File size: 20,831 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#pragma once

#include <cstdint>
#include <iosfwd>
#include <limits>
#include <string>
#include <string_view>
#include <utility>

#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/type_fwd.h"
#include "arrow/util/basic_decimal.h"

namespace arrow {

class Decimal64;

/// Represents a signed 32-bit decimal value in two's complement.
/// Calulations wrap around and overflow is ignored.
/// The max decimal precision that can be safely represented is
/// 9 significant digits.
///
/// The implementation is split into two parts :
///
/// 1. BasicDecimal32
///    - can be safely compiled to IR without references to libstdc++
/// 2. Decimal32
///    - has additional functionality on top of BasicDecimal32 to deal with
///      strings and streams
class ARROW_EXPORT Decimal32 : public BasicDecimal32 {
 public:
  /// \cond FALSE
  // (need to avoid a duplicate definition in sphinx)
  using BasicDecimal32::BasicDecimal32;
  /// \endcond

  /// \brief constructor creates a Decimal32 from a BasicDecimal32
  constexpr Decimal32(const BasicDecimal32& value) noexcept  // NOLINT runtime/explicit
      : BasicDecimal32(value) {}

  /// \brief Parse the number from a base 10 string representation
  explicit Decimal32(const std::string& value);

  /// \brief Empty constructor creates a Decimal32 with a value of 0
  /// this is required for some older compilers
  constexpr Decimal32() noexcept : BasicDecimal32() {}

  /// \brief Divide this number by right and return the result.
  ///
  /// This operation is not destructive.
  /// The answer rounds to zero. Signs work like:
  ///   21 /  5 ->  4,  1
  ///  -21 /  5 -> -4, -1
  ///   21 / -5 -> -4,  1
  ///  -21 / -5 ->  4, -1
  /// \param[in] divisor the number to divide by
  /// \return the pair of the quotient and the remainder
  Result<std::pair<Decimal32, Decimal32>> Divide(const Decimal32& divisor) const {
    std::pair<Decimal32, Decimal32> result;
    auto dstatus = BasicDecimal32::Divide(divisor, &result.first, &result.second);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return result;
  }

  /// \brief Convert the Decimal32 value to a base 10 decimal string with the given scale
  std::string ToString(int32_t scale) const;

  /// \brief Convert the value to an integer string
  std::string ToIntegerString() const;

  /// \brief Cast this value to an int64_t
  explicit operator int64_t() const;

  explicit operator Decimal64() const;

  /// \brief Convert a decimal string to a Decimal value, optionally including
  /// precision and scale if they're passed in and not null.
  static Status FromString(std::string_view s, Decimal32* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const std::string& s, Decimal32* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const char* s, Decimal32* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Result<Decimal32> FromString(std::string_view s);
  static Result<Decimal32> FromString(const std::string& s);
  static Result<Decimal32> FromString(const char* s);

  static Result<Decimal32> FromReal(double real, int32_t precision, int32_t scale);
  static Result<Decimal32> FromReal(float real, int32_t precision, int32_t scale);

  /// \brief Convert from a big-endian byte representation. The length must be
  ///        between 1 and 4
  /// \return error statis if the length is an invalid value
  static Result<Decimal32> FromBigEndian(const uint8_t* data, int32_t length);

  /// \brief Convert Decimal32 from one scale to another
  Result<Decimal32> Rescale(int32_t original_scale, int32_t new_scale) const {
    Decimal32 out;
    auto dstatus = BasicDecimal32::Rescale(original_scale, new_scale, &out);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return out;
  }

  /// \brief Convert to a signed integer
  template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
  Result<T> ToInteger() const {
    return static_cast<T>(value_);
  }

  /// \brief Convert to a signed integer
  template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
  Status ToInteger(T* out) const {
    return ToInteger<T>().Value(out);
  }

  /// \brief Convert to a floating-point number (scaled)
  float ToFloat(int32_t scale) const;
  /// \brief Convert to a floating-point number (scaled)
  double ToDouble(int32_t scale) const;

  /// \brief Convert to a floating-point number (scaled)
  template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>>
  T ToReal(int32_t scale) const {
    static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
                  "Unexpected floating-point type");
    if constexpr (std::is_same_v<T, float>) {
      return ToFloat(scale);
    } else {
      return ToDouble(scale);
    }
  }

  ARROW_FRIEND_EXPORT friend std::ostream& operator<<(std::ostream& os,
                                                      const Decimal32& decimal);

 private:
  /// Converts internal error code to Status
  Status ToArrowStatus(DecimalStatus dstatus) const;
};

class ARROW_EXPORT Decimal64 : public BasicDecimal64 {
 public:
  /// \cond FALSE
  // (need to avoid a duplicate definition in sphinx)
  using BasicDecimal64::BasicDecimal64;
  /// \endcond

  /// \brief constructor creates a Decimal64 from a BasicDecimal64
  constexpr Decimal64(const BasicDecimal64& value) noexcept  // NOLINT runtime/explicit
      : BasicDecimal64(value) {}

  explicit Decimal64(const BasicDecimal32& value) noexcept
      : BasicDecimal64(static_cast<int64_t>(value.value())) {}

  /// \brief Parse the number from a base 10 string representation
  explicit Decimal64(const std::string& value);

  /// \brief Empty constructor creates a Decimal64 with a value of 0
  /// this is required for some older compilers
  constexpr Decimal64() noexcept : BasicDecimal64() {}

  /// \brief Divide this number by right and return the result.
  ///
  /// This operation is not destructive.
  /// The answer rounds to zero. Signs work like:
  ///   21 /  5 ->  4,  1
  ///  -21 /  5 -> -4, -1
  ///   21 / -5 -> -4,  1
  ///  -21 / -5 ->  4, -1
  /// \param[in] divisor the number to divide by
  /// \return the pair of the quotient and the remainder
  Result<std::pair<Decimal64, Decimal64>> Divide(const Decimal64& divisor) const {
    std::pair<Decimal64, Decimal64> result;
    auto dstatus = BasicDecimal64::Divide(divisor, &result.first, &result.second);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return result;
  }

  /// \brief Convert the Decimal64 value to a base 10 decimal string with the given scale
  std::string ToString(int32_t scale) const;

  /// \brief Convert the value to an integer string
  std::string ToIntegerString() const;

  /// \brief Cast this value to an int64_t
  explicit operator int64_t() const;

  /// \brief Convert a decimal string to a Decimal value, optionally including
  /// precision and scale if they're passed in and not null.
  static Status FromString(std::string_view s, Decimal64* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const std::string& s, Decimal64* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const char* s, Decimal64* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Result<Decimal64> FromString(std::string_view s);
  static Result<Decimal64> FromString(const std::string& s);
  static Result<Decimal64> FromString(const char* s);

  static Result<Decimal64> FromReal(double real, int32_t precision, int32_t scale);
  static Result<Decimal64> FromReal(float real, int32_t precision, int32_t scale);

  /// \brief Convert from a big-endian byte representation. The length must be
  ///        between 1 and 4
  /// \return error statis if the length is an invalid value
  static Result<Decimal64> FromBigEndian(const uint8_t* data, int32_t length);

  /// \brief Convert Decimal64 from one scale to another
  Result<Decimal64> Rescale(int32_t original_scale, int32_t new_scale) const {
    Decimal64 out;
    auto dstatus = BasicDecimal64::Rescale(original_scale, new_scale, &out);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return out;
  }

  /// \brief Convert to a signed integer
  template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
  Result<T> ToInteger() const {
    return static_cast<T>(value_);
  }

  /// \brief Convert to a signed integer
  template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
  Status ToInteger(T* out) const {
    return ToInteger<T>().Value(out);
  }

  /// \brief Convert to a floating-point number (scaled)
  float ToFloat(int32_t scale) const;
  /// \brief Convert to a floating-point number (scaled)
  double ToDouble(int32_t scale) const;

  /// \brief Convert to a floating-point number (scaled)
  template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>>
  T ToReal(int32_t scale) const {
    static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
                  "Unexpected floating-point type");
    if constexpr (std::is_same_v<T, float>) {
      return ToFloat(scale);
    } else {
      return ToDouble(scale);
    }
  }

  ARROW_FRIEND_EXPORT friend std::ostream& operator<<(std::ostream& os,
                                                      const Decimal64& decimal);

 private:
  /// Converts internal error code to Status
  Status ToArrowStatus(DecimalStatus dstatus) const;
};

/// Represents a signed 128-bit integer in two's complement.
/// Calculations wrap around and overflow is ignored.
/// The max decimal precision that can be safely represented is
/// 38 significant digits.
///
/// For a discussion of the algorithms, look at Knuth's volume 2,
/// Semi-numerical Algorithms section 4.3.1.
///
/// Adapted from the Apache ORC C++ implementation
///
/// The implementation is split into two parts :
///
/// 1. BasicDecimal128
///    - can be safely compiled to IR without references to libstdc++.
/// 2. Decimal128
///    - has additional functionality on top of BasicDecimal128 to deal with
///      strings and streams.
class ARROW_EXPORT Decimal128 : public BasicDecimal128 {
 public:
  /// \cond FALSE
  // (need to avoid a duplicate definition in Sphinx)
  using BasicDecimal128::BasicDecimal128;
  /// \endcond

  /// \brief constructor creates a Decimal128 from a BasicDecimal128.
  constexpr Decimal128(const BasicDecimal128& value) noexcept  // NOLINT runtime/explicit
      : BasicDecimal128(value) {}

  /// \brief Parse the number from a base 10 string representation.
  explicit Decimal128(const std::string& value);

  /// \brief Empty constructor creates a Decimal128 with a value of 0.
  // This is required on some older compilers.
  constexpr Decimal128() noexcept : BasicDecimal128() {}

  /// Divide this number by right and return the result.
  ///
  /// This operation is not destructive.
  /// The answer rounds to zero. Signs work like:
  ///   21 /  5 ->  4,  1
  ///  -21 /  5 -> -4, -1
  ///   21 / -5 -> -4,  1
  ///  -21 / -5 ->  4, -1
  /// \param[in] divisor the number to divide by
  /// \return the pair of the quotient and the remainder
  Result<std::pair<Decimal128, Decimal128>> Divide(const Decimal128& divisor) const {
    std::pair<Decimal128, Decimal128> result;
    auto dstatus = BasicDecimal128::Divide(divisor, &result.first, &result.second);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return result;
  }

  /// \brief Convert the Decimal128 value to a base 10 decimal string with the given
  /// scale.
  std::string ToString(int32_t scale) const;

  /// \brief Convert the value to an integer string
  std::string ToIntegerString() const;

  /// \brief Cast this value to an int64_t.
  explicit operator int64_t() const;

  /// \brief Convert a decimal string to a Decimal128 value, optionally including
  /// precision and scale if they're passed in and not null.
  static Status FromString(std::string_view s, Decimal128* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const std::string& s, Decimal128* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const char* s, Decimal128* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Result<Decimal128> FromString(std::string_view s);
  static Result<Decimal128> FromString(const std::string& s);
  static Result<Decimal128> FromString(const char* s);

  static Result<Decimal128> FromReal(double real, int32_t precision, int32_t scale);
  static Result<Decimal128> FromReal(float real, int32_t precision, int32_t scale);

  /// \brief Convert from a big-endian byte representation. The length must be
  ///        between 1 and 16.
  /// \return error status if the length is an invalid value
  static Result<Decimal128> FromBigEndian(const uint8_t* data, int32_t length);

  /// \brief Convert Decimal128 from one scale to another
  Result<Decimal128> Rescale(int32_t original_scale, int32_t new_scale) const {
    Decimal128 out;
    auto dstatus = BasicDecimal128::Rescale(original_scale, new_scale, &out);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return out;
  }

  /// \brief Convert to a signed integer
  template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
  Result<T> ToInteger() const {
    constexpr auto min_value = std::numeric_limits<T>::min();
    constexpr auto max_value = std::numeric_limits<T>::max();
    const auto& self = *this;
    if (self < min_value || self > max_value) {
      return Status::Invalid("Invalid cast from Decimal128 to ", sizeof(T),
                             " byte integer");
    }
    return static_cast<T>(low_bits());
  }

  /// \brief Convert to a signed integer
  template <typename T, typename = internal::EnableIfIsOneOf<T, int32_t, int64_t>>
  Status ToInteger(T* out) const {
    return ToInteger<T>().Value(out);
  }

  /// \brief Convert to a floating-point number (scaled)
  float ToFloat(int32_t scale) const;
  /// \brief Convert to a floating-point number (scaled)
  double ToDouble(int32_t scale) const;

  /// \brief Convert to a floating-point number (scaled)
  template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>>
  T ToReal(int32_t scale) const {
    static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
                  "Unexpected floating-point type");
    if constexpr (std::is_same_v<T, float>) {
      return ToFloat(scale);
    } else {
      return ToDouble(scale);
    }
  }

  ARROW_FRIEND_EXPORT friend std::ostream& operator<<(std::ostream& os,
                                                      const Decimal128& decimal);

 private:
  /// Converts internal error code to Status
  Status ToArrowStatus(DecimalStatus dstatus) const;
};

/// Represents a signed 256-bit integer in two's complement.
/// The max decimal precision that can be safely represented is
/// 76 significant digits.
///
/// The implementation is split into two parts :
///
/// 1. BasicDecimal256
///    - can be safely compiled to IR without references to libstdc++.
/// 2. Decimal256
///    - (TODO) has additional functionality on top of BasicDecimal256 to deal with
///      strings and streams.
class ARROW_EXPORT Decimal256 : public BasicDecimal256 {
 public:
  /// \cond FALSE
  // (need to avoid a duplicate definition in Sphinx)
  using BasicDecimal256::BasicDecimal256;
  /// \endcond

  /// \brief constructor creates a Decimal256 from a BasicDecimal256.
  constexpr Decimal256(const BasicDecimal256& value) noexcept  // NOLINT(runtime/explicit)
      : BasicDecimal256(value) {}

  /// \brief Parse the number from a base 10 string representation.
  explicit Decimal256(const std::string& value);

  /// \brief Empty constructor creates a Decimal256 with a value of 0.
  // This is required on some older compilers.
  constexpr Decimal256() noexcept : BasicDecimal256() {}

  /// \brief Convert the Decimal256 value to a base 10 decimal string with the given
  /// scale.
  std::string ToString(int32_t scale) const;

  /// \brief Convert the value to an integer string
  std::string ToIntegerString() const;

  /// \brief Convert a decimal string to a Decimal256 value, optionally including
  /// precision and scale if they're passed in and not null.
  static Status FromString(std::string_view s, Decimal256* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const std::string& s, Decimal256* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Status FromString(const char* s, Decimal256* out, int32_t* precision,
                           int32_t* scale = NULLPTR);
  static Result<Decimal256> FromString(std::string_view s);
  static Result<Decimal256> FromString(const std::string& s);
  static Result<Decimal256> FromString(const char* s);

  /// \brief Convert Decimal256 from one scale to another
  Result<Decimal256> Rescale(int32_t original_scale, int32_t new_scale) const {
    Decimal256 out;
    auto dstatus = BasicDecimal256::Rescale(original_scale, new_scale, &out);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return out;
  }

  /// Divide this number by right and return the result.
  ///
  /// This operation is not destructive.
  /// The answer rounds to zero. Signs work like:
  ///   21 /  5 ->  4,  1
  ///  -21 /  5 -> -4, -1
  ///   21 / -5 -> -4,  1
  ///  -21 / -5 ->  4, -1
  /// \param[in] divisor the number to divide by
  /// \return the pair of the quotient and the remainder
  Result<std::pair<Decimal256, Decimal256>> Divide(const Decimal256& divisor) const {
    std::pair<Decimal256, Decimal256> result;
    auto dstatus = BasicDecimal256::Divide(divisor, &result.first, &result.second);
    ARROW_RETURN_NOT_OK(ToArrowStatus(dstatus));
    return result;
  }

  /// \brief Convert from a big-endian byte representation. The length must be
  ///        between 1 and 32.
  /// \return error status if the length is an invalid value
  static Result<Decimal256> FromBigEndian(const uint8_t* data, int32_t length);

  static Result<Decimal256> FromReal(double real, int32_t precision, int32_t scale);
  static Result<Decimal256> FromReal(float real, int32_t precision, int32_t scale);

  /// \brief Convert to a floating-point number (scaled).
  /// May return infinity in case of overflow.
  float ToFloat(int32_t scale) const;
  /// \brief Convert to a floating-point number (scaled)
  double ToDouble(int32_t scale) const;

  /// \brief Convert to a floating-point number (scaled)
  template <typename T, typename = std::enable_if_t<std::is_floating_point_v<T>>>
  T ToReal(int32_t scale) const {
    static_assert(std::is_same_v<T, float> || std::is_same_v<T, double>,
                  "Unexpected floating-point type");
    if constexpr (std::is_same_v<T, float>) {
      return ToFloat(scale);
    } else {
      return ToDouble(scale);
    }
  }

  ARROW_FRIEND_EXPORT friend std::ostream& operator<<(std::ostream& os,
                                                      const Decimal256& decimal);

 private:
  /// Converts internal error code to Status
  Status ToArrowStatus(DecimalStatus dstatus) const;
};

/// For an integer type, return the max number of decimal digits
/// (=minimal decimal precision) it can represent.
inline Result<int32_t> MaxDecimalDigitsForInteger(Type::type type_id) {
  switch (type_id) {
    case Type::INT8:
    case Type::UINT8:
      return 3;
    case Type::INT16:
    case Type::UINT16:
      return 5;
    case Type::INT32:
    case Type::UINT32:
      return 10;
    case Type::INT64:
      return 19;
    case Type::UINT64:
      return 20;
    default:
      break;
  }
  return Status::Invalid("Not an integer type: ", type_id);
}

}  // namespace arrow