File size: 15,176 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include "parquet/platform.h"
#include "parquet/types.h"
namespace arrow {
class Array;
class BinaryArray;
} // namespace arrow
namespace parquet {
class ColumnDescriptor;
// ----------------------------------------------------------------------
// Value comparator interfaces
/// \brief Base class for value comparators. Generally used with
/// TypedComparator<T>
class PARQUET_EXPORT Comparator {
public:
virtual ~Comparator() {}
/// \brief Create a comparator explicitly from physical type and
/// sort order
/// \param[in] physical_type the physical type for the typed
/// comparator
/// \param[in] sort_order either SortOrder::SIGNED or
/// SortOrder::UNSIGNED
/// \param[in] type_length for FIXED_LEN_BYTE_ARRAY only
static std::shared_ptr<Comparator> Make(Type::type physical_type,
SortOrder::type sort_order,
int type_length = -1);
/// \brief Create typed comparator inferring default sort order from
/// ColumnDescriptor
/// \param[in] descr the Parquet column schema
static std::shared_ptr<Comparator> Make(const ColumnDescriptor* descr);
};
/// \brief Interface for comparison of physical types according to the
/// semantics of a particular logical type.
template <typename DType>
class TypedComparator : public Comparator {
public:
using T = typename DType::c_type;
/// \brief Scalar comparison of two elements, return true if first
/// is strictly less than the second
virtual bool Compare(const T& a, const T& b) const = 0;
/// \brief Compute maximum and minimum elements in a batch of
/// elements without any nulls
virtual std::pair<T, T> GetMinMax(const T* values, int64_t length) const = 0;
/// \brief Compute minimum and maximum elements from an Arrow array. Only
/// valid for certain Parquet Type / Arrow Type combinations, like BYTE_ARRAY
/// / arrow::BinaryArray
virtual std::pair<T, T> GetMinMax(const ::arrow::Array& values) const = 0;
/// \brief Compute maximum and minimum elements in a batch of
/// elements with accompanying bitmap indicating which elements are
/// included (bit set) and excluded (bit not set)
///
/// \param[in] values the sequence of values
/// \param[in] length the length of the sequence
/// \param[in] valid_bits a bitmap indicating which elements are
/// included (1) or excluded (0)
/// \param[in] valid_bits_offset the bit offset into the bitmap of
/// the first element in the sequence
virtual std::pair<T, T> GetMinMaxSpaced(const T* values, int64_t length,
const uint8_t* valid_bits,
int64_t valid_bits_offset) const = 0;
};
/// \brief Typed version of Comparator::Make
template <typename DType>
std::shared_ptr<TypedComparator<DType>> MakeComparator(Type::type physical_type,
SortOrder::type sort_order,
int type_length = -1) {
return std::static_pointer_cast<TypedComparator<DType>>(
Comparator::Make(physical_type, sort_order, type_length));
}
/// \brief Typed version of Comparator::Make
template <typename DType>
std::shared_ptr<TypedComparator<DType>> MakeComparator(const ColumnDescriptor* descr) {
return std::static_pointer_cast<TypedComparator<DType>>(Comparator::Make(descr));
}
// ----------------------------------------------------------------------
/// \brief Structure represented encoded statistics to be written to
/// and read from Parquet serialized metadata.
class PARQUET_EXPORT EncodedStatistics {
std::string max_, min_;
bool is_signed_ = false;
public:
EncodedStatistics() = default;
const std::string& max() const { return max_; }
const std::string& min() const { return min_; }
int64_t null_count = 0;
int64_t distinct_count = 0;
bool has_min = false;
bool has_max = false;
bool has_null_count = false;
bool has_distinct_count = false;
// When all values in the statistics are null, it is set to true.
// Otherwise, at least one value is not null, or we are not sure at all.
// Page index requires this information to decide whether a data page
// is a null page or not.
bool all_null_value = false;
// From parquet-mr
// Don't write stats larger than the max size rather than truncating. The
// rationale is that some engines may use the minimum value in the page as
// the true minimum for aggregations and there is no way to mark that a
// value has been truncated and is a lower bound and not in the page.
void ApplyStatSizeLimits(size_t length) {
if (max_.length() > length) {
has_max = false;
max_.clear();
}
if (min_.length() > length) {
has_min = false;
min_.clear();
}
}
bool is_set() const {
return has_min || has_max || has_null_count || has_distinct_count;
}
bool is_signed() const { return is_signed_; }
void set_is_signed(bool is_signed) { is_signed_ = is_signed; }
EncodedStatistics& set_max(std::string value) {
max_ = std::move(value);
has_max = true;
return *this;
}
EncodedStatistics& set_min(std::string value) {
min_ = std::move(value);
has_min = true;
return *this;
}
EncodedStatistics& set_null_count(int64_t value) {
null_count = value;
has_null_count = true;
return *this;
}
EncodedStatistics& set_distinct_count(int64_t value) {
distinct_count = value;
has_distinct_count = true;
return *this;
}
};
/// \brief Base type for computing column statistics while writing a file
class PARQUET_EXPORT Statistics {
public:
virtual ~Statistics() {}
/// \brief Create a new statistics instance given a column schema
/// definition
/// \param[in] descr the column schema
/// \param[in] pool a memory pool to use for any memory allocations, optional
static std::shared_ptr<Statistics> Make(
const ColumnDescriptor* descr,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
/// \brief Create a new statistics instance given a column schema
/// definition and preexisting state
/// \param[in] descr the column schema
/// \param[in] encoded_min the encoded minimum value
/// \param[in] encoded_max the encoded maximum value
/// \param[in] num_values total number of values
/// \param[in] null_count number of null values
/// \param[in] distinct_count number of distinct values
/// \param[in] has_min_max whether the min/max statistics are set
/// \param[in] has_null_count whether the null_count statistics are set
/// \param[in] has_distinct_count whether the distinct_count statistics are set
/// \param[in] pool a memory pool to use for any memory allocations, optional
static std::shared_ptr<Statistics> Make(
const ColumnDescriptor* descr, const std::string& encoded_min,
const std::string& encoded_max, int64_t num_values, int64_t null_count,
int64_t distinct_count, bool has_min_max, bool has_null_count,
bool has_distinct_count,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
// Helper function to convert EncodedStatistics to Statistics.
// EncodedStatistics does not contain number of non-null values, and it can be
// passed using the num_values parameter.
static std::shared_ptr<Statistics> Make(
const ColumnDescriptor* descr, const EncodedStatistics* encoded_statistics,
int64_t num_values = -1,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
/// \brief Return true if the count of null values is set
virtual bool HasNullCount() const = 0;
/// \brief The number of null values, may not be set
virtual int64_t null_count() const = 0;
/// \brief Return true if the count of distinct values is set
virtual bool HasDistinctCount() const = 0;
/// \brief The number of distinct values, may not be set
virtual int64_t distinct_count() const = 0;
/// \brief The number of non-null values in the column
virtual int64_t num_values() const = 0;
/// \brief Return true if both min and max statistics are set. Obtain
/// with TypedStatistics<T>::min and max
virtual bool HasMinMax() const = 0;
/// \brief Reset state of object to initial (no data observed) state
virtual void Reset() = 0;
/// \brief Plain-encoded minimum value
virtual std::string EncodeMin() const = 0;
/// \brief Plain-encoded maximum value
virtual std::string EncodeMax() const = 0;
/// \brief The finalized encoded form of the statistics for transport
virtual EncodedStatistics Encode() = 0;
/// \brief The physical type of the column schema
virtual Type::type physical_type() const = 0;
/// \brief The full type descriptor from the column schema
virtual const ColumnDescriptor* descr() const = 0;
/// \brief Check two Statistics for equality
virtual bool Equals(const Statistics& other) const = 0;
protected:
static std::shared_ptr<Statistics> Make(Type::type physical_type, const void* min,
const void* max, int64_t num_values,
int64_t null_count, int64_t distinct_count);
};
/// \brief A typed implementation of Statistics
template <typename DType>
class TypedStatistics : public Statistics {
public:
using T = typename DType::c_type;
/// \brief The current minimum value
virtual const T& min() const = 0;
/// \brief The current maximum value
virtual const T& max() const = 0;
/// \brief Update state with state of another Statistics object
virtual void Merge(const TypedStatistics<DType>& other) = 0;
/// \brief Batch statistics update
virtual void Update(const T* values, int64_t num_values, int64_t null_count) = 0;
/// \brief Batch statistics update with supplied validity bitmap
/// \param[in] values pointer to column values
/// \param[in] valid_bits Pointer to bitmap representing if values are non-null.
/// \param[in] valid_bits_offset Offset offset into valid_bits where the slice of
/// data begins.
/// \param[in] num_spaced_values The length of values in values/valid_bits to inspect
/// when calculating statistics. This can be smaller than
/// num_values+null_count as null_count can include nulls
/// from parents while num_spaced_values does not.
/// \param[in] num_values Number of values that are not null.
/// \param[in] null_count Number of values that are null.
virtual void UpdateSpaced(const T* values, const uint8_t* valid_bits,
int64_t valid_bits_offset, int64_t num_spaced_values,
int64_t num_values, int64_t null_count) = 0;
/// \brief EXPERIMENTAL: Update statistics with an Arrow array without
/// conversion to a primitive Parquet C type. Only implemented for certain
/// Parquet type / Arrow type combinations like BYTE_ARRAY /
/// arrow::BinaryArray
///
/// If update_counts is true then the null_count and num_values will be updated
/// based on the null_count of values. Set to false if these are updated
/// elsewhere (e.g. when updating a dictionary where the counts are taken from
/// the indices and not the values)
virtual void Update(const ::arrow::Array& values, bool update_counts = true) = 0;
/// \brief Set min and max values to particular values
virtual void SetMinMax(const T& min, const T& max) = 0;
/// \brief Increments the null count directly
/// Use Update to extract the null count from data. Use this if you determine
/// the null count through some other means (e.g. dictionary arrays where the
/// null count is determined from the indices)
virtual void IncrementNullCount(int64_t n) = 0;
/// \brief Increments the number of values directly
/// The same note on IncrementNullCount applies here
virtual void IncrementNumValues(int64_t n) = 0;
};
using BoolStatistics = TypedStatistics<BooleanType>;
using Int32Statistics = TypedStatistics<Int32Type>;
using Int64Statistics = TypedStatistics<Int64Type>;
using FloatStatistics = TypedStatistics<FloatType>;
using DoubleStatistics = TypedStatistics<DoubleType>;
using ByteArrayStatistics = TypedStatistics<ByteArrayType>;
using FLBAStatistics = TypedStatistics<FLBAType>;
/// \brief Typed version of Statistics::Make
template <typename DType>
std::shared_ptr<TypedStatistics<DType>> MakeStatistics(
const ColumnDescriptor* descr,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
return std::static_pointer_cast<TypedStatistics<DType>>(Statistics::Make(descr, pool));
}
/// \brief Create Statistics initialized to a particular state
/// \param[in] min the minimum value
/// \param[in] max the minimum value
/// \param[in] num_values number of values
/// \param[in] null_count number of null values
/// \param[in] distinct_count number of distinct values
template <typename DType>
std::shared_ptr<TypedStatistics<DType>> MakeStatistics(const typename DType::c_type& min,
const typename DType::c_type& max,
int64_t num_values,
int64_t null_count,
int64_t distinct_count) {
return std::static_pointer_cast<TypedStatistics<DType>>(Statistics::Make(
DType::type_num, &min, &max, num_values, null_count, distinct_count));
}
/// \brief Typed version of Statistics::Make
template <typename DType>
std::shared_ptr<TypedStatistics<DType>> MakeStatistics(
const ColumnDescriptor* descr, const std::string& encoded_min,
const std::string& encoded_max, int64_t num_values, int64_t null_count,
int64_t distinct_count, bool has_min_max, bool has_null_count,
bool has_distinct_count, ::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
return std::static_pointer_cast<TypedStatistics<DType>>(Statistics::Make(
descr, encoded_min, encoded_max, num_values, null_count, distinct_count,
has_min_max, has_null_count, has_distinct_count, pool));
}
} // namespace parquet
|