File size: 18,185 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
//
// Copyright 2017 Asylo authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Adapted from Asylo
#pragma once
#include <cstddef>
#include <new>
#include <string>
#include <type_traits>
#include <utility>
#include "arrow/status.h"
#include "arrow/util/aligned_storage.h"
#include "arrow/util/compare.h"
namespace arrow {
template <typename>
struct EnsureResult;
namespace internal {
ARROW_EXPORT void DieWithMessage(const std::string& msg);
ARROW_EXPORT void InvalidValueOrDie(const Status& st);
ARROW_EXPORT Status UninitializedResult();
} // namespace internal
/// A class for representing either a usable value, or an error.
///
/// A Result object either contains a value of type `T` or a Status object
/// explaining why such a value is not present. The type `T` must be
/// copy-constructible and/or move-constructible.
///
/// The state of a Result object may be determined by calling ok() or
/// status(). The ok() method returns true if the object contains a valid value.
/// The status() method returns the internal Status object. A Result object
/// that contains a valid value will return an OK Status for a call to status().
///
/// A value of type `T` may be extracted from a Result object through a call
/// to ValueOrDie(). This function should only be called if a call to ok()
/// returns true. Sample usage:
///
/// ```
/// arrow::Result<Foo> result = CalculateFoo();
/// if (result.ok()) {
/// Foo foo = result.ValueOrDie();
/// foo.DoSomethingCool();
/// } else {
/// ARROW_LOG(ERROR) << result.status();
/// }
/// ```
///
/// If `T` is a move-only type, like `std::unique_ptr<>`, then the value should
/// only be extracted after invoking `std::move()` on the Result object.
/// Sample usage:
///
/// ```
/// arrow::Result<std::unique_ptr<Foo>> result = CalculateFoo();
/// if (result.ok()) {
/// std::unique_ptr<Foo> foo = std::move(result).ValueOrDie();
/// foo->DoSomethingCool();
/// } else {
/// ARROW_LOG(ERROR) << result.status();
/// }
/// ```
///
/// Result is provided for the convenience of implementing functions that
/// return some value but may fail during execution. For instance, consider a
/// function with the following signature:
///
/// ```
/// arrow::Status CalculateFoo(int *output);
/// ```
///
/// This function may instead be written as:
///
/// ```
/// arrow::Result<int> CalculateFoo();
/// ```
template <class T>
class [[nodiscard]] Result : public util::EqualityComparable<Result<T>> {
template <typename U>
friend class Result;
static_assert(!std::is_same<T, Status>::value,
"this assert indicates you have probably made a metaprogramming error");
public:
using ValueType = T;
/// Constructs a Result object that contains a non-OK status.
///
/// This constructor is marked `explicit` to prevent attempts to `return {}`
/// from a function with a return type of, for example,
/// `Result<std::vector<int>>`. While `return {}` seems like it would return
/// an empty vector, it will actually invoke the default constructor of
/// Result.
explicit Result() noexcept // NOLINT(runtime/explicit)
: status_(internal::UninitializedResult()) {}
~Result() noexcept { Destroy(); }
/// Constructs a Result object with the given non-OK Status object. All
/// calls to ValueOrDie() on this object will abort. The given `status` must
/// not be an OK status, otherwise this constructor will abort.
///
/// This constructor is not declared explicit so that a function with a return
/// type of `Result<T>` can return a Status object, and the status will be
/// implicitly converted to the appropriate return type as a matter of
/// convenience.
///
/// \param status The non-OK Status object to initialize to.
Result(const Status& status) noexcept // NOLINT(runtime/explicit)
: status_(status) {
if (ARROW_PREDICT_FALSE(status.ok())) {
internal::DieWithMessage(std::string("Constructed with a non-error status: ") +
status.ToString());
}
}
/// Constructs a Result object that contains `value`. The resulting object
/// is considered to have an OK status. The wrapped element can be accessed
/// with ValueOrDie().
///
/// This constructor is made implicit so that a function with a return type of
/// `Result<T>` can return an object of type `U &&`, implicitly converting
/// it to a `Result<T>` object.
///
/// Note that `T` must be implicitly constructible from `U`, and `U` must not
/// be a (cv-qualified) Status or Status-reference type. Due to C++
/// reference-collapsing rules and perfect-forwarding semantics, this
/// constructor matches invocations that pass `value` either as a const
/// reference or as an rvalue reference. Since Result needs to work for both
/// reference and rvalue-reference types, the constructor uses perfect
/// forwarding to avoid invalidating arguments that were passed by reference.
/// See http://thbecker.net/articles/rvalue_references/section_08.html for
/// additional details.
///
/// \param value The value to initialize to.
template <typename U,
typename E = typename std::enable_if<
std::is_constructible<T, U>::value && std::is_convertible<U, T>::value &&
!std::is_same<typename std::remove_reference<
typename std::remove_cv<U>::type>::type,
Status>::value>::type>
Result(U&& value) noexcept { // NOLINT(runtime/explicit)
ConstructValue(std::forward<U>(value));
}
/// Constructs a Result object that contains `value`. The resulting object
/// is considered to have an OK status. The wrapped element can be accessed
/// with ValueOrDie().
///
/// This constructor is made implicit so that a function with a return type of
/// `Result<T>` can return an object of type `T`, implicitly converting
/// it to a `Result<T>` object.
///
/// \param value The value to initialize to.
// NOTE `Result(U&& value)` above should be sufficient, but some compilers
// fail matching it.
Result(T&& value) noexcept { // NOLINT(runtime/explicit)
ConstructValue(std::move(value));
}
/// Copy constructor.
///
/// This constructor needs to be explicitly defined because the presence of
/// the move-assignment operator deletes the default copy constructor. In such
/// a scenario, since the deleted copy constructor has stricter binding rules
/// than the templated copy constructor, the templated constructor cannot act
/// as a copy constructor, and any attempt to copy-construct a `Result`
/// object results in a compilation error.
///
/// \param other The value to copy from.
Result(const Result& other) noexcept : status_(other.status_) {
if (ARROW_PREDICT_TRUE(status_.ok())) {
ConstructValue(other.ValueUnsafe());
}
}
/// Templatized constructor that constructs a `Result<T>` from a const
/// reference to a `Result<U>`.
///
/// `T` must be implicitly constructible from `const U &`.
///
/// \param other The value to copy from.
template <typename U, typename E = typename std::enable_if<
std::is_constructible<T, const U&>::value &&
std::is_convertible<U, T>::value>::type>
Result(const Result<U>& other) noexcept : status_(other.status_) {
if (ARROW_PREDICT_TRUE(status_.ok())) {
ConstructValue(other.ValueUnsafe());
}
}
/// Copy-assignment operator.
///
/// \param other The Result object to copy.
Result& operator=(const Result& other) noexcept {
// Check for self-assignment.
if (ARROW_PREDICT_FALSE(this == &other)) {
return *this;
}
Destroy();
status_ = other.status_;
if (ARROW_PREDICT_TRUE(status_.ok())) {
ConstructValue(other.ValueUnsafe());
}
return *this;
}
/// Templatized constructor which constructs a `Result<T>` by moving the
/// contents of a `Result<U>`. `T` must be implicitly constructible from `U
/// &&`.
///
/// Sets `other` to contain a non-OK status with a`StatusError::Invalid`
/// error code.
///
/// \param other The Result object to move from and set to a non-OK status.
template <typename U,
typename E = typename std::enable_if<std::is_constructible<T, U&&>::value &&
std::is_convertible<U, T>::value>::type>
Result(Result<U>&& other) noexcept {
if (ARROW_PREDICT_TRUE(other.status_.ok())) {
status_ = std::move(other.status_);
ConstructValue(other.MoveValueUnsafe());
} else {
// If we moved the status, the other status may become ok but the other
// value hasn't been constructed => crash on other destructor.
status_ = other.status_;
}
}
/// Move-assignment operator.
///
/// Sets `other` to an invalid state..
///
/// \param other The Result object to assign from and set to a non-OK
/// status.
Result& operator=(Result&& other) noexcept {
// Check for self-assignment.
if (ARROW_PREDICT_FALSE(this == &other)) {
return *this;
}
Destroy();
if (ARROW_PREDICT_TRUE(other.status_.ok())) {
status_ = std::move(other.status_);
ConstructValue(other.MoveValueUnsafe());
} else {
// If we moved the status, the other status may become ok but the other
// value hasn't been constructed => crash on other destructor.
status_ = other.status_;
}
return *this;
}
/// Compare to another Result.
bool Equals(const Result& other) const {
if (ARROW_PREDICT_TRUE(status_.ok())) {
return other.status_.ok() && ValueUnsafe() == other.ValueUnsafe();
}
return status_ == other.status_;
}
/// Indicates whether the object contains a `T` value. Generally instead
/// of accessing this directly you will want to use ASSIGN_OR_RAISE defined
/// below.
///
/// \return True if this Result object's status is OK (i.e. a call to ok()
/// returns true). If this function returns true, then it is safe to access
/// the wrapped element through a call to ValueOrDie().
constexpr bool ok() const { return status_.ok(); }
/// \brief Equivalent to ok().
// operator bool() const { return ok(); }
/// Gets the stored status object, or an OK status if a `T` value is stored.
///
/// \return The stored non-OK status object, or an OK status if this object
/// has a value.
constexpr const Status& status() const& { return status_; }
/// Gets the stored status object, or an OK status if a `T` value is stored.
///
/// \return The stored non-OK status object, or an OK status if this object
/// has a value.
Status status() && {
if (ARROW_PREDICT_TRUE(ok())) return Status::OK();
auto tmp = internal::UninitializedResult();
std::swap(status_, tmp);
return tmp;
}
/// Gets the stored `T` value.
///
/// This method should only be called if this Result object's status is OK
/// (i.e. a call to ok() returns true), otherwise this call will abort.
///
/// \return The stored `T` value.
const T& ValueOrDie() const& {
if (ARROW_PREDICT_FALSE(!ok())) {
internal::InvalidValueOrDie(status_);
}
return ValueUnsafe();
}
const T& operator*() const& { return ValueOrDie(); }
const T* operator->() const { return &ValueOrDie(); }
/// Gets a mutable reference to the stored `T` value.
///
/// This method should only be called if this Result object's status is OK
/// (i.e. a call to ok() returns true), otherwise this call will abort.
///
/// \return The stored `T` value.
T& ValueOrDie() & {
if (ARROW_PREDICT_FALSE(!ok())) {
internal::InvalidValueOrDie(status_);
}
return ValueUnsafe();
}
T& operator*() & { return ValueOrDie(); }
T* operator->() { return &ValueOrDie(); }
/// Moves and returns the internally-stored `T` value.
///
/// This method should only be called if this Result object's status is OK
/// (i.e. a call to ok() returns true), otherwise this call will abort. The
/// Result object is invalidated after this call and will be updated to
/// contain a non-OK status.
///
/// \return The stored `T` value.
T ValueOrDie() && {
if (ARROW_PREDICT_FALSE(!ok())) {
internal::InvalidValueOrDie(status_);
}
return MoveValueUnsafe();
}
T operator*() && { return std::move(*this).ValueOrDie(); }
/// Helper method for implementing Status returning functions in terms of semantically
/// equivalent Result returning functions. For example:
///
/// Status GetInt(int *out) { return GetInt().Value(out); }
template <typename U, typename E = typename std::enable_if<
std::is_constructible<U, T>::value>::type>
Status Value(U* out) && {
if (!ok()) {
return std::move(*this).status();
}
*out = U(MoveValueUnsafe());
return Status::OK();
}
/// Move and return the internally stored value or alternative if an error is stored.
T ValueOr(T alternative) && {
if (!ok()) {
return alternative;
}
return MoveValueUnsafe();
}
/// Retrieve the value if ok(), falling back to an alternative generated by the provided
/// factory
template <typename G>
T ValueOrElse(G&& generate_alternative) && {
if (ok()) {
return MoveValueUnsafe();
}
return std::forward<G>(generate_alternative)();
}
/// Apply a function to the internally stored value to produce a new result or propagate
/// the stored error.
template <typename M>
typename EnsureResult<decltype(std::declval<M&&>()(std::declval<T&&>()))>::type Map(
M&& m) && {
if (!ok()) {
return std::move(*this).status();
}
return std::forward<M>(m)(MoveValueUnsafe());
}
/// Apply a function to the internally stored value to produce a new result or propagate
/// the stored error.
template <typename M>
typename EnsureResult<decltype(std::declval<M&&>()(std::declval<const T&>()))>::type
Map(M&& m) const& {
if (!ok()) {
return status();
}
return std::forward<M>(m)(ValueUnsafe());
}
/// Cast the internally stored value to produce a new result or propagate the stored
/// error.
template <typename U, typename E = typename std::enable_if<
std::is_constructible<U, T>::value>::type>
Result<U> As() && {
if (!ok()) {
return std::move(*this).status();
}
return U(MoveValueUnsafe());
}
/// Cast the internally stored value to produce a new result or propagate the stored
/// error.
template <typename U, typename E = typename std::enable_if<
std::is_constructible<U, const T&>::value>::type>
Result<U> As() const& {
if (!ok()) {
return status();
}
return U(ValueUnsafe());
}
constexpr const T& ValueUnsafe() const& { return *storage_.get(); }
constexpr T& ValueUnsafe() & { return *storage_.get(); }
T ValueUnsafe() && { return MoveValueUnsafe(); }
T MoveValueUnsafe() { return std::move(*storage_.get()); }
private:
Status status_; // pointer-sized
internal::AlignedStorage<T> storage_;
template <typename U>
void ConstructValue(U&& u) noexcept {
storage_.construct(std::forward<U>(u));
}
void Destroy() noexcept {
if (ARROW_PREDICT_TRUE(status_.ok())) {
static_assert(offsetof(Result<T>, status_) == 0,
"Status is guaranteed to be at the start of Result<>");
storage_.destroy();
}
}
};
#define ARROW_ASSIGN_OR_RAISE_IMPL(result_name, lhs, rexpr) \
auto&& result_name = (rexpr); \
ARROW_RETURN_IF_(!(result_name).ok(), (result_name).status(), ARROW_STRINGIFY(rexpr)); \
lhs = std::move(result_name).ValueUnsafe();
#define ARROW_ASSIGN_OR_RAISE_NAME(x, y) ARROW_CONCAT(x, y)
/// \brief Execute an expression that returns a Result, extracting its value
/// into the variable defined by `lhs` (or returning a Status on error).
///
/// Example: Assigning to a new value:
/// ARROW_ASSIGN_OR_RAISE(auto value, MaybeGetValue(arg));
///
/// Example: Assigning to an existing value:
/// ValueType value;
/// ARROW_ASSIGN_OR_RAISE(value, MaybeGetValue(arg));
///
/// WARNING: ARROW_ASSIGN_OR_RAISE expands into multiple statements;
/// it cannot be used in a single statement (e.g. as the body of an if
/// statement without {})!
///
/// WARNING: ARROW_ASSIGN_OR_RAISE `std::move`s its right operand. If you have
/// an lvalue Result which you *don't* want to move out of cast appropriately.
///
/// WARNING: ARROW_ASSIGN_OR_RAISE is not a single expression; it will not
/// maintain lifetimes of all temporaries in `rexpr` (e.g.
/// `ARROW_ASSIGN_OR_RAISE(auto x, MakeTemp().GetResultRef());`
/// will most likely segfault)!
#define ARROW_ASSIGN_OR_RAISE(lhs, rexpr) \
ARROW_ASSIGN_OR_RAISE_IMPL(ARROW_ASSIGN_OR_RAISE_NAME(_error_or_value, __COUNTER__), \
lhs, rexpr);
namespace internal {
template <typename T>
inline const Status& GenericToStatus(const Result<T>& res) {
return res.status();
}
template <typename T>
inline Status GenericToStatus(Result<T>&& res) {
return std::move(res).status();
}
} // namespace internal
template <typename T, typename R = typename EnsureResult<T>::type>
R ToResult(T t) {
return R(std::move(t));
}
template <typename T>
struct EnsureResult {
using type = Result<T>;
};
template <typename T>
struct EnsureResult<Result<T>> {
using type = Result<T>;
};
} // namespace arrow
|