10, version='2.4')

    with pytest.raises(TypeError):
        _check_roundtrip(table, dictionary_pagesize_limit="a",
                         data_page_size=10, version='2.4')


@pytest.mark.pandas
def test_chunked_table_write():
    # ARROW-232
    tables = []
    batch = pa.RecordBatch.from_pandas(alltypes_sample(size=10))
    tables.append(pa.Table.from_batches([batch] * 3))
    df, _ = dataframe_with_lists()
    batch = pa.RecordBatch.from_pandas(df)
    tables.append(pa.Table.from_batches([batch] * 3))

    for data_page_version in ['1.0', '2.0']:
        for use_dictionary in [True, False]:
            for table in tables:
                _check_roundtrip(
                    table, version='2.6',
                    data_page_version=data_page_version,
                    use_dictionary=use_dictionary)


@pytest.mark.pandas
def test_memory_map(tempdir):
    df = alltypes_sample(size=10)

    table = pa.Table.from_pandas(df)
    _check_roundtrip(table, read_table_kwargs={'memory_map': True},
                     version='2.6')

    filename = str(tempdir / 'tmp_file')
    with open(filename, 'wb') as f:
        _write_table(table, f, version='2.6')
    table_read = pq.read_pandas(filename, memory_map=True)
    assert table_read.equals(table)


@pytest.mark.pandas
def test_enable_buffered_stream(tempdir):
    df = alltypes_sample(size=10)

    table = pa.Table.from_pandas(df)
    _check_roundtrip(table, read_table_kwargs={'buffer_size': 1025},
                     version='2.6')

    filename = str(tempdir / 'tmp_file')
    with open(filename, 'wb') as f:
        _write_table(table, f, version='2.6')
    table_read = pq.read_pandas(filename, buffer_size=4096)
    assert table_read.equals(table)


def test_special_chars_filename(tempdir):
    table = pa.Table.from_arrays([pa.array([42])], ["ints"])
    filename = "foo # bar"
    path = tempdir / filename
    assert not path.exists()
    _write_table(table, str(path))
    assert path.exists()
    table_read = _read_table(str(path))
    assert table_read.equals(table)


def test_invalid_source():
    # Test that we provide an helpful error message pointing out
    # that None wasn't expected when trying to open a Parquet None file.
    with pytest.raises(TypeError, match="None"):
        pq.read_table(None)

    with pytest.raises(TypeError, match="None"):
        pq.ParquetFile(None)


@pytest.mark.slow
def test_file_with_over_int16_max_row_groups():
    # PARQUET-1857: Parquet encryption support introduced a INT16_MAX upper
    # limit on the number of row groups, but this limit only impacts files with
    # encrypted row group metadata because of the int16 row group ordinal used
    # in the Parquet Thrift metadata. Unencrypted files are not impacted, so
    # this test checks that it works (even if it isn't a good idea)
    t = pa.table([list(range(40000))], names=['f0'])
    _check_roundtrip(t, row_group_size=1)


@pytest.mark.pandas
def test_empty_table_roundtrip():
    df = alltypes_sample(size=10)

    # Create a non-empty table to infer the types correctly, then slice to 0
    table = pa.Table.from_pandas(df)
    table = pa.Table.from_arrays(
        [col.chunk(0)[:0] for col in table.itercolumns()],
        names=table.schema.names)

    assert table.schema.field('null').type == pa.null()
    assert table.schema.field('null_list').type == pa.list_(pa.null())
    _check_roundtrip(
        table, version='2.6')


@pytest.mark.pandas
def test_empty_table_no_columns():
    df = pd.DataFrame()
    empty = pa.Table.from_pandas(df, preserve_index=False)
    _check_roundtrip(empty)


def test_write_nested_zero_length_array_chunk_failure():
    # Bug report in ARROW-3792
    cols = OrderedDict(
        int32=pa.int32(),
        list_string=pa.list_(pa.string())
    )
    data = [[], [OrderedDict(int32=1, list_string=('G',)), ]]

    # This produces a table with a column like
    # <Column name='list_string' type=ListType(list<item: string>)>
    # [
    #   [],
    #   [
    #     [
    #       "G"
    #     ]
    #   ]
    # ]
    #
    # Each column is a ChunkedArray with 2 elements
    my_arrays = [pa.array(batch, type=pa.struct(cols)).flatten()
                 for batch in data]
    my_batches = [pa.RecordBatch.from_arrays(batch, schema=pa.schema(cols))
                  for batch in my_arrays]
    tbl = pa.Table.from_batches(my_batches, pa.schema(cols))
    _check_roundtrip(tbl)


@pytest.mark.pandas
def test_multiple_path_types(tempdir):
    # Test compatibility with PEP 519 path-like objects
    path = tempdir / 'zzz.parquet'
    df = pd.DataFrame({'x': np.arange(10, dtype=np.int64)})
    _write_table(df, path)
    table_read = _read_table(path)
    df_read = table_read.to_pandas()
    tm.assert_frame_equal(df, df_read)

    # Test compatibility with plain string paths
    path = str(tempdir) + 'zzz.parquet'
    df = pd.DataFrame({'x': np.arange(10, dtype=np.int64)})
    _write_table(df, path)
    table_read = _read_table(path)
    df_read = table_read.to_pandas()
    tm.assert_frame_equal(df, df_read)


def test_fspath(tempdir):
    # ARROW-12472 support __fspath__ objects without using str()
    path = tempdir / "test.parquet"
    table = pa.table({"a": [1, 2, 3]})
    _write_table(table, path)

    fs_protocol_obj = util.FSProtocolClass(path)

    result = _read_table(fs_protocol_obj)
    assert result.equals(table)

    # combined with non-local filesystem raises
    with pytest.raises(TypeError):
        _read_table(fs_protocol_obj, filesystem=fs.FileSystem())


@pytest.mark.parametrize("filesystem", [
    None, fs.LocalFileSystem()
])
@pytest.mark.parametrize("name", ("data.parquet", "δΎ‹.parquet"))
def test_relative_paths(tempdir, filesystem, name):
    # reading and writing from relative paths
    table = pa.table({"a": [1, 2, 3]})
    path = tempdir / name

    # reading
    pq.write_table(table, str(path))
    with util.change_cwd(tempdir):
        result = pq.read_table(name, filesystem=filesystem)
    assert result.equals(table)

    path.unlink()
    assert not path.exists()

    # writing
    with util.change_cwd(tempdir):
        pq.write_table(table, name, filesystem=filesystem)
    result = pq.read_table(path)
    assert result.equals(table)


def test_read_non_existing_file():
    # ensure we have a proper error message
    with pytest.raises(FileNotFoundError):
        pq.read_table('i-am-not-existing.parquet')


def test_file_error_python_exception():
    class BogusFile(io.BytesIO):
        def read(self, *args):
            raise ZeroDivisionError("zorglub")

        def seek(self, *args):
            raise ZeroDivisionError("zorglub")

    # ensure the Python exception is restored
    with pytest.raises(ZeroDivisionError, match="zorglub"):
        pq.read_table(BogusFile(b""))


def test_parquet_read_from_buffer(tempdir):
    # reading from a buffer from python's open()
    table = pa.table({"a": [1, 2, 3]})
    pq.write_table(table, str(tempdir / "data.parquet"))

    with open(str(tempdir / "data.parquet"), "rb") as f:
        result = pq.read_table(f)
    assert result.equals(table)

    with open(str(tempdir / "data.parquet"), "rb") as f:
        result = pq.read_table(pa.PythonFile(f))
    assert result.equals(table)


def test_byte_stream_split():
    # This is only a smoke test.
    arr_float = pa.array(list(map(float, range(100))))
    arr_int = pa.array(list(map(int, range(100))))
    arr_bool = pa.array([True, False] * 50)
    data_float = [arr_float, arr_float]
    table = pa.Table.from_arrays(data_float, names=['a', 'b'])

    # Check with byte_stream_split for both columns.
    _check_roundtrip(table, expected=table, compression="gzip",
                     use_dictionary=False, use_byte_stream_split=True)

    # Check with byte_stream_split for column 'b' and dictionary
    # for column 'a'.
    _check_roundtrip(table, expected=table, compression="gzip",
                     use_dictionary=['a'],
                     use_byte_stream_split=['b'])

    # Check with a collision for both columns.
    _check_roundtrip(table, expected=table, compression="gzip",
                     use_dictionary=['a', 'b'],
                     use_byte_stream_split=['a', 'b'])

    # Check with mixed column types.
    mixed_table = pa.Table.from_arrays([arr_float, arr_float, arr_int, arr_int],
                                       names=['a', 'b', 'c', 'd'])
    _check_roundtrip(mixed_table, expected=mixed_table,
                     use_dictionary=['b', 'd'],
                     use_byte_stream_split=['a', 'c'])

    # Try to use the wrong data type with the byte_stream_split encoding.
    # This should throw an exception.
    table = pa.Table.from_arrays([arr_bool], names=['tmp'])
    with pytest.raises(IOError, match='BYTE_STREAM_SPLIT only supports'):
        _check_roundtrip(table, expected=table, use_byte_stream_split=True,
                         use_dictionary=False)


def test_store_decimal_as_integer(tempdir):
    arr_decimal_1_9 = pa.array(list(map(Decimal, range(100))),
                               type=pa.decimal128(5, 2))
    arr_decimal_10_18 = pa.array(list(map(Decimal, range(100))),
                                 type=pa.decimal128(16, 9))
    arr_decimal_gt18 = pa.array(list(map(Decimal, range(100))),
                                type=pa.decimal128(22, 2))
    arr_bool = pa.array([True, False] * 50)
    data_decimal = [arr_decimal_1_9, arr_decimal_10_18, arr_decimal_gt18]
    table = pa.Table.from_arrays(data_decimal, names=['a', 'b', 'c'])

    # Check with store_decimal_as_integer.
    _check_roundtrip(table,
                     expected=table,
                     compression="gzip",
                     use_dictionary=False,
                     store_decimal_as_integer=True)

    # Check physical type in parquet schema
    pqtestfile_path = os.path.join(tempdir, 'test.parquet')
    pq.write_table(table, pqtestfile_path,
                   compression="gzip",
                   use_dictionary=False,
                   store_decimal_as_integer=True)

    pqtestfile = pq.ParquetFile(pqtestfile_path)
    pqcol_decimal_1_9 = pqtestfile.schema.column(0)
    pqcol_decimal_10_18 = pqtestfile.schema.column(1)

    assert pqcol_decimal_1_9.physical_type == 'INT32'
    assert pqcol_decimal_10_18.physical_type == 'INT64'

    # Check with store_decimal_as_integer and delta-int encoding.
    # DELTA_BINARY_PACKED requires parquet physical type to be INT64 or INT32
    _check_roundtrip(table,
                     expected=table,
                     compression="gzip",
                     use_dictionary=False,
                     store_decimal_as_integer=True,
                     column_encoding={
                         'a': 'DELTA_BINARY_PACKED',
                         'b': 'DELTA_BINARY_PACKED'
                     })

    # Check with mixed column types.
    mixed_table = pa.Table.from_arrays(
        [arr_decimal_1_9, arr_decimal_10_18, arr_decimal_gt18, arr_bool],
        names=['a', 'b', 'c', 'd'])
    _check_roundtrip(mixed_table,
                     expected=mixed_table,
                     use_dictionary=False,
                     store_decimal_as_integer=True)


def test_column_encoding():
    arr_float = pa.array(list(map(float, range(100))))
    arr_int = pa.array(list(map(int, range(100))))
    arr_bin = pa.array([str(x) for x in range(100)], type=pa.binary())
    arr_flba = pa.array(
        [str(x).zfill(10) for x in range(100)], type=pa.binary(10))
    arr_bool = pa.array([False, True, False, False] * 25)
    mixed_table = pa.Table.from_arrays(
        [arr_float, arr_int, arr_bin, arr_flba, arr_bool],
        names=['a', 'b', 'c', 'd', 'e'])

    # Check "BYTE_STREAM_SPLIT" for columns 'a', 'b', 'd'
    # and "PLAIN" column_encoding for column 'c'.
    _check_roundtrip(mixed_table, expected=mixed_table, use_dictionary=False,
                     column_encoding={'a': "BYTE_STREAM_SPLIT",
                                      'b': "BYTE_STREAM_SPLIT",
                                      'c': "PLAIN",
                                      'd': "BYTE_STREAM_SPLIT"})

    # Check "PLAIN" for all columns.
    _check_roundtrip(mixed_table, expected=mixed_table,
                     use_dictionary=False,
                     column_encoding="PLAIN")

    # Check "DELTA_BINARY_PACKED" for integer columns.
    _check_roundtrip(mixed_table, expected=mixed_table,
                     use_dictionary=False,
                     column_encoding={'a': "PLAIN",
                                      'b': "DELTA_BINARY_PACKED",
                                      'c': "PLAIN"})

    # Check "DELTA_LENGTH_BYTE_ARRAY" for byte columns.
    _check_roundtrip(mixed_table, expected=mixed_table,
                     use_dictionary=False,
                     column_encoding={'a': "PLAIN",
                                      'b': "DELTA_BINARY_PACKED",
                                      'c': "DELTA_LENGTH_BYTE_ARRAY"})

    # Check "DELTA_BYTE_ARRAY" for byte columns.
    _check_roundtrip(mixed_table, expected=mixed_table,
                     use_dictionary=False,
                     column_encoding={'a': "PLAIN",
                                      'b': "DELTA_BINARY_PACKED",
                                      'c': "DELTA_BYTE_ARRAY",
                                      'd': "DELTA_BYTE_ARRAY"})

    # Check "RLE" for boolean columns.
    _check_roundtrip(mixed_table, expected=mixed_table,
                     use_dictionary=False,
                     column_encoding={'e': "RLE"})

    # Try to pass "BYTE_STREAM_SPLIT" column encoding for boolean column 'e'.
    # This should throw an error as it is does not support BOOLEAN.
    with pytest.raises(IOError,
                       match="BYTE_STREAM_SPLIT only supports"):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         column_encoding={'a': "PLAIN",
                                          'c': "PLAIN",
                                          'e': "BYTE_STREAM_SPLIT"})

    # Try to pass use "DELTA_BINARY_PACKED" encoding on float column.
    # This should throw an error as only integers are supported.
    with pytest.raises(OSError,
                       match="DELTA_BINARY_PACKED encoder only supports"):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         column_encoding={'a': "DELTA_BINARY_PACKED",
                                          'b': "PLAIN",
                                          'c': "PLAIN"})

    # Try to pass "RLE_DICTIONARY".
    # This should throw an error as dictionary encoding is already used by
    # default and not supported to be specified as "fallback" encoding
    with pytest.raises(ValueError,
                       match="'RLE_DICTIONARY' is already used by default"):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         column_encoding="RLE_DICTIONARY")

    # Try to pass unsupported encoding.
    with pytest.raises(ValueError,
                       match="Unsupported column encoding: 'MADE_UP_ENCODING'"):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         column_encoding={'a': "MADE_UP_ENCODING"})

    # Try to pass column_encoding and use_dictionary.
    # This should throw an error.
    with pytest.raises(ValueError):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=['b'],
                         column_encoding={'b': "PLAIN"})

    # Try to pass column_encoding and use_dictionary=True (default value).
    # This should throw an error.
    with pytest.raises(ValueError):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         column_encoding={'b': "PLAIN"})

    # Try to pass column_encoding and use_byte_stream_split on same column.
    # This should throw an error.
    with pytest.raises(ValueError):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         use_byte_stream_split=['a'],
                         column_encoding={'a': "RLE",
                                          'b': "BYTE_STREAM_SPLIT",
                                          'c': "PLAIN"})

    # Try to pass column_encoding and use_byte_stream_split=True.
    # This should throw an error.
    with pytest.raises(ValueError):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         use_byte_stream_split=True,
                         column_encoding={'a': "RLE",
                                          'b': "BYTE_STREAM_SPLIT",
                                          'c': "PLAIN"})

    # Try to pass column_encoding=True.
    # This should throw an error.
    with pytest.raises(TypeError):
        _check_roundtrip(mixed_table, expected=mixed_table,
                         use_dictionary=False,
                         column_encoding=True)


def test_compression_level():
    arr = pa.array(list(map(int, range(1000))))
    data = [arr, arr]
    table = pa.Table.from_arrays(data, names=['a', 'b'])

    # Check one compression level.
    _check_roundtrip(table, expected=table, compression="gzip",
                     compression_level=1)

    # Check another one to make sure that compression_level=1 does not
    # coincide with the default one in Arrow.
    _check_roundtrip(table, expected=table, compression="gzip",
                     compression_level=5)

    # Check that the user can provide a compression per column
    _check_roundtrip(table, expected=table,
                     compression={'a': "gzip", 'b': "snappy"})

    # Check that the user can provide a compression level per column
    _check_roundtrip(table, expected=table, compression="gzip",
                     compression_level={'a': 2, 'b': 3})

    # Check if both LZ4 compressors are working
    # (level < 3 -> fast, level >= 3 -> HC)
    _check_roundtrip(table, expected=table, compression="lz4",
                     compression_level=1)

    _check_roundtrip(table, expected=table, compression="lz4",
                     compression_level=9)

    # Check that specifying a compression level for a codec which does allow
    # specifying one, results into an error.
    # Uncompressed, snappy and lzo do not support specifying a compression
    # level.
    # GZIP (zlib) allows for specifying a compression level but as of up
    # to version 1.2.11 the valid range is [-1, 9].
    invalid_combinations = [("snappy", 4), ("gzip", -1337),
                            ("None", 444), ("lzo", 14)]
    buf = io.BytesIO()
    for (codec, level) in invalid_combinations:
        with pytest.raises((ValueError, OSError)):
            _write_table(table, buf, compression=codec,
                         compression_level=level)


def test_sanitized_spark_field_names():
    a0 = pa.array([0, 1, 2, 3, 4])
    name = 'prohib; ,\t{}'
    table = pa.Table.from_arrays([a0], [name])

    result = _roundtrip_table(table, write_table_kwargs={'flavor': 'spark'})

    expected_name = 'prohib______'
    assert result.schema[0].name == expected_name


@pytest.mark.pandas
def test_multithreaded_read():
    df = alltypes_sample(size=10000)

    table = pa.Table.from_pandas(df)

    buf = io.BytesIO()
    _write_table(table, buf, compression='SNAPPY', version='2.6')

    buf.seek(0)
    table1 = _read_table(buf, use_threads=True)

    buf.seek(0)
    table2 = _read_table(buf, use_threads=False)

    assert table1.equals(table2)


@pytest.mark.pandas
def test_min_chunksize():
    data = pd.DataFrame([np.arange(4)], columns=['A', 'B', 'C', 'D'])
    table = pa.Table.from_pandas(data.reset_index())

    buf = io.BytesIO()
    _write_table(table, buf, chunk_size=-1)

    buf.seek(0)
    result = _read_table(buf)

    assert result.equals(table)

    with pytest.raises(ValueError):
        _write_table(table, buf, chunk_size=0)


@pytest.mark.pandas
def test_write_error_deletes_incomplete_file(tempdir):
    # ARROW-1285
    df = pd.DataFrame({'a': list('abc'),
                       'b': list(range(1, 4)),
                       'c': np.arange(3, 6).astype('u1'),
                       'd': np.arange(4.0, 7.0, dtype='float64'),
                       'e': [True, False, True],
                       'f': pd.Categorical(list('abc')),
                       'g': pd.date_range('20130101', periods=3),
                       'h': pd.date_range('20130101', periods=3,
                                          tz='US/Eastern'),
                       'i': pd.date_range('20130101', periods=3, freq='ns')})

    pdf = pa.Table.from_pandas(df)

    filename = tempdir / 'tmp_file'
    try:
        # Test relies on writing nanoseconds to raise an error
        # true for Parquet 2.4
        _write_table(pdf, filename, version="2.4")
    except pa.ArrowException:
        pass

    assert not filename.exists()


def test_read_non_existent_file(tempdir):
    path = 'nonexistent-file.parquet'
    try:
        pq.read_table(path)
    except Exception as e:
        assert path in e.args[0]


def test_read_table_doesnt_warn(datadir):
    with warnings.catch_warnings():
        warnings.simplefilter(action="error")
        pq.read_table(datadir / 'v0.7.1.parquet')


@pytest.mark.pandas
def test_zlib_compression_bug():
    # ARROW-3514: "zlib deflate failed, output buffer too small"
    table = pa.Table.from_arrays([pa.array(['abc', 'def'])], ['some_col'])
    f = io.BytesIO()
    pq.write_table(table, f, compression='gzip')

    f.seek(0)
    roundtrip = pq.read_table(f)
    tm.assert_frame_equal(roundtrip.to_pandas(), table.to_pandas())


def test_parquet_file_too_small(tempdir):
    path = str(tempdir / "test.parquet")
    # TODO(dataset) with datasets API it raises OSError instead
    with pytest.raises((pa.ArrowInvalid, OSError),
                       match='size is 0 bytes'):
        with open(path, 'wb') as f:
            pass
        pq.read_table(path)

    with pytest.raises((pa.ArrowInvalid, OSError),
                       match='size is 4 bytes'):
        with open(path, 'wb') as f:
            f.write(b'ffff')
        pq.read_table(path)


@pytest.mark.pandas
@pytest.mark.fastparquet
@pytest.mark.filterwarnings("ignore:RangeIndex:FutureWarning")
@pytest.mark.filterwarnings("ignore:tostring:DeprecationWarning:fastparquet")
def test_fastparquet_cross_compatibility(tempdir):
    fp = pytest.importorskip('fastparquet')

    df = pd.DataFrame(
        {
            "a": list("abc"),
            "b": list(range(1, 4)),
            "c": np.arange(4.0, 7.0, dtype="float64"),
            "d": [True, False, True],
            "e": pd.date_range("20130101", periods=3),
            "f": pd.Categorical(["a", "b", "a"]),
            # fastparquet writes list as BYTE_ARRAY JSON, so no roundtrip
            # "g": [[1, 2], None, [1, 2, 3]],
        }
    )
    table = pa.table(df)

    # Arrow -> fastparquet
    file_arrow = str(tempdir / "cross_compat_arrow.parquet")
    pq.write_table(table, file_arrow, compression=None)

    fp_file = fp.ParquetFile(file_arrow)
    df_fp = fp_file.to_pandas()
    tm.assert_frame_equal(df, df_fp)

    # Fastparquet -> arrow
    file_fastparquet = str(tempdir / "cross_compat_fastparquet.parquet")
    fp.write(file_fastparquet, df)

    table_fp = pq.read_pandas(file_fastparquet)
    # for fastparquet written file, categoricals comes back as strings
    # (no arrow schema in parquet metadata)
    df['f'] = df['f'].astype(object)
    tm.assert_frame_equal(table_fp.to_pandas(), df)


@pytest.mark.parametrize('array_factory', [
    lambda: pa.array([0, None] * 10),
    lambda: pa.array([0, None] * 10).dictionary_encode(),
    lambda: pa.array(["", None] * 10),
    lambda: pa.array(["", None] * 10).dictionary_encode(),
])
@pytest.mark.parametrize('read_dictionary', [False, True])
def test_buffer_contents(
        array_factory, read_dictionary
):
    # Test that null values are deterministically initialized to zero
    # after a roundtrip through Parquet.
    # See ARROW-8006 and ARROW-8011.
    orig_table = pa.Table.from_pydict({"col": array_factory()})
    bio = io.BytesIO()
    pq.write_table(orig_table, bio, use_dictionary=True)
    bio.seek(0)
    read_dictionary = ['col'] if read_dictionary else None
    table = pq.read_table(bio, use_threads=False,
                          read_dictionary=read_dictionary)

    for col in table.columns:
        [chunk] = col.chunks
        buf = chunk.buffers()[1]
        assert buf.to_pybytes() == buf.size * b"\0"


def test_parquet_compression_roundtrip(tempdir):
    # ARROW-10480: ensure even with nonstandard Parquet file naming
    # conventions, writing and then reading a file works. In
    # particular, ensure that we don't automatically double-compress
    # the stream due to auto-detecting the extension in the filename
    table = pa.table([pa.array(range(4))], names=["ints"])
    path = tempdir / "arrow-10480.pyarrow.gz"
    pq.write_table(table, path, compression="GZIP")
    result = pq.read_table(path)
    assert result.equals(table)


def test_empty_row_groups(tempdir):
    # ARROW-3020
    table = pa.Table.from_arrays([pa.array([], type='int32')], ['f0'])

    path = tempdir / 'empty_row_groups.parquet'

    num_groups = 3
    with pq.ParquetWriter(path, table.schema) as writer:
        for i in range(num_groups):
            writer.write_table(table)

    reader = pq.ParquetFile(path)
    assert reader.metadata.num_row_groups == num_groups

    for i in range(num_groups):
        assert reader.read_row_group(i).equals(table)


def test_reads_over_batch(tempdir):
    data = [None] * (1 << 20)
    data.append([1])
    # Large list<int64> with mostly nones and one final
    # value.  This should force batched reads when
    # reading back.
    table = pa.Table.from_arrays([data], ['column'])

    path = tempdir / 'arrow-11607.parquet'
    pq.write_table(table, path)
    table2 = pq.read_table(path)
    assert table == table2


def test_permutation_of_column_order(tempdir):
    # ARROW-2366
    case = tempdir / "dataset_column_order_permutation"
    case.mkdir(exist_ok=True)

    data1 = pa.table([[1, 2, 3], [.1, .2, .3]], names=['a', 'b'])
    pq.write_table(data1, case / "data1.parquet")

    data2 = pa.table([[.4, .5, .6], [4, 5, 6]], names=['b', 'a'])
    pq.write_table(data2, case / "data2.parquet")

    table = pq.read_table(str(case))
    table2 = pa.table([[1, 2, 3, 4, 5, 6],
                       [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]],
                      names=['a', 'b'])

    assert table == table2


def test_thrift_size_limits(tempdir):
    path = tempdir / 'largethrift.parquet'

    array = pa.array(list(range(10)))
    num_cols = 1000
    table = pa.table(
        [array] * num_cols,
        names=[f'some_long_column_name_{i}' for i in range(num_cols)])
    pq.write_table(table, path)

    with pytest.raises(
            OSError,
            match="Couldn't deserialize thrift:.*Exceeded size limit"):
        pq.read_table(path, thrift_string_size_limit=50 * num_cols)
    with pytest.raises(
            OSError,
            match="Couldn't deserialize thrift:.*Exceeded size limit"):
        pq.read_table(path, thrift_container_size_limit=num_cols)

    got = pq.read_table(path, thrift_string_size_limit=100 * num_cols)
    assert got == table
    got = pq.read_table(path, thrift_container_size_limit=2 * num_cols)
    assert got == table
    got = pq.read_table(path)
    assert got == table


def test_page_checksum_verification_write_table(tempdir):
    """Check that checksum verification works for datasets created with
    pq.write_table()"""

    # Write some sample data into a parquet file with page checksum enabled
    original_path = tempdir / 'correct.parquet'
    table_orig = pa.table({'a': [1, 2, 3, 4]})
    pq.write_table(table_orig, original_path, write_page_checksum=True)

    # Read file and verify that the data is correct
    table_check = pq.read_table(original_path, page_checksum_verification=True)
    assert table_orig == table_check

    # Read the original file as binary and swap the 31-th and 36-th bytes. This
    # should be equivalent to storing the following data:
    #    pa.table({'a': [1, 3, 2, 4]})
    bin_data = bytearray(original_path.read_bytes())

    # Swap two bytes to emulate corruption. Also, check that the two bytes are
    # different, otherwise no corruption occurs
    assert bin_data[31] != bin_data[36]
    bin_data[31], bin_data[36] = bin_data[36], bin_data[31]

    # Write the corrupted data to another parquet file
    corrupted_path = tempdir / 'corrupted.parquet'
    corrupted_path.write_bytes(bin_data)

    # Case 1: Reading the corrupted file with read_table() and without page
    # checksum verification succeeds but yields corrupted data
    table_corrupt = pq.read_table(corrupted_path,
                                  page_checksum_verification=False)
    # The read should complete without error, but the table has different
    # content than the original file!
    assert table_corrupt != table_orig
    assert table_corrupt == pa.table({'a': [1, 3, 2, 4]})

    # Case 2: Reading the corrupted file with read_table() and with page
    # checksum verification enabled raises an exception
    with pytest.raises(OSError, match="CRC checksum verification"):
        _ = pq.read_table(corrupted_path, page_checksum_verification=True)

    # Case 3: Reading the corrupted file with ParquetFile.read() and without
    # page checksum verification succeeds but yields corrupted data
    corrupted_pq_file = pq.ParquetFile(corrupted_path,
                                       page_checksum_verification=False)
    table_corrupt2 = corrupted_pq_file.read()
    assert table_corrupt2 != table_orig
    assert table_corrupt2 == pa.table({'a': [1, 3, 2, 4]})

    # Case 4: Reading the corrupted file with ParquetFile.read() and with page
    # checksum verification enabled raises an exception
    corrupted_pq_file = pq.ParquetFile(corrupted_path,
                                       page_checksum_verification=True)
    # Accessing the data should result in an error
    with pytest.raises(OSError, match="CRC checksum verification"):
        _ = corrupted_pq_file.read()


@pytest.mark.dataset
def test_checksum_write_to_dataset(tempdir):
    """Check that checksum verification works for datasets created with
    pq.write_to_dataset"""

    table_orig = pa.table({'a': [1, 2, 3, 4]})

    # Write a sample dataset with page checksum enabled
    original_dir_path = tempdir / 'correct_dir'
    pq.write_to_dataset(table_orig,
                        original_dir_path,
                        write_page_checksum=True)

    # Read file and verify that the data is correct
    original_file_path_list = list(original_dir_path.iterdir())
    assert len(original_file_path_list) == 1
    original_path = original_file_path_list[0]
    table_check = pq.read_table(original_path, page_checksum_verification=True)
    assert table_orig == table_check

    # Read the original file as binary and swap the 31-th and 36-th bytes. This
    # should be equivalent to storing the following data:
    #    pa.table({'a': [1, 3, 2, 4]})
    bin_data = bytearray(original_path.read_bytes())

    # Swap two bytes to emulate corruption. Also, check that the two bytes are
    # different, otherwise no corruption occurs
    assert bin_data[31] != bin_data[36]
    bin_data[31], bin_data[36] = bin_data[36], bin_data[31]

    # Write the corrupted data to another parquet dataset
    # Copy dataset dir (which should be just one file)
    corrupted_dir_path = tempdir / 'corrupted_dir'
    copytree(original_dir_path, corrupted_dir_path)
    # Corrupt just the one file with the dataset
    corrupted_file_path = corrupted_dir_path / original_path.name
    corrupted_file_path.write_bytes(bin_data)

    # Case 1: Reading the corrupted file with read_table() and without page
    # checksum verification succeeds but yields corrupted data
    table_corrupt = pq.read_table(corrupted_file_path,
                                  page_checksum_verification=False)
    # The read should complete without error, but the table has different
    # content than the original file!
    assert table_corrupt != table_orig
    assert table_corrupt == pa.table({'a': [1, 3, 2, 4]})

    # Case 2: Reading the corrupted file with read_table() and with page
    # checksum verification enabled raises an exception
    with pytest.raises(OSError, match="CRC checksum verification"):
        _ = pq.read_table(corrupted_file_path, page_checksum_verification=True)