File size: 16,607 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <cstring>
#include <memory>
#include <vector>
#include "arrow/type_fwd.h"
#include "parquet/exception.h"
#include "parquet/platform.h"
#include "parquet/types.h"
namespace arrow {
template <typename T>
class Dictionary32Builder;
}
namespace parquet {
template <typename DType>
class TypedEncoder;
using BooleanEncoder = TypedEncoder<BooleanType>;
using Int32Encoder = TypedEncoder<Int32Type>;
using Int64Encoder = TypedEncoder<Int64Type>;
using Int96Encoder = TypedEncoder<Int96Type>;
using FloatEncoder = TypedEncoder<FloatType>;
using DoubleEncoder = TypedEncoder<DoubleType>;
using ByteArrayEncoder = TypedEncoder<ByteArrayType>;
using FLBAEncoder = TypedEncoder<FLBAType>;
template <typename DType>
class TypedDecoder;
class BooleanDecoder;
using Int32Decoder = TypedDecoder<Int32Type>;
using Int64Decoder = TypedDecoder<Int64Type>;
using Int96Decoder = TypedDecoder<Int96Type>;
using FloatDecoder = TypedDecoder<FloatType>;
using DoubleDecoder = TypedDecoder<DoubleType>;
using ByteArrayDecoder = TypedDecoder<ByteArrayType>;
class FLBADecoder;
template <typename T>
struct EncodingTraits;
template <>
struct EncodingTraits<BooleanType> {
using Encoder = BooleanEncoder;
using Decoder = BooleanDecoder;
using ArrowType = ::arrow::BooleanType;
using Accumulator = ::arrow::BooleanBuilder;
struct DictAccumulator {};
};
template <>
struct EncodingTraits<Int32Type> {
using Encoder = Int32Encoder;
using Decoder = Int32Decoder;
using ArrowType = ::arrow::Int32Type;
using Accumulator = ::arrow::NumericBuilder<::arrow::Int32Type>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::Int32Type>;
};
template <>
struct EncodingTraits<Int64Type> {
using Encoder = Int64Encoder;
using Decoder = Int64Decoder;
using ArrowType = ::arrow::Int64Type;
using Accumulator = ::arrow::NumericBuilder<::arrow::Int64Type>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::Int64Type>;
};
template <>
struct EncodingTraits<Int96Type> {
using Encoder = Int96Encoder;
using Decoder = Int96Decoder;
struct Accumulator {};
struct DictAccumulator {};
};
template <>
struct EncodingTraits<FloatType> {
using Encoder = FloatEncoder;
using Decoder = FloatDecoder;
using ArrowType = ::arrow::FloatType;
using Accumulator = ::arrow::NumericBuilder<::arrow::FloatType>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::FloatType>;
};
template <>
struct EncodingTraits<DoubleType> {
using Encoder = DoubleEncoder;
using Decoder = DoubleDecoder;
using ArrowType = ::arrow::DoubleType;
using Accumulator = ::arrow::NumericBuilder<::arrow::DoubleType>;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::DoubleType>;
};
template <>
struct EncodingTraits<ByteArrayType> {
using Encoder = ByteArrayEncoder;
using Decoder = ByteArrayDecoder;
using ArrowType = ::arrow::BinaryType;
/// \brief Internal helper class for decoding BYTE_ARRAY data where we can
/// overflow the capacity of a single arrow::BinaryArray
struct Accumulator {
std::unique_ptr<::arrow::BinaryBuilder> builder;
std::vector<std::shared_ptr<::arrow::Array>> chunks;
};
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::BinaryType>;
};
template <>
struct EncodingTraits<FLBAType> {
using Encoder = FLBAEncoder;
using Decoder = FLBADecoder;
using ArrowType = ::arrow::FixedSizeBinaryType;
using Accumulator = ::arrow::FixedSizeBinaryBuilder;
using DictAccumulator = ::arrow::Dictionary32Builder<::arrow::FixedSizeBinaryType>;
};
class ColumnDescriptor;
// Untyped base for all encoders
class Encoder {
public:
virtual ~Encoder() = default;
virtual int64_t EstimatedDataEncodedSize() = 0;
virtual std::shared_ptr<Buffer> FlushValues() = 0;
virtual Encoding::type encoding() const = 0;
virtual void Put(const ::arrow::Array& values) = 0;
// Report the number of bytes written to the encoder since the last report.
// It only works for BYTE_ARRAY type and throw for other types.
// This call is not idempotent since it resets the internal counter.
virtual int64_t ReportUnencodedDataBytes() = 0;
virtual MemoryPool* memory_pool() const = 0;
};
// Base class for value encoders. Since encoders may or not have state (e.g.,
// dictionary encoding) we use a class instance to maintain any state.
//
// Encode interfaces are internal, subject to change without deprecation.
template <typename DType>
class TypedEncoder : virtual public Encoder {
public:
using T = typename DType::c_type;
using Encoder::Put;
virtual void Put(const T* src, int num_values) = 0;
virtual void Put(const std::vector<T>& src, int num_values = -1);
virtual void PutSpaced(const T* src, int num_values, const uint8_t* valid_bits,
int64_t valid_bits_offset) = 0;
};
template <typename DType>
void TypedEncoder<DType>::Put(const std::vector<T>& src, int num_values) {
if (num_values == -1) {
num_values = static_cast<int>(src.size());
}
Put(src.data(), num_values);
}
template <>
inline void TypedEncoder<BooleanType>::Put(const std::vector<bool>& src, int num_values) {
// NOTE(wesm): This stub is here only to satisfy the compiler; it is
// overridden later with the actual implementation
}
// Base class for dictionary encoders
template <typename DType>
class DictEncoder : virtual public TypedEncoder<DType> {
public:
/// Writes out any buffered indices to buffer preceded by the bit width of this data.
/// Returns the number of bytes written.
/// If the supplied buffer is not big enough, returns -1.
/// buffer must be preallocated with buffer_len bytes. Use EstimatedDataEncodedSize()
/// to size buffer.
virtual int WriteIndices(uint8_t* buffer, int buffer_len) = 0;
virtual int dict_encoded_size() const = 0;
virtual int bit_width() const = 0;
/// Writes out the encoded dictionary to buffer. buffer must be preallocated to
/// dict_encoded_size() bytes.
virtual void WriteDict(uint8_t* buffer) const = 0;
virtual int num_entries() const = 0;
/// \brief EXPERIMENTAL: Append dictionary indices into the encoder. It is
/// assumed (without any boundschecking) that the indices reference
/// preexisting dictionary values
/// \param[in] indices the dictionary index values. Only Int32Array currently
/// supported
virtual void PutIndices(const ::arrow::Array& indices) = 0;
/// \brief EXPERIMENTAL: Append dictionary into encoder, inserting indices
/// separately. Currently throws exception if the current dictionary memo is
/// non-empty
/// \param[in] values the dictionary values. Only valid for certain
/// Parquet/Arrow type combinations, like BYTE_ARRAY/BinaryArray
virtual void PutDictionary(const ::arrow::Array& values) = 0;
};
// ----------------------------------------------------------------------
// Value decoding
class Decoder {
public:
virtual ~Decoder() = default;
// Sets the data for a new page. This will be called multiple times on the same
// decoder and should reset all internal state.
//
// `num_values` comes from the data page header, and may be greater than the number of
// physical values in the data buffer if there are some omitted (null) values.
// `len`, on the other hand, is the size in bytes of the data buffer and
// directly relates to the number of physical values.
virtual void SetData(int num_values, const uint8_t* data, int len) = 0;
// Returns the number of values left (for the last call to SetData()). This is
// the number of values left in this page.
virtual int values_left() const = 0;
virtual Encoding::type encoding() const = 0;
};
template <typename DType>
class TypedDecoder : virtual public Decoder {
public:
using T = typename DType::c_type;
/// \brief Decode values into a buffer
///
/// Subclasses may override the more specialized Decode methods below.
///
/// \param[in] buffer destination for decoded values
/// \param[in] max_values maximum number of values to decode
/// \return The number of values decoded. Should be identical to max_values except
/// at the end of the current data page.
virtual int Decode(T* buffer, int max_values) = 0;
/// \brief Decode the values in this data page but leave spaces for null entries.
///
/// \param[in] buffer destination for decoded values
/// \param[in] num_values size of the def_levels and buffer arrays including the number
/// of null slots
/// \param[in] null_count number of null slots
/// \param[in] valid_bits bitmap data indicating position of valid slots
/// \param[in] valid_bits_offset offset into valid_bits
/// \return The number of values decoded, including nulls.
virtual int DecodeSpaced(T* buffer, int num_values, int null_count,
const uint8_t* valid_bits, int64_t valid_bits_offset) = 0;
/// \brief Decode into an ArrayBuilder or other accumulator
///
/// This function assumes the definition levels were already decoded
/// as a validity bitmap in the given `valid_bits`. `null_count`
/// is the number of 0s in `valid_bits`.
/// As a space optimization, it is allowed for `valid_bits` to be null
/// if `null_count` is zero.
///
/// \return number of values decoded
virtual int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits,
int64_t valid_bits_offset,
typename EncodingTraits<DType>::Accumulator* out) = 0;
/// \brief Decode into an ArrayBuilder or other accumulator ignoring nulls
///
/// \return number of values decoded
int DecodeArrowNonNull(int num_values,
typename EncodingTraits<DType>::Accumulator* out) {
return DecodeArrow(num_values, 0, /*valid_bits=*/NULLPTR, 0, out);
}
/// \brief Decode into a DictionaryBuilder
///
/// This function assumes the definition levels were already decoded
/// as a validity bitmap in the given `valid_bits`. `null_count`
/// is the number of 0s in `valid_bits`.
/// As a space optimization, it is allowed for `valid_bits` to be null
/// if `null_count` is zero.
///
/// \return number of values decoded
virtual int DecodeArrow(int num_values, int null_count, const uint8_t* valid_bits,
int64_t valid_bits_offset,
typename EncodingTraits<DType>::DictAccumulator* builder) = 0;
/// \brief Decode into a DictionaryBuilder ignoring nulls
///
/// \return number of values decoded
int DecodeArrowNonNull(int num_values,
typename EncodingTraits<DType>::DictAccumulator* builder) {
return DecodeArrow(num_values, 0, /*valid_bits=*/NULLPTR, 0, builder);
}
};
template <typename DType>
class DictDecoder : virtual public TypedDecoder<DType> {
public:
using T = typename DType::c_type;
virtual void SetDict(TypedDecoder<DType>* dictionary) = 0;
/// \brief Insert dictionary values into the Arrow dictionary builder's memo,
/// but do not append any indices
virtual void InsertDictionary(::arrow::ArrayBuilder* builder) = 0;
/// \brief Decode only dictionary indices and append to dictionary
/// builder. The builder must have had the dictionary from this decoder
/// inserted already.
///
/// \warning Remember to reset the builder each time the dict decoder is initialized
/// with a new dictionary page
virtual int DecodeIndicesSpaced(int num_values, int null_count,
const uint8_t* valid_bits, int64_t valid_bits_offset,
::arrow::ArrayBuilder* builder) = 0;
/// \brief Decode only dictionary indices (no nulls)
///
/// \warning Remember to reset the builder each time the dict decoder is initialized
/// with a new dictionary page
virtual int DecodeIndices(int num_values, ::arrow::ArrayBuilder* builder) = 0;
/// \brief Decode only dictionary indices (no nulls). Same as above
/// DecodeIndices but target is an array instead of a builder.
///
/// \note API EXPERIMENTAL
virtual int DecodeIndices(int num_values, int32_t* indices) = 0;
/// \brief Get dictionary. The reader will call this API when it encounters a
/// new dictionary.
///
/// @param[out] dictionary The pointer to dictionary values. Dictionary is owned by
/// the decoder and is destroyed when the decoder is destroyed.
/// @param[out] dictionary_length The dictionary length.
///
/// \note API EXPERIMENTAL
virtual void GetDictionary(const T** dictionary, int32_t* dictionary_length) = 0;
};
// ----------------------------------------------------------------------
// TypedEncoder specializations, traits, and factory functions
class BooleanDecoder : virtual public TypedDecoder<BooleanType> {
public:
using TypedDecoder<BooleanType>::Decode;
/// \brief Decode and bit-pack values into a buffer
///
/// \param[in] buffer destination for decoded values
/// This buffer will contain bit-packed values. If
/// max_values is not a multiple of 8, the trailing bits
/// of the last byte will be undefined.
/// \param[in] max_values max values to decode.
/// \return The number of values decoded. Should be identical to max_values except
/// at the end of the current data page.
virtual int Decode(uint8_t* buffer, int max_values) = 0;
};
class FLBADecoder : virtual public TypedDecoder<FLBAType> {
public:
using TypedDecoder<FLBAType>::DecodeSpaced;
// TODO(wesm): As possible follow-up to PARQUET-1508, we should examine if
// there is value in adding specialized read methods for
// FIXED_LEN_BYTE_ARRAY. If only Decimal data can occur with this data type
// then perhaps not
};
PARQUET_EXPORT
std::unique_ptr<Encoder> MakeEncoder(
Type::type type_num, Encoding::type encoding, bool use_dictionary = false,
const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
template <typename DType>
std::unique_ptr<typename EncodingTraits<DType>::Encoder> MakeTypedEncoder(
Encoding::type encoding, bool use_dictionary = false,
const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
using OutType = typename EncodingTraits<DType>::Encoder;
std::unique_ptr<Encoder> base =
MakeEncoder(DType::type_num, encoding, use_dictionary, descr, pool);
return std::unique_ptr<OutType>(dynamic_cast<OutType*>(base.release()));
}
PARQUET_EXPORT
std::unique_ptr<Decoder> MakeDecoder(
Type::type type_num, Encoding::type encoding, const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
namespace detail {
PARQUET_EXPORT
std::unique_ptr<Decoder> MakeDictDecoder(Type::type type_num,
const ColumnDescriptor* descr,
::arrow::MemoryPool* pool);
} // namespace detail
template <typename DType>
std::unique_ptr<DictDecoder<DType>> MakeDictDecoder(
const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
using OutType = DictDecoder<DType>;
auto decoder = detail::MakeDictDecoder(DType::type_num, descr, pool);
return std::unique_ptr<OutType>(dynamic_cast<OutType*>(decoder.release()));
}
template <typename DType>
std::unique_ptr<typename EncodingTraits<DType>::Decoder> MakeTypedDecoder(
Encoding::type encoding, const ColumnDescriptor* descr = NULLPTR,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool()) {
using OutType = typename EncodingTraits<DType>::Decoder;
std::unique_ptr<Decoder> base = MakeDecoder(DType::type_num, encoding, descr, pool);
return std::unique_ptr<OutType>(dynamic_cast<OutType*>(base.release()));
}
} // namespace parquet
|