File size: 31,180 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

// This module defines an abstract interface for iterating through pages in a
// Parquet column chunk within a row group. It could be extended in the future
// to iterate through all data pages in all chunks in a file.

#pragma once

#include <algorithm>
#include <limits>
#include <memory>
#include <random>
#include <string>
#include <utility>
#include <vector>

#include <gtest/gtest.h>

#include "arrow/io/memory.h"
#include "arrow/testing/util.h"
#include "arrow/util/float16.h"

#include "parquet/column_page.h"
#include "parquet/column_reader.h"
#include "parquet/column_writer.h"
#include "parquet/encoding.h"
#include "parquet/platform.h"

// https://github.com/google/googletest/pull/2904 might not be available
// in our version of gtest/gmock
#define EXPECT_THROW_THAT(callable, ex_type, property)   \
  EXPECT_THROW(                                          \
      try { (callable)(); } catch (const ex_type& err) { \
        EXPECT_THAT(err, (property));                    \
        throw;                                           \
      },                                                 \
      ex_type)

namespace parquet {

static constexpr int FLBA_LENGTH = 12;

inline bool operator==(const FixedLenByteArray& a, const FixedLenByteArray& b) {
  return 0 == memcmp(a.ptr, b.ptr, FLBA_LENGTH);
}

namespace test {

typedef ::testing::Types<BooleanType, Int32Type, Int64Type, Int96Type, FloatType,
                         DoubleType, ByteArrayType, FLBAType>
    ParquetTypes;

class ParquetTestException : public parquet::ParquetException {
  using ParquetException::ParquetException;
};

const char* get_data_dir();
std::string get_bad_data_dir();

std::string get_data_file(const std::string& filename, bool is_good = true);

template <typename T>
static inline void assert_vector_equal(const std::vector<T>& left,
                                       const std::vector<T>& right) {
  ASSERT_EQ(left.size(), right.size());

  for (size_t i = 0; i < left.size(); ++i) {
    ASSERT_EQ(left[i], right[i]) << i;
  }
}

template <typename T>
static inline bool vector_equal(const std::vector<T>& left, const std::vector<T>& right) {
  if (left.size() != right.size()) {
    return false;
  }

  for (size_t i = 0; i < left.size(); ++i) {
    if (left[i] != right[i]) {
      std::cerr << "index " << i << " left was " << left[i] << " right was " << right[i]
                << std::endl;
      return false;
    }
  }

  return true;
}

template <typename T>
static std::vector<T> slice(const std::vector<T>& values, int start, int end) {
  if (end < start) {
    return std::vector<T>(0);
  }

  std::vector<T> out(end - start);
  for (int i = start; i < end; ++i) {
    out[i - start] = values[i];
  }
  return out;
}

void random_bytes(int n, uint32_t seed, std::vector<uint8_t>* out);
void random_bools(int n, double p, uint32_t seed, bool* out);

template <typename T>
inline void random_numbers(int n, uint32_t seed, T min_value, T max_value, T* out) {
  std::default_random_engine gen(seed);
  std::uniform_int_distribution<T> d(min_value, max_value);
  for (int i = 0; i < n; ++i) {
    out[i] = d(gen);
  }
}

template <>
inline void random_numbers(int n, uint32_t seed, float min_value, float max_value,
                           float* out) {
  std::default_random_engine gen(seed);
  std::uniform_real_distribution<float> d(min_value, max_value);
  for (int i = 0; i < n; ++i) {
    out[i] = d(gen);
  }
}

template <>
inline void random_numbers(int n, uint32_t seed, double min_value, double max_value,
                           double* out) {
  std::default_random_engine gen(seed);
  std::uniform_real_distribution<double> d(min_value, max_value);
  for (int i = 0; i < n; ++i) {
    out[i] = d(gen);
  }
}

void random_Int96_numbers(int n, uint32_t seed, int32_t min_value, int32_t max_value,
                          Int96* out);

void random_float16_numbers(int n, uint32_t seed, ::arrow::util::Float16 min_value,
                            ::arrow::util::Float16 max_value, uint16_t* out);

void random_fixed_byte_array(int n, uint32_t seed, uint8_t* buf, int len, FLBA* out);

void random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out, int min_size,
                       int max_size);

void random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out, int max_size);

void prefixed_random_byte_array(int n, uint32_t seed, uint8_t* buf, ByteArray* out,
                                int min_size, int max_size, double prefixed_probability);

void prefixed_random_byte_array(int n, uint32_t seed, uint8_t* buf, int len, FLBA* out,
                                double prefixed_probability);

template <typename Type, typename Sequence>
std::shared_ptr<Buffer> EncodeValues(Encoding::type encoding, bool use_dictionary,
                                     const Sequence& values, int length,
                                     const ColumnDescriptor* descr) {
  auto encoder = MakeTypedEncoder<Type>(encoding, use_dictionary, descr);
  encoder->Put(values, length);
  return encoder->FlushValues();
}

template <typename T>
static void InitValues(int num_values, uint32_t seed, std::vector<T>& values,
                       std::vector<uint8_t>& buffer) {
  random_numbers(num_values, seed, std::numeric_limits<T>::min(),
                 std::numeric_limits<T>::max(), values.data());
}

template <typename T>
static void InitValues(int num_values, std::vector<T>& values,
                       std::vector<uint8_t>& buffer) {
  InitValues(num_values, 0, values, buffer);
}

template <typename T>
static void InitDictValues(int num_values, int num_dicts, std::vector<T>& values,
                           std::vector<uint8_t>& buffer) {
  int repeat_factor = num_values / num_dicts;
  InitValues<T>(num_dicts, values, buffer);
  // add some repeated values
  for (int j = 1; j < repeat_factor; ++j) {
    for (int i = 0; i < num_dicts; ++i) {
      std::memcpy(&values[num_dicts * j + i], &values[i], sizeof(T));
    }
  }
  // computed only dict_per_page * repeat_factor - 1 values < num_values
  // compute remaining
  for (int i = num_dicts * repeat_factor; i < num_values; ++i) {
    std::memcpy(&values[i], &values[i - num_dicts * repeat_factor], sizeof(T));
  }
}

template <>
inline void InitDictValues<bool>(int num_values, int num_dicts, std::vector<bool>& values,
                                 std::vector<uint8_t>& buffer) {
  // No op for bool
}

class MockPageReader : public PageReader {
 public:
  explicit MockPageReader(const std::vector<std::shared_ptr<Page>>& pages)
      : pages_(pages), page_index_(0) {}

  std::shared_ptr<Page> NextPage() override {
    if (page_index_ == static_cast<int>(pages_.size())) {
      // EOS to consumer
      return std::shared_ptr<Page>(nullptr);
    }
    return pages_[page_index_++];
  }

  // No-op
  void set_max_page_header_size(uint32_t size) override {}

 private:
  std::vector<std::shared_ptr<Page>> pages_;
  int page_index_;
};

// TODO(wesm): this is only used for testing for now. Refactor to form part of
// primary file write path
template <typename Type>
class DataPageBuilder {
 public:
  using c_type = typename Type::c_type;

  // This class writes data and metadata to the passed inputs
  explicit DataPageBuilder(ArrowOutputStream* sink)
      : sink_(sink),
        num_values_(0),
        encoding_(Encoding::PLAIN),
        definition_level_encoding_(Encoding::RLE),
        repetition_level_encoding_(Encoding::RLE),
        have_def_levels_(false),
        have_rep_levels_(false),
        have_values_(false) {}

  void AppendDefLevels(const std::vector<int16_t>& levels, int16_t max_level,
                       Encoding::type encoding = Encoding::RLE) {
    AppendLevels(levels, max_level, encoding);

    num_values_ = std::max(static_cast<int32_t>(levels.size()), num_values_);
    definition_level_encoding_ = encoding;
    have_def_levels_ = true;
  }

  void AppendRepLevels(const std::vector<int16_t>& levels, int16_t max_level,
                       Encoding::type encoding = Encoding::RLE) {
    AppendLevels(levels, max_level, encoding);

    num_values_ = std::max(static_cast<int32_t>(levels.size()), num_values_);
    repetition_level_encoding_ = encoding;
    have_rep_levels_ = true;
  }

  void AppendValues(const ColumnDescriptor* d, const std::vector<c_type>& values,
                    Encoding::type encoding = Encoding::PLAIN) {
    std::shared_ptr<Buffer> values_sink = EncodeValues<Type>(
        encoding, false, values.data(), static_cast<int>(values.size()), d);
    PARQUET_THROW_NOT_OK(sink_->Write(values_sink->data(), values_sink->size()));

    num_values_ = std::max(static_cast<int32_t>(values.size()), num_values_);
    encoding_ = encoding;
    have_values_ = true;
  }

  int32_t num_values() const { return num_values_; }

  Encoding::type encoding() const { return encoding_; }

  Encoding::type rep_level_encoding() const { return repetition_level_encoding_; }

  Encoding::type def_level_encoding() const { return definition_level_encoding_; }

 private:
  ArrowOutputStream* sink_;

  int32_t num_values_;
  Encoding::type encoding_;
  Encoding::type definition_level_encoding_;
  Encoding::type repetition_level_encoding_;

  bool have_def_levels_;
  bool have_rep_levels_;
  bool have_values_;

  // Used internally for both repetition and definition levels
  void AppendLevels(const std::vector<int16_t>& levels, int16_t max_level,
                    Encoding::type encoding) {
    if (encoding != Encoding::RLE) {
      ParquetException::NYI("only rle encoding currently implemented");
    }

    std::vector<uint8_t> encode_buffer(LevelEncoder::MaxBufferSize(
        Encoding::RLE, max_level, static_cast<int>(levels.size())));

    // We encode into separate memory from the output stream because the
    // RLE-encoded bytes have to be preceded in the stream by their absolute
    // size.
    LevelEncoder encoder;
    encoder.Init(encoding, max_level, static_cast<int>(levels.size()),
                 encode_buffer.data(), static_cast<int>(encode_buffer.size()));

    encoder.Encode(static_cast<int>(levels.size()), levels.data());

    int32_t rle_bytes = encoder.len();
    PARQUET_THROW_NOT_OK(
        sink_->Write(reinterpret_cast<const uint8_t*>(&rle_bytes), sizeof(int32_t)));
    PARQUET_THROW_NOT_OK(sink_->Write(encode_buffer.data(), rle_bytes));
  }
};

template <>
inline void DataPageBuilder<BooleanType>::AppendValues(const ColumnDescriptor* d,
                                                       const std::vector<bool>& values,
                                                       Encoding::type encoding) {
  if (encoding != Encoding::PLAIN) {
    ParquetException::NYI("only plain encoding currently implemented");
  }

  auto encoder = MakeTypedEncoder<BooleanType>(Encoding::PLAIN, false, d);
  dynamic_cast<BooleanEncoder*>(encoder.get())
      ->Put(values, static_cast<int>(values.size()));
  std::shared_ptr<Buffer> buffer = encoder->FlushValues();
  PARQUET_THROW_NOT_OK(sink_->Write(buffer->data(), buffer->size()));

  num_values_ = std::max(static_cast<int32_t>(values.size()), num_values_);
  encoding_ = encoding;
  have_values_ = true;
}

template <typename Type>
static std::shared_ptr<DataPageV1> MakeDataPage(
    const ColumnDescriptor* d, const std::vector<typename Type::c_type>& values,
    int num_vals, Encoding::type encoding, const uint8_t* indices, int indices_size,
    const std::vector<int16_t>& def_levels, int16_t max_def_level,
    const std::vector<int16_t>& rep_levels, int16_t max_rep_level) {
  int num_values = 0;

  auto page_stream = CreateOutputStream();
  test::DataPageBuilder<Type> page_builder(page_stream.get());

  if (!rep_levels.empty()) {
    page_builder.AppendRepLevels(rep_levels, max_rep_level);
  }
  if (!def_levels.empty()) {
    page_builder.AppendDefLevels(def_levels, max_def_level);
  }

  if (encoding == Encoding::PLAIN) {
    page_builder.AppendValues(d, values, encoding);
    num_values = std::max(page_builder.num_values(), num_vals);
  } else {  // DICTIONARY PAGES
    PARQUET_THROW_NOT_OK(page_stream->Write(indices, indices_size));
    num_values = std::max(page_builder.num_values(), num_vals);
  }

  PARQUET_ASSIGN_OR_THROW(auto buffer, page_stream->Finish());

  return std::make_shared<DataPageV1>(buffer, num_values, encoding,
                                      page_builder.def_level_encoding(),
                                      page_builder.rep_level_encoding(), buffer->size());
}

template <typename TYPE>
class DictionaryPageBuilder {
 public:
  typedef typename TYPE::c_type TC;
  static constexpr int TN = TYPE::type_num;
  using SpecializedEncoder = typename EncodingTraits<TYPE>::Encoder;

  // This class writes data and metadata to the passed inputs
  explicit DictionaryPageBuilder(const ColumnDescriptor* d)
      : num_dict_values_(0), have_values_(false) {
    auto encoder = MakeTypedEncoder<TYPE>(Encoding::PLAIN, true, d);
    dict_traits_ = dynamic_cast<DictEncoder<TYPE>*>(encoder.get());
    encoder_.reset(dynamic_cast<SpecializedEncoder*>(encoder.release()));
  }

  ~DictionaryPageBuilder() {}

  std::shared_ptr<Buffer> AppendValues(const std::vector<TC>& values) {
    int num_values = static_cast<int>(values.size());
    // Dictionary encoding
    encoder_->Put(values.data(), num_values);
    num_dict_values_ = dict_traits_->num_entries();
    have_values_ = true;
    return encoder_->FlushValues();
  }

  std::shared_ptr<Buffer> WriteDict() {
    std::shared_ptr<Buffer> dict_buffer =
        AllocateBuffer(::arrow::default_memory_pool(), dict_traits_->dict_encoded_size());
    dict_traits_->WriteDict(dict_buffer->mutable_data());
    return dict_buffer;
  }

  int32_t num_values() const { return num_dict_values_; }

 private:
  DictEncoder<TYPE>* dict_traits_;
  std::unique_ptr<SpecializedEncoder> encoder_;
  int32_t num_dict_values_;
  bool have_values_;
};

template <>
inline DictionaryPageBuilder<BooleanType>::DictionaryPageBuilder(
    const ColumnDescriptor* d) {
  ParquetException::NYI("only plain encoding currently implemented for boolean");
}

template <>
inline std::shared_ptr<Buffer> DictionaryPageBuilder<BooleanType>::WriteDict() {
  ParquetException::NYI("only plain encoding currently implemented for boolean");
  return nullptr;
}

template <>
inline std::shared_ptr<Buffer> DictionaryPageBuilder<BooleanType>::AppendValues(
    const std::vector<TC>& values) {
  ParquetException::NYI("only plain encoding currently implemented for boolean");
  return nullptr;
}

template <typename Type>
inline static std::shared_ptr<DictionaryPage> MakeDictPage(
    const ColumnDescriptor* d, const std::vector<typename Type::c_type>& values,
    const std::vector<int>& values_per_page, Encoding::type encoding,
    std::vector<std::shared_ptr<Buffer>>& rle_indices) {
  test::DictionaryPageBuilder<Type> page_builder(d);
  int num_pages = static_cast<int>(values_per_page.size());
  int value_start = 0;

  for (int i = 0; i < num_pages; i++) {
    rle_indices.push_back(page_builder.AppendValues(
        slice(values, value_start, value_start + values_per_page[i])));
    value_start += values_per_page[i];
  }

  auto buffer = page_builder.WriteDict();

  return std::make_shared<DictionaryPage>(buffer, page_builder.num_values(),
                                          Encoding::PLAIN);
}

// Given def/rep levels and values create multiple dict pages
template <typename Type>
inline static void PaginateDict(const ColumnDescriptor* d,
                                const std::vector<typename Type::c_type>& values,
                                const std::vector<int16_t>& def_levels,
                                int16_t max_def_level,
                                const std::vector<int16_t>& rep_levels,
                                int16_t max_rep_level, int num_levels_per_page,
                                const std::vector<int>& values_per_page,
                                std::vector<std::shared_ptr<Page>>& pages,
                                Encoding::type encoding = Encoding::RLE_DICTIONARY) {
  int num_pages = static_cast<int>(values_per_page.size());
  std::vector<std::shared_ptr<Buffer>> rle_indices;
  std::shared_ptr<DictionaryPage> dict_page =
      MakeDictPage<Type>(d, values, values_per_page, encoding, rle_indices);
  pages.push_back(dict_page);
  int def_level_start = 0;
  int def_level_end = 0;
  int rep_level_start = 0;
  int rep_level_end = 0;
  for (int i = 0; i < num_pages; i++) {
    if (max_def_level > 0) {
      def_level_start = i * num_levels_per_page;
      def_level_end = (i + 1) * num_levels_per_page;
    }
    if (max_rep_level > 0) {
      rep_level_start = i * num_levels_per_page;
      rep_level_end = (i + 1) * num_levels_per_page;
    }
    std::shared_ptr<DataPageV1> data_page = MakeDataPage<Int32Type>(
        d, {}, values_per_page[i], encoding, rle_indices[i]->data(),
        static_cast<int>(rle_indices[i]->size()),
        slice(def_levels, def_level_start, def_level_end), max_def_level,
        slice(rep_levels, rep_level_start, rep_level_end), max_rep_level);
    pages.push_back(data_page);
  }
}

// Given def/rep levels and values create multiple plain pages
template <typename Type>
static inline void PaginatePlain(const ColumnDescriptor* d,
                                 const std::vector<typename Type::c_type>& values,
                                 const std::vector<int16_t>& def_levels,
                                 int16_t max_def_level,
                                 const std::vector<int16_t>& rep_levels,
                                 int16_t max_rep_level, int num_levels_per_page,
                                 const std::vector<int>& values_per_page,
                                 std::vector<std::shared_ptr<Page>>& pages,
                                 Encoding::type encoding = Encoding::PLAIN) {
  int num_pages = static_cast<int>(values_per_page.size());
  int def_level_start = 0;
  int def_level_end = 0;
  int rep_level_start = 0;
  int rep_level_end = 0;
  int value_start = 0;
  for (int i = 0; i < num_pages; i++) {
    if (max_def_level > 0) {
      def_level_start = i * num_levels_per_page;
      def_level_end = (i + 1) * num_levels_per_page;
    }
    if (max_rep_level > 0) {
      rep_level_start = i * num_levels_per_page;
      rep_level_end = (i + 1) * num_levels_per_page;
    }
    std::shared_ptr<DataPage> page = MakeDataPage<Type>(
        d, slice(values, value_start, value_start + values_per_page[i]),
        values_per_page[i], encoding, nullptr, 0,
        slice(def_levels, def_level_start, def_level_end), max_def_level,
        slice(rep_levels, rep_level_start, rep_level_end), max_rep_level);
    pages.push_back(page);
    value_start += values_per_page[i];
  }
}

// Generates pages from randomly generated data
template <typename Type>
static inline int MakePages(const ColumnDescriptor* d, int num_pages, int levels_per_page,
                            std::vector<int16_t>& def_levels,
                            std::vector<int16_t>& rep_levels,
                            std::vector<typename Type::c_type>& values,
                            std::vector<uint8_t>& buffer,
                            std::vector<std::shared_ptr<Page>>& pages,
                            Encoding::type encoding = Encoding::PLAIN,
                            uint32_t seed = 0) {
  int num_levels = levels_per_page * num_pages;
  int num_values = 0;
  int16_t zero = 0;
  int16_t max_def_level = d->max_definition_level();
  int16_t max_rep_level = d->max_repetition_level();
  std::vector<int> values_per_page(num_pages, levels_per_page);
  // Create definition levels
  if (max_def_level > 0 && num_levels != 0) {
    def_levels.resize(num_levels);
    random_numbers(num_levels, seed, zero, max_def_level, def_levels.data());
    for (int p = 0; p < num_pages; p++) {
      int num_values_per_page = 0;
      for (int i = 0; i < levels_per_page; i++) {
        if (def_levels[i + p * levels_per_page] == max_def_level) {
          num_values_per_page++;
          num_values++;
        }
      }
      values_per_page[p] = num_values_per_page;
    }
  } else {
    num_values = num_levels;
  }
  // Create repetition levels
  if (max_rep_level > 0 && num_levels != 0) {
    rep_levels.resize(num_levels);
    // Using a different seed so that def_levels and rep_levels are different.
    random_numbers(num_levels, seed + 789, zero, max_rep_level, rep_levels.data());
    // The generated levels are random. Force the very first page to start with a new
    // record.
    rep_levels[0] = 0;
    // For a null value, rep_levels and def_levels are both 0.
    // If we have a repeated value right after this, it needs to start with
    // rep_level = 0 to indicate a new record.
    for (int i = 0; i < num_levels - 1; ++i) {
      if (rep_levels[i] == 0 && def_levels[i] == 0) {
        rep_levels[i + 1] = 0;
      }
    }
  }
  // Create values
  values.resize(num_values);
  if (encoding == Encoding::PLAIN) {
    InitValues<typename Type::c_type>(num_values, values, buffer);
    PaginatePlain<Type>(d, values, def_levels, max_def_level, rep_levels, max_rep_level,
                        levels_per_page, values_per_page, pages);
  } else if (encoding == Encoding::RLE_DICTIONARY ||
             encoding == Encoding::PLAIN_DICTIONARY) {
    // Calls InitValues and repeats the data
    InitDictValues<typename Type::c_type>(num_values, levels_per_page, values, buffer);
    PaginateDict<Type>(d, values, def_levels, max_def_level, rep_levels, max_rep_level,
                       levels_per_page, values_per_page, pages);
  }

  return num_values;
}

// ----------------------------------------------------------------------
// Test data generation

template <>
void inline InitValues<bool>(int num_values, uint32_t seed, std::vector<bool>& values,
                             std::vector<uint8_t>& buffer) {
  values = {};
  if (seed == 0) {
    seed = static_cast<uint32_t>(::arrow::random_seed());
  }
  ::arrow::random_is_valid(num_values, 0.5, &values, static_cast<int>(seed));
}

template <>
inline void InitValues<ByteArray>(int num_values, uint32_t seed,
                                  std::vector<ByteArray>& values,
                                  std::vector<uint8_t>& buffer) {
  int max_byte_array_len = 12;
  int num_bytes = static_cast<int>(max_byte_array_len + sizeof(uint32_t));
  size_t nbytes = num_values * num_bytes;
  buffer.resize(nbytes);
  random_byte_array(num_values, seed, buffer.data(), values.data(), max_byte_array_len);
}

inline void InitWideByteArrayValues(int num_values, std::vector<ByteArray>& values,
                                    std::vector<uint8_t>& buffer, int min_len,
                                    int max_len) {
  int num_bytes = static_cast<int>(max_len + sizeof(uint32_t));
  size_t nbytes = num_values * num_bytes;
  buffer.resize(nbytes);
  random_byte_array(num_values, 0, buffer.data(), values.data(), min_len, max_len);
}

template <>
inline void InitValues<FLBA>(int num_values, uint32_t seed, std::vector<FLBA>& values,
                             std::vector<uint8_t>& buffer) {
  size_t nbytes = num_values * FLBA_LENGTH;
  buffer.resize(nbytes);
  random_fixed_byte_array(num_values, seed, buffer.data(), FLBA_LENGTH, values.data());
}

template <>
inline void InitValues<Int96>(int num_values, uint32_t seed, std::vector<Int96>& values,
                              std::vector<uint8_t>& buffer) {
  random_Int96_numbers(num_values, seed, std::numeric_limits<int32_t>::min(),
                       std::numeric_limits<int32_t>::max(), values.data());
}

inline std::string TestColumnName(int i) {
  std::stringstream col_name;
  col_name << "column_" << i;
  return col_name.str();
}

// This class lives here because of its dependency on the InitValues specializations.
template <typename TestType>
class PrimitiveTypedTest : public ::testing::Test {
 public:
  using c_type = typename TestType::c_type;

  void SetUpSchema(Repetition::type repetition, int num_columns = 1) {
    std::vector<schema::NodePtr> fields;

    for (int i = 0; i < num_columns; ++i) {
      std::string name = TestColumnName(i);
      fields.push_back(schema::PrimitiveNode::Make(name, repetition, TestType::type_num,
                                                   ConvertedType::NONE, FLBA_LENGTH));
    }
    node_ = schema::GroupNode::Make("schema", Repetition::REQUIRED, fields);
    schema_.Init(node_);
  }

  void GenerateData(int64_t num_values, uint32_t seed = 0);
  void SetupValuesOut(int64_t num_values);
  void SyncValuesOut();

 protected:
  schema::NodePtr node_;
  SchemaDescriptor schema_;

  // Input buffers
  std::vector<c_type> values_;

  std::vector<int16_t> def_levels_;

  std::vector<uint8_t> buffer_;
  // Pointer to the values, needed as we cannot use std::vector<bool>::data()
  c_type* values_ptr_;
  std::vector<uint8_t> bool_buffer_;

  // Output buffers
  std::vector<c_type> values_out_;
  std::vector<uint8_t> bool_buffer_out_;
  c_type* values_out_ptr_;
};

template <typename TestType>
inline void PrimitiveTypedTest<TestType>::SyncValuesOut() {}

template <>
inline void PrimitiveTypedTest<BooleanType>::SyncValuesOut() {
  std::vector<uint8_t>::const_iterator source_iterator = bool_buffer_out_.begin();
  std::vector<c_type>::iterator destination_iterator = values_out_.begin();
  while (source_iterator != bool_buffer_out_.end()) {
    *destination_iterator++ = *source_iterator++ != 0;
  }
}

template <typename TestType>
inline void PrimitiveTypedTest<TestType>::SetupValuesOut(int64_t num_values) {
  values_out_.clear();
  values_out_.resize(num_values);
  values_out_ptr_ = values_out_.data();
}

template <>
inline void PrimitiveTypedTest<BooleanType>::SetupValuesOut(int64_t num_values) {
  values_out_.clear();
  values_out_.resize(num_values);

  bool_buffer_out_.clear();
  bool_buffer_out_.resize(num_values);
  // Write once to all values so we can copy it without getting Valgrind errors
  // about uninitialised values.
  std::fill(bool_buffer_out_.begin(), bool_buffer_out_.end(), true);
  values_out_ptr_ = reinterpret_cast<bool*>(bool_buffer_out_.data());
}

template <typename TestType>
inline void PrimitiveTypedTest<TestType>::GenerateData(int64_t num_values,
                                                       uint32_t seed) {
  def_levels_.resize(num_values);
  values_.resize(num_values);

  InitValues<c_type>(static_cast<int>(num_values), seed, values_, buffer_);
  values_ptr_ = values_.data();

  std::fill(def_levels_.begin(), def_levels_.end(), 1);
}

template <>
inline void PrimitiveTypedTest<BooleanType>::GenerateData(int64_t num_values,
                                                          uint32_t seed) {
  def_levels_.resize(num_values);
  values_.resize(num_values);

  InitValues<c_type>(static_cast<int>(num_values), seed, values_, buffer_);
  bool_buffer_.resize(num_values);
  std::copy(values_.begin(), values_.end(), bool_buffer_.begin());
  values_ptr_ = reinterpret_cast<bool*>(bool_buffer_.data());

  std::fill(def_levels_.begin(), def_levels_.end(), 1);
}

// ----------------------------------------------------------------------
// test data generation

template <typename T>
inline void GenerateData(int num_values, T* out, std::vector<uint8_t>* heap) {
  // seed the prng so failure is deterministic
  random_numbers(num_values, 0, std::numeric_limits<T>::min(),
                 std::numeric_limits<T>::max(), out);
}

template <typename T>
inline void GenerateBoundData(int num_values, T* out, T min, T max,
                              std::vector<uint8_t>* heap) {
  // seed the prng so failure is deterministic
  random_numbers(num_values, 0, min, max, out);
}

template <>
inline void GenerateData<bool>(int num_values, bool* out, std::vector<uint8_t>* heap) {
  // seed the prng so failure is deterministic
  random_bools(num_values, 0.5, 0, out);
}

template <>
inline void GenerateData<Int96>(int num_values, Int96* out, std::vector<uint8_t>* heap) {
  // seed the prng so failure is deterministic
  random_Int96_numbers(num_values, 0, std::numeric_limits<int32_t>::min(),
                       std::numeric_limits<int32_t>::max(), out);
}

template <>
inline void GenerateData<ByteArray>(int num_values, ByteArray* out,
                                    std::vector<uint8_t>* heap) {
  int max_byte_array_len = 12;
  heap->resize(num_values * max_byte_array_len);
  // seed the prng so failure is deterministic
  random_byte_array(num_values, 0, heap->data(), out, 2, max_byte_array_len);
}

// Generate ByteArray or FLBA data where there is a given probability
// for each value to share a common prefix with its predecessor.
// This is useful to exercise prefix-based encodings such as DELTA_BYTE_ARRAY.
template <typename T>
inline void GeneratePrefixedData(int num_values, T* out, std::vector<uint8_t>* heap,
                                 double prefixed_probability);

template <>
inline void GeneratePrefixedData(int num_values, ByteArray* out,
                                 std::vector<uint8_t>* heap,
                                 double prefixed_probability) {
  int max_byte_array_len = 12;
  heap->resize(num_values * max_byte_array_len);
  // seed the prng so failure is deterministic
  prefixed_random_byte_array(num_values, /*seed=*/0, heap->data(), out, /*min_size=*/2,
                             /*max_size=*/max_byte_array_len, prefixed_probability);
}

static constexpr int kGenerateDataFLBALength = 8;

template <>
inline void GeneratePrefixedData<FLBA>(int num_values, FLBA* out,
                                       std::vector<uint8_t>* heap,
                                       double prefixed_probability) {
  heap->resize(num_values * kGenerateDataFLBALength);
  // seed the prng so failure is deterministic
  prefixed_random_byte_array(num_values, /*seed=*/0, heap->data(),
                             kGenerateDataFLBALength, out, prefixed_probability);
}

template <>
inline void GenerateData<FLBA>(int num_values, FLBA* out, std::vector<uint8_t>* heap) {
  heap->resize(num_values * kGenerateDataFLBALength);
  // seed the prng so failure is deterministic
  random_fixed_byte_array(num_values, 0, heap->data(), kGenerateDataFLBALength, out);
}

}  // namespace test
}  // namespace parquet