File size: 29,814 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "arrow/python/udf.h"
#include "arrow/array/array_nested.h"
#include "arrow/array/builder_base.h"
#include "arrow/buffer_builder.h"
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/api_vector.h"
#include "arrow/compute/function.h"
#include "arrow/compute/kernel.h"
#include "arrow/compute/row/grouper.h"
#include "arrow/python/common.h"
#include "arrow/python/vendored/pythoncapi_compat.h"
#include "arrow/table.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
namespace arrow {
using compute::ExecSpan;
using compute::Grouper;
using compute::KernelContext;
using compute::KernelState;
using internal::checked_cast;
namespace py {
namespace {
struct PythonUdfKernelState : public compute::KernelState {
// NOTE: this KernelState constructor doesn't require the GIL.
// If it did, the corresponding KernelInit::operator() should be wrapped
// within SafeCallIntoPython (GH-43487).
explicit PythonUdfKernelState(std::shared_ptr<OwnedRefNoGIL> function)
: function(std::move(function)) {}
std::shared_ptr<OwnedRefNoGIL> function;
};
struct PythonUdfKernelInit {
explicit PythonUdfKernelInit(std::shared_ptr<OwnedRefNoGIL> function)
: function(std::move(function)) {}
Result<std::unique_ptr<compute::KernelState>> operator()(
compute::KernelContext*, const compute::KernelInitArgs&) {
return std::make_unique<PythonUdfKernelState>(function);
}
std::shared_ptr<OwnedRefNoGIL> function;
};
struct ScalarUdfAggregator : public compute::KernelState {
virtual Status Consume(compute::KernelContext* ctx, const compute::ExecSpan& batch) = 0;
virtual Status MergeFrom(compute::KernelContext* ctx, compute::KernelState&& src) = 0;
virtual Status Finalize(compute::KernelContext* ctx, Datum* out) = 0;
};
struct HashUdfAggregator : public compute::KernelState {
virtual Status Resize(KernelContext* ctx, int64_t size) = 0;
virtual Status Consume(KernelContext* ctx, const ExecSpan& batch) = 0;
virtual Status Merge(KernelContext* ct, KernelState&& other, const ArrayData&) = 0;
virtual Status Finalize(KernelContext* ctx, Datum* out) = 0;
};
Status AggregateUdfConsume(compute::KernelContext* ctx, const compute::ExecSpan& batch) {
return checked_cast<ScalarUdfAggregator*>(ctx->state())->Consume(ctx, batch);
}
Status AggregateUdfMerge(compute::KernelContext* ctx, compute::KernelState&& src,
compute::KernelState* dst) {
return checked_cast<ScalarUdfAggregator*>(dst)->MergeFrom(ctx, std::move(src));
}
Status AggregateUdfFinalize(compute::KernelContext* ctx, arrow::Datum* out) {
return checked_cast<ScalarUdfAggregator*>(ctx->state())->Finalize(ctx, out);
}
Status HashAggregateUdfResize(KernelContext* ctx, int64_t size) {
return checked_cast<HashUdfAggregator*>(ctx->state())->Resize(ctx, size);
}
Status HashAggregateUdfConsume(KernelContext* ctx, const ExecSpan& batch) {
return checked_cast<HashUdfAggregator*>(ctx->state())->Consume(ctx, batch);
}
Status HashAggregateUdfMerge(KernelContext* ctx, KernelState&& src,
const ArrayData& group_id_mapping) {
return checked_cast<HashUdfAggregator*>(ctx->state())
->Merge(ctx, std::move(src), group_id_mapping);
}
Status HashAggregateUdfFinalize(KernelContext* ctx, Datum* out) {
return checked_cast<HashUdfAggregator*>(ctx->state())->Finalize(ctx, out);
}
struct PythonTableUdfKernelInit {
PythonTableUdfKernelInit(std::shared_ptr<OwnedRefNoGIL> function_maker,
UdfWrapperCallback cb)
: function_maker(std::move(function_maker)), cb(std::move(cb)) {}
Result<std::unique_ptr<compute::KernelState>> operator()(
compute::KernelContext* ctx, const compute::KernelInitArgs&) {
return SafeCallIntoPython(
[this, ctx]() -> Result<std::unique_ptr<compute::KernelState>> {
UdfContext udf_context{ctx->memory_pool(), /*batch_length=*/0};
OwnedRef empty_tuple(PyTuple_New(0));
auto function = std::make_shared<OwnedRefNoGIL>(
cb(function_maker->obj(), udf_context, empty_tuple.obj()));
RETURN_NOT_OK(CheckPyError());
if (!PyCallable_Check(function->obj())) {
return Status::TypeError("Expected a callable Python object.");
}
return std::make_unique<PythonUdfKernelState>(std::move(function));
});
}
std::shared_ptr<OwnedRefNoGIL> function_maker;
UdfWrapperCallback cb;
};
struct PythonUdfScalarAggregatorImpl : public ScalarUdfAggregator {
PythonUdfScalarAggregatorImpl(std::shared_ptr<OwnedRefNoGIL> function,
UdfWrapperCallback cb,
std::vector<std::shared_ptr<DataType>> input_types,
std::shared_ptr<DataType> output_type)
: function(std::move(function)),
cb(std::move(cb)),
output_type(std::move(output_type)) {
std::vector<std::shared_ptr<Field>> fields;
for (size_t i = 0; i < input_types.size(); i++) {
fields.push_back(field("", input_types[i]));
}
input_schema = schema(std::move(fields));
};
Status Consume(compute::KernelContext* ctx, const compute::ExecSpan& batch) override {
ARROW_ASSIGN_OR_RAISE(
auto rb, batch.ToExecBatch().ToRecordBatch(input_schema, ctx->memory_pool()));
values.push_back(std::move(rb));
return Status::OK();
}
Status MergeFrom(compute::KernelContext* ctx, compute::KernelState&& src) override {
auto& other_values = checked_cast<PythonUdfScalarAggregatorImpl&>(src).values;
values.insert(values.end(), std::make_move_iterator(other_values.begin()),
std::make_move_iterator(other_values.end()));
other_values.erase(other_values.begin(), other_values.end());
return Status::OK();
}
Status Finalize(compute::KernelContext* ctx, Datum* out) override {
auto state =
arrow::internal::checked_cast<PythonUdfScalarAggregatorImpl*>(ctx->state());
const int num_args = input_schema->num_fields();
// Note: The way that batches are concatenated together
// would result in using double amount of the memory.
// This is OK for now because non decomposable aggregate
// UDF is supposed to be used with segmented aggregation
// where the size of the segment is more or less constant
// so doubling that is not a big deal. This can be also
// improved in the future to use more efficient way to
// concatenate.
ARROW_ASSIGN_OR_RAISE(auto table,
arrow::Table::FromRecordBatches(input_schema, values));
ARROW_ASSIGN_OR_RAISE(table, table->CombineChunks(ctx->memory_pool()));
UdfContext udf_context{ctx->memory_pool(), table->num_rows()};
if (table->num_rows() == 0) {
return Status::Invalid("Finalized is called with empty inputs");
}
RETURN_NOT_OK(SafeCallIntoPython([&] {
std::unique_ptr<OwnedRef> result;
OwnedRef arg_tuple(PyTuple_New(num_args));
RETURN_NOT_OK(CheckPyError());
for (int arg_id = 0; arg_id < num_args; arg_id++) {
// Since we combined chunks there is only one chunk
std::shared_ptr<Array> c_data = table->column(arg_id)->chunk(0);
PyObject* data = wrap_array(c_data);
PyTuple_SetItem(arg_tuple.obj(), arg_id, data);
}
result =
std::make_unique<OwnedRef>(cb(function->obj(), udf_context, arg_tuple.obj()));
RETURN_NOT_OK(CheckPyError());
// unwrapping the output for expected output type
if (is_scalar(result->obj())) {
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Scalar> val, unwrap_scalar(result->obj()));
if (*output_type != *val->type) {
return Status::TypeError("Expected output datatype ", output_type->ToString(),
", but function returned datatype ",
val->type->ToString());
}
out->value = std::move(val);
return Status::OK();
}
return Status::TypeError("Unexpected output type: ",
Py_TYPE(result->obj())->tp_name, " (expected Scalar)");
}));
return Status::OK();
}
std::shared_ptr<OwnedRefNoGIL> function;
UdfWrapperCallback cb;
std::vector<std::shared_ptr<RecordBatch>> values;
std::shared_ptr<Schema> input_schema;
std::shared_ptr<DataType> output_type;
};
struct PythonUdfHashAggregatorImpl : public HashUdfAggregator {
PythonUdfHashAggregatorImpl(std::shared_ptr<OwnedRefNoGIL> function,
UdfWrapperCallback cb,
std::vector<std::shared_ptr<DataType>> input_types,
std::shared_ptr<DataType> output_type)
: function(std::move(function)),
cb(std::move(cb)),
output_type(std::move(output_type)) {
std::vector<std::shared_ptr<Field>> fields;
fields.reserve(input_types.size());
for (size_t i = 0; i < input_types.size(); i++) {
fields.push_back(field("", input_types[i]));
}
input_schema = schema(std::move(fields));
};
// same as ApplyGrouping in partition.cc
// replicated the code here to avoid complicating the dependencies
static Result<RecordBatchVector> ApplyGroupings(
const ListArray& groupings, const std::shared_ptr<RecordBatch>& batch) {
ARROW_ASSIGN_OR_RAISE(Datum sorted,
compute::Take(batch, groupings.data()->child_data[0]));
const auto& sorted_batch = *sorted.record_batch();
RecordBatchVector out(static_cast<size_t>(groupings.length()));
for (size_t i = 0; i < out.size(); ++i) {
out[i] = sorted_batch.Slice(groupings.value_offset(i), groupings.value_length(i));
}
return out;
}
Status Resize(KernelContext* ctx, int64_t new_num_groups) override {
// We only need to change num_groups in resize
// similar to other hash aggregate kernels
num_groups = new_num_groups;
return Status::OK();
}
Status Consume(KernelContext* ctx, const ExecSpan& batch) override {
ARROW_ASSIGN_OR_RAISE(
std::shared_ptr<RecordBatch> rb,
batch.ToExecBatch().ToRecordBatch(input_schema, ctx->memory_pool()));
// This is similar to GroupedListImpl
// last array is the group id
const ArraySpan& groups_array_data = batch[batch.num_values() - 1].array;
DCHECK_EQ(groups_array_data.offset, 0);
int64_t batch_num_values = groups_array_data.length;
const auto* batch_groups = groups_array_data.GetValues<uint32_t>(1);
RETURN_NOT_OK(groups.Append(batch_groups, batch_num_values));
values.push_back(std::move(rb));
num_values += batch_num_values;
return Status::OK();
}
Status Merge(KernelContext* ctx, KernelState&& other_state,
const ArrayData& group_id_mapping) override {
// This is similar to GroupedListImpl
auto& other = checked_cast<PythonUdfHashAggregatorImpl&>(other_state);
auto& other_values = other.values;
const uint32_t* other_raw_groups = other.groups.data();
values.insert(values.end(), std::make_move_iterator(other_values.begin()),
std::make_move_iterator(other_values.end()));
auto g = group_id_mapping.GetValues<uint32_t>(1);
for (uint32_t other_g = 0; static_cast<int64_t>(other_g) < other.num_values;
++other_g) {
// Different state can have different group_id mappings, so we
// need to translate the ids
RETURN_NOT_OK(groups.Append(g[other_raw_groups[other_g]]));
}
num_values += other.num_values;
return Status::OK();
}
Status Finalize(KernelContext* ctx, Datum* out) override {
// Exclude the last column which is the group id
const int num_args = input_schema->num_fields() - 1;
ARROW_ASSIGN_OR_RAISE(auto groups_buffer, groups.Finish());
ARROW_ASSIGN_OR_RAISE(auto groupings,
Grouper::MakeGroupings(UInt32Array(num_values, groups_buffer),
static_cast<uint32_t>(num_groups)));
ARROW_ASSIGN_OR_RAISE(auto table,
arrow::Table::FromRecordBatches(input_schema, values));
ARROW_ASSIGN_OR_RAISE(auto rb, table->CombineChunksToBatch(ctx->memory_pool()));
UdfContext udf_context{ctx->memory_pool(), table->num_rows()};
if (rb->num_rows() == 0) {
*out = Datum();
return Status::OK();
}
ARROW_ASSIGN_OR_RAISE(RecordBatchVector rbs, ApplyGroupings(*groupings, rb));
return SafeCallIntoPython([&] {
ARROW_ASSIGN_OR_RAISE(std::unique_ptr<ArrayBuilder> builder,
MakeBuilder(output_type, ctx->memory_pool()));
for (auto& group_rb : rbs) {
std::unique_ptr<OwnedRef> result;
OwnedRef arg_tuple(PyTuple_New(num_args));
RETURN_NOT_OK(CheckPyError());
for (int arg_id = 0; arg_id < num_args; arg_id++) {
// Since we combined chunks there is only one chunk
std::shared_ptr<Array> c_data = group_rb->column(arg_id);
PyObject* data = wrap_array(c_data);
PyTuple_SetItem(arg_tuple.obj(), arg_id, data);
}
result =
std::make_unique<OwnedRef>(cb(function->obj(), udf_context, arg_tuple.obj()));
RETURN_NOT_OK(CheckPyError());
// unwrapping the output for expected output type
if (is_scalar(result->obj())) {
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Scalar> val,
unwrap_scalar(result->obj()));
if (*output_type != *val->type) {
return Status::TypeError("Expected output datatype ", output_type->ToString(),
", but function returned datatype ",
val->type->ToString());
}
ARROW_RETURN_NOT_OK(builder->AppendScalar(std::move(*val)));
} else {
return Status::TypeError("Unexpected output type: ",
Py_TYPE(result->obj())->tp_name, " (expected Scalar)");
}
}
ARROW_ASSIGN_OR_RAISE(auto result, builder->Finish());
out->value = std::move(result->data());
return Status::OK();
});
}
std::shared_ptr<OwnedRefNoGIL> function;
UdfWrapperCallback cb;
// Accumulated input batches
std::vector<std::shared_ptr<RecordBatch>> values;
// Group ids - extracted from the last column from the batch
TypedBufferBuilder<uint32_t> groups;
int64_t num_groups = 0;
int64_t num_values = 0;
std::shared_ptr<Schema> input_schema;
std::shared_ptr<DataType> output_type;
};
struct PythonUdf : public PythonUdfKernelState {
PythonUdf(std::shared_ptr<OwnedRefNoGIL> function, UdfWrapperCallback cb,
std::vector<TypeHolder> input_types, compute::OutputType output_type)
: PythonUdfKernelState(std::move(function)),
cb(std::move(cb)),
input_types(std::move(input_types)),
output_type(std::move(output_type)) {}
UdfWrapperCallback cb;
std::vector<TypeHolder> input_types;
compute::OutputType output_type;
TypeHolder resolved_type;
Result<TypeHolder> ResolveType(compute::KernelContext* ctx,
const std::vector<TypeHolder>& types) {
if (input_types == types) {
if (!resolved_type) {
ARROW_ASSIGN_OR_RAISE(resolved_type, output_type.Resolve(ctx, input_types));
}
return resolved_type;
}
return output_type.Resolve(ctx, types);
}
Status Exec(compute::KernelContext* ctx, const compute::ExecSpan& batch,
compute::ExecResult* out) {
auto state = arrow::internal::checked_cast<PythonUdfKernelState*>(ctx->state());
PyObject* function = state->function->obj();
const int num_args = batch.num_values();
UdfContext udf_context{ctx->memory_pool(), batch.length};
OwnedRef arg_tuple(PyTuple_New(num_args));
RETURN_NOT_OK(CheckPyError());
for (int arg_id = 0; arg_id < num_args; arg_id++) {
if (batch[arg_id].is_scalar()) {
std::shared_ptr<Scalar> c_data = batch[arg_id].scalar->GetSharedPtr();
PyObject* data = wrap_scalar(c_data);
PyTuple_SetItem(arg_tuple.obj(), arg_id, data);
} else {
std::shared_ptr<Array> c_data = batch[arg_id].array.ToArray();
PyObject* data = wrap_array(c_data);
PyTuple_SetItem(arg_tuple.obj(), arg_id, data);
}
}
OwnedRef result(cb(function, udf_context, arg_tuple.obj()));
RETURN_NOT_OK(CheckPyError());
// unwrapping the output for expected output type
if (is_array(result.obj())) {
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Array> val, unwrap_array(result.obj()));
ARROW_ASSIGN_OR_RAISE(TypeHolder type, ResolveType(ctx, batch.GetTypes()));
if (type.type == NULLPTR) {
return Status::TypeError("expected output datatype is null");
}
if (*type.type != *val->type()) {
return Status::TypeError("Expected output datatype ", type.type->ToString(),
", but function returned datatype ",
val->type()->ToString());
}
out->value = std::move(val->data());
return Status::OK();
} else {
return Status::TypeError("Unexpected output type: ", Py_TYPE(result.obj())->tp_name,
" (expected Array)");
}
return Status::OK();
}
};
Status PythonUdfExec(compute::KernelContext* ctx, const compute::ExecSpan& batch,
compute::ExecResult* out) {
auto udf = static_cast<PythonUdf*>(ctx->kernel()->data.get());
return SafeCallIntoPython([&]() -> Status { return udf->Exec(ctx, batch, out); });
}
template <class Function, class Kernel>
Status RegisterUdf(PyObject* function, compute::KernelInit kernel_init,
UdfWrapperCallback cb, const UdfOptions& options,
compute::FunctionRegistry* registry) {
if (!PyCallable_Check(function)) {
return Status::TypeError("Expected a callable Python object.");
}
auto scalar_func =
std::make_shared<Function>(options.func_name, options.arity, options.func_doc);
std::vector<compute::InputType> input_types;
for (const auto& in_dtype : options.input_types) {
input_types.emplace_back(in_dtype);
}
compute::OutputType output_type(options.output_type);
// Take reference before wrapping with OwnedRefNoGIL
Py_INCREF(function);
auto udf_data = std::make_shared<PythonUdf>(
std::make_shared<OwnedRefNoGIL>(function), cb,
TypeHolder::FromTypes(options.input_types), options.output_type);
Kernel kernel(
compute::KernelSignature::Make(std::move(input_types), std::move(output_type),
options.arity.is_varargs),
PythonUdfExec, kernel_init);
kernel.data = std::move(udf_data);
kernel.mem_allocation = compute::MemAllocation::NO_PREALLOCATE;
kernel.null_handling = compute::NullHandling::COMPUTED_NO_PREALLOCATE;
RETURN_NOT_OK(scalar_func->AddKernel(std::move(kernel)));
if (registry == NULLPTR) {
registry = compute::GetFunctionRegistry();
}
RETURN_NOT_OK(registry->AddFunction(std::move(scalar_func)));
return Status::OK();
}
} // namespace
Status RegisterScalarFunction(PyObject* function, UdfWrapperCallback cb,
const UdfOptions& options,
compute::FunctionRegistry* registry) {
return RegisterUdf<compute::ScalarFunction, compute::ScalarKernel>(
function, PythonUdfKernelInit{std::make_shared<OwnedRefNoGIL>(function)}, cb,
options, registry);
}
Status RegisterVectorFunction(PyObject* function, UdfWrapperCallback cb,
const UdfOptions& options,
compute::FunctionRegistry* registry) {
return RegisterUdf<compute::VectorFunction, compute::VectorKernel>(
function, PythonUdfKernelInit{std::make_shared<OwnedRefNoGIL>(function)}, cb,
options, registry);
}
Status RegisterTabularFunction(PyObject* function, UdfWrapperCallback cb,
const UdfOptions& options,
compute::FunctionRegistry* registry) {
if (options.arity.num_args != 0 || options.arity.is_varargs) {
return Status::NotImplemented("tabular function of non-null arity");
}
if (options.output_type->id() != Type::type::STRUCT) {
return Status::Invalid("tabular function with non-struct output");
}
return RegisterUdf<compute::ScalarFunction, compute::ScalarKernel>(
function, PythonTableUdfKernelInit{std::make_shared<OwnedRefNoGIL>(function), cb},
cb, options, registry);
}
Status RegisterScalarAggregateFunction(PyObject* function, UdfWrapperCallback cb,
const UdfOptions& options,
compute::FunctionRegistry* registry) {
if (!PyCallable_Check(function)) {
return Status::TypeError("Expected a callable Python object.");
}
if (registry == NULLPTR) {
registry = compute::GetFunctionRegistry();
}
static auto default_scalar_aggregate_options =
compute::ScalarAggregateOptions::Defaults();
auto aggregate_func = std::make_shared<compute::ScalarAggregateFunction>(
options.func_name, options.arity, options.func_doc,
&default_scalar_aggregate_options);
std::vector<compute::InputType> input_types;
for (const auto& in_dtype : options.input_types) {
input_types.emplace_back(in_dtype);
}
compute::OutputType output_type(options.output_type);
// Take reference before wrapping with OwnedRefNoGIL
Py_INCREF(function);
auto function_ref = std::make_shared<OwnedRefNoGIL>(function);
compute::KernelInit init = [cb, function_ref, options](
compute::KernelContext* ctx,
const compute::KernelInitArgs& args)
-> Result<std::unique_ptr<compute::KernelState>> {
return std::make_unique<PythonUdfScalarAggregatorImpl>(
function_ref, cb, options.input_types, options.output_type);
};
auto sig = compute::KernelSignature::Make(
std::move(input_types), std::move(output_type), options.arity.is_varargs);
compute::ScalarAggregateKernel kernel(std::move(sig), std::move(init),
AggregateUdfConsume, AggregateUdfMerge,
AggregateUdfFinalize, /*ordered=*/false);
RETURN_NOT_OK(aggregate_func->AddKernel(std::move(kernel)));
RETURN_NOT_OK(registry->AddFunction(std::move(aggregate_func)));
return Status::OK();
}
/// \brief Create a new UdfOptions with adjustment for hash kernel
/// \param options User provided udf options
UdfOptions AdjustForHashAggregate(const UdfOptions& options) {
UdfOptions hash_options;
// Append hash_ before the function name to separate from the scalar
// version
hash_options.func_name = "hash_" + options.func_name;
// Extend input types with group id. Group id is appended by the group
// aggregation node. Here we change both arity and input types
if (options.arity.is_varargs) {
hash_options.arity = options.arity;
} else {
hash_options.arity = compute::Arity(options.arity.num_args + 1, false);
}
// Changing the function doc shouldn't be necessarily because group id
// is not user visible, however, this is currently needed to pass the
// function validation. The name group_id_array is consistent with
// hash kernels in hash_aggregate.cc
hash_options.func_doc = options.func_doc;
hash_options.func_doc.arg_names.emplace_back("group_id_array");
std::vector<std::shared_ptr<DataType>> input_dtypes = options.input_types;
input_dtypes.emplace_back(uint32());
hash_options.input_types = std::move(input_dtypes);
hash_options.output_type = options.output_type;
return hash_options;
}
Status RegisterHashAggregateFunction(PyObject* function, UdfWrapperCallback cb,
const UdfOptions& options,
compute::FunctionRegistry* registry) {
if (!PyCallable_Check(function)) {
return Status::TypeError("Expected a callable Python object.");
}
if (registry == NULLPTR) {
registry = compute::GetFunctionRegistry();
}
UdfOptions hash_options = AdjustForHashAggregate(options);
std::vector<compute::InputType> input_types;
for (const auto& in_dtype : hash_options.input_types) {
input_types.emplace_back(in_dtype);
}
compute::OutputType output_type(hash_options.output_type);
static auto default_hash_aggregate_options =
compute::ScalarAggregateOptions::Defaults();
auto hash_aggregate_func = std::make_shared<compute::HashAggregateFunction>(
hash_options.func_name, hash_options.arity, hash_options.func_doc,
&default_hash_aggregate_options);
// Take reference before wrapping with OwnedRefNoGIL
Py_INCREF(function);
auto function_ref = std::make_shared<OwnedRefNoGIL>(function);
compute::KernelInit init = [function_ref, cb, hash_options](
compute::KernelContext* ctx,
const compute::KernelInitArgs& args)
-> Result<std::unique_ptr<compute::KernelState>> {
return std::make_unique<PythonUdfHashAggregatorImpl>(
function_ref, cb, hash_options.input_types, hash_options.output_type);
};
auto sig = compute::KernelSignature::Make(
std::move(input_types), std::move(output_type), hash_options.arity.is_varargs);
compute::HashAggregateKernel kernel(
std::move(sig), std::move(init), HashAggregateUdfResize, HashAggregateUdfConsume,
HashAggregateUdfMerge, HashAggregateUdfFinalize, /*ordered=*/false);
RETURN_NOT_OK(hash_aggregate_func->AddKernel(std::move(kernel)));
RETURN_NOT_OK(registry->AddFunction(std::move(hash_aggregate_func)));
return Status::OK();
}
Status RegisterAggregateFunction(PyObject* function, UdfWrapperCallback cb,
const UdfOptions& options,
compute::FunctionRegistry* registry) {
RETURN_NOT_OK(RegisterScalarAggregateFunction(function, cb, options, registry));
RETURN_NOT_OK(RegisterHashAggregateFunction(function, cb, options, registry));
return Status::OK();
}
Result<std::shared_ptr<RecordBatchReader>> CallTabularFunction(
const std::string& func_name, const std::vector<Datum>& args,
compute::FunctionRegistry* registry) {
if (args.size() != 0) {
return Status::NotImplemented("non-empty arguments to tabular function");
}
if (registry == NULLPTR) {
registry = compute::GetFunctionRegistry();
}
ARROW_ASSIGN_OR_RAISE(auto func, registry->GetFunction(func_name));
if (func->kind() != compute::Function::SCALAR) {
return Status::Invalid("tabular function of non-scalar kind");
}
auto arity = func->arity();
if (arity.num_args != 0 || arity.is_varargs) {
return Status::NotImplemented("tabular function of non-null arity");
}
auto kernels =
arrow::internal::checked_pointer_cast<compute::ScalarFunction>(func)->kernels();
if (kernels.size() != 1) {
return Status::NotImplemented("tabular function with non-single kernel");
}
const compute::ScalarKernel* kernel = kernels[0];
auto out_type = kernel->signature->out_type();
if (out_type.kind() != compute::OutputType::FIXED) {
return Status::Invalid("tabular kernel of non-fixed kind");
}
auto datatype = out_type.type();
if (datatype->id() != Type::type::STRUCT) {
return Status::Invalid("tabular kernel with non-struct output");
}
auto struct_type = arrow::internal::checked_cast<StructType*>(datatype.get());
auto schema = ::arrow::schema(struct_type->fields());
std::vector<TypeHolder> in_types;
ARROW_ASSIGN_OR_RAISE(auto func_exec,
GetFunctionExecutor(func_name, in_types, NULLPTR, registry));
auto next_func = [schema, func_exec = std::move(
func_exec)]() -> Result<std::shared_ptr<RecordBatch>> {
std::vector<Datum> args;
// passed_length of -1 or 0 with args.size() of 0 leads to an empty ExecSpanIterator
// in exec.cc and to never invoking the source function, so 1 is passed instead
// TODO: GH-33612: Support batch size in user-defined tabular functions
ARROW_ASSIGN_OR_RAISE(auto datum, func_exec->Execute(args, /*passed_length=*/1));
if (!datum.is_array()) {
return Status::Invalid("UDF result of non-array kind");
}
std::shared_ptr<Array> array = datum.make_array();
if (array->length() == 0) {
return IterationTraits<std::shared_ptr<RecordBatch>>::End();
}
ARROW_ASSIGN_OR_RAISE(auto batch, RecordBatch::FromStructArray(std::move(array)));
if (!schema->Equals(batch->schema())) {
return Status::Invalid("UDF result with shape not conforming to schema");
}
return std::move(batch);
};
return RecordBatchReader::MakeFromIterator(MakeFunctionIterator(std::move(next_func)),
schema);
}
} // namespace py
} // namespace arrow
|