File size: 20,327 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

// This API is EXPERIMENTAL.

#pragma once

#include <functional>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>

#include "arrow/compute/expression.h"
#include "arrow/dataset/type_fwd.h"
#include "arrow/dataset/visibility.h"
#include "arrow/util/async_generator_fwd.h"
#include "arrow/util/future.h"
#include "arrow/util/macros.h"
#include "arrow/util/mutex.h"

namespace arrow {

namespace internal {
class Executor;
}  // namespace internal

namespace dataset {

using RecordBatchGenerator = std::function<Future<std::shared_ptr<RecordBatch>>()>;

/// \brief Description of a column to scan
struct ARROW_DS_EXPORT FragmentSelectionColumn {
  /// \brief The path to the column to load
  FieldPath path;
  /// \brief The type of the column in the dataset schema
  ///
  /// A format may choose to ignore this field completely.  For example, when
  /// reading from IPC the reader can just return the column in the data type
  /// that is stored on disk.  There is no point in doing anything special.
  ///
  /// However, some formats may be capable of casting on the fly.  For example,
  /// when reading from CSV, if we know the target type of the column, we can
  /// convert from string to the target type as we read.
  DataType* requested_type;
};

/// \brief A list of columns that should be loaded from a fragment
///
/// The paths in this selection should be referring to the fragment schema.  This class
/// contains a virtual destructor as it is expected evolution strategies will need to
/// extend this to add any information needed to later evolve the batches.
///
/// For example, in the basic evolution strategy, we keep track of which columns
/// were missing from the file so that we can fill those in with null when evolving.
class ARROW_DS_EXPORT FragmentSelection {
 public:
  explicit FragmentSelection(std::vector<FragmentSelectionColumn> columns)
      : columns_(std::move(columns)) {}
  virtual ~FragmentSelection() = default;
  /// The columns that should be loaded from the fragment
  const std::vector<FragmentSelectionColumn>& columns() const { return columns_; }

 private:
  std::vector<FragmentSelectionColumn> columns_;
};

/// \brief Instructions for scanning a particular fragment
///
/// The fragment scan request is derived from ScanV2Options.  The main
/// difference is that the scan options are based on the dataset schema
/// while the fragment request is based on the fragment schema.
struct ARROW_DS_EXPORT FragmentScanRequest {
  /// \brief A row filter
  ///
  /// The filter expression should be written against the fragment schema.
  ///
  /// \see ScanV2Options for details on how this filter should be applied
  compute::Expression filter = compute::literal(true);

  /// \brief The columns to scan
  ///
  /// These indices refer to the fragment schema
  ///
  /// Note: This is NOT a simple list of top-level column indices.
  /// For more details \see ScanV2Options
  ///
  /// If possible a fragment should only read from disk the data needed
  /// to satisfy these columns.  If a format cannot partially read a nested
  /// column (e.g. JSON) then it must apply the column selection (in memory)
  /// before returning the scanned batch.
  std::shared_ptr<FragmentSelection> fragment_selection;
  /// \brief Options specific to the format being scanned
  const FragmentScanOptions* format_scan_options;
};

/// \brief An iterator-like object that can yield batches created from a fragment
class ARROW_DS_EXPORT FragmentScanner {
 public:
  /// This instance will only be destroyed after all ongoing scan futures
  /// have been completed.
  ///
  /// This means any callbacks created as part of the scan can safely
  /// capture `this`
  virtual ~FragmentScanner() = default;
  /// \brief Scan a batch of data from the file
  /// \param batch_number The index of the batch to read
  virtual Future<std::shared_ptr<RecordBatch>> ScanBatch(int batch_number) = 0;
  /// \brief Calculate an estimate of how many data bytes the given batch will represent
  ///
  /// "Data bytes" should be the total size of all the buffers once the data has been
  /// decoded into the Arrow format.
  virtual int64_t EstimatedDataBytes(int batch_number) = 0;
  /// \brief The number of batches in the fragment to scan
  virtual int NumBatches() = 0;
};

/// \brief Information learned about a fragment through inspection
///
/// This information can be used to figure out which fields need
/// to be read from a file and how the data read in should be evolved
/// to match the dataset schema.
///
/// For example, from a CSV file we can inspect and learn the column
/// names and use those column names to determine which columns to load
/// from the CSV file.
struct ARROW_DS_EXPORT InspectedFragment {
  explicit InspectedFragment(std::vector<std::string> column_names)
      : column_names(std::move(column_names)) {}
  std::vector<std::string> column_names;
};

/// \brief A granular piece of a Dataset, such as an individual file.
///
/// A Fragment can be read/scanned separately from other fragments. It yields a
/// collection of RecordBatches when scanned
///
/// Note that Fragments have well defined physical schemas which are reconciled by
/// the Datasets which contain them; these physical schemas may differ from a parent
/// Dataset's schema and the physical schemas of sibling Fragments.
class ARROW_DS_EXPORT Fragment : public std::enable_shared_from_this<Fragment> {
 public:
  /// \brief An expression that represents no known partition information
  static const compute::Expression kNoPartitionInformation;

  /// \brief Return the physical schema of the Fragment.
  ///
  /// The physical schema is also called the writer schema.
  /// This method is blocking and may suffer from high latency filesystem.
  /// The schema is cached after being read once, or may be specified at construction.
  Result<std::shared_ptr<Schema>> ReadPhysicalSchema();

  /// An asynchronous version of Scan
  virtual Result<RecordBatchGenerator> ScanBatchesAsync(
      const std::shared_ptr<ScanOptions>& options) = 0;

  /// \brief Inspect a fragment to learn basic information
  ///
  /// This will be called before a scan and a fragment should attach whatever
  /// information will be needed to figure out an evolution strategy.  This information
  /// will then be passed to the call to BeginScan
  virtual Future<std::shared_ptr<InspectedFragment>> InspectFragment(
      const FragmentScanOptions* format_options, compute::ExecContext* exec_context);

  /// \brief Start a scan operation
  virtual Future<std::shared_ptr<FragmentScanner>> BeginScan(
      const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
      const FragmentScanOptions* format_options, compute::ExecContext* exec_context);

  /// \brief Count the number of rows in this fragment matching the filter using metadata
  /// only. That is, this method may perform I/O, but will not load data.
  ///
  /// If this is not possible, resolve with an empty optional. The fragment can perform
  /// I/O (e.g. to read metadata) before it deciding whether it can satisfy the request.
  virtual Future<std::optional<int64_t>> CountRows(
      compute::Expression predicate, const std::shared_ptr<ScanOptions>& options);

  /// \brief Clear any metadata that may have been cached by this object.
  ///
  /// A fragment may typically cache metadata to speed up repeated accesses.
  /// In use cases when memory use is more critical than CPU time, calling
  /// this function can help reclaim memory.
  virtual Status ClearCachedMetadata();

  virtual std::string type_name() const = 0;
  virtual std::string ToString() const { return type_name(); }

  /// \brief An expression which evaluates to true for all data viewed by this
  /// Fragment.
  const compute::Expression& partition_expression() const {
    return partition_expression_;
  }

  virtual ~Fragment() = default;

 protected:
  Fragment() = default;
  explicit Fragment(compute::Expression partition_expression,
                    std::shared_ptr<Schema> physical_schema);

  virtual Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() = 0;

  util::Mutex physical_schema_mutex_;
  compute::Expression partition_expression_ = compute::literal(true);
  // The physical schema that is inferred from the Fragment
  std::shared_ptr<Schema> physical_schema_;
  // The physical schema that was passed to the Fragment constructor
  std::shared_ptr<Schema> given_physical_schema_;
};

/// \brief Per-scan options for fragment(s) in a dataset.
///
/// These options are not intrinsic to the format or fragment itself, but do affect
/// the results of a scan. These are options which make sense to change between
/// repeated reads of the same dataset, such as format-specific conversion options
/// (that do not affect the schema).
///
/// \ingroup dataset-scanning
class ARROW_DS_EXPORT FragmentScanOptions {
 public:
  virtual std::string type_name() const = 0;
  virtual std::string ToString() const { return type_name(); }
  virtual ~FragmentScanOptions() = default;
};

/// \defgroup dataset-implementations Concrete implementations
///
/// @{

/// \brief A trivial Fragment that yields ScanTask out of a fixed set of
/// RecordBatch.
class ARROW_DS_EXPORT InMemoryFragment : public Fragment {
 public:
  class Scanner;
  InMemoryFragment(std::shared_ptr<Schema> schema, RecordBatchVector record_batches,
                   compute::Expression = compute::literal(true));
  explicit InMemoryFragment(RecordBatchVector record_batches,
                            compute::Expression = compute::literal(true));

  Result<RecordBatchGenerator> ScanBatchesAsync(
      const std::shared_ptr<ScanOptions>& options) override;
  Future<std::optional<int64_t>> CountRows(
      compute::Expression predicate,
      const std::shared_ptr<ScanOptions>& options) override;

  Future<std::shared_ptr<InspectedFragment>> InspectFragment(
      const FragmentScanOptions* format_options,
      compute::ExecContext* exec_context) override;
  Future<std::shared_ptr<FragmentScanner>> BeginScan(
      const FragmentScanRequest& request, const InspectedFragment& inspected_fragment,
      const FragmentScanOptions* format_options,
      compute::ExecContext* exec_context) override;

  std::string type_name() const override { return "in-memory"; }

 protected:
  Result<std::shared_ptr<Schema>> ReadPhysicalSchemaImpl() override;

  RecordBatchVector record_batches_;
};

/// @}

using FragmentGenerator = AsyncGenerator<std::shared_ptr<Fragment>>;

/// \brief Rules for converting the dataset schema to and from fragment schemas
class ARROW_DS_EXPORT FragmentEvolutionStrategy {
 public:
  /// This instance will only be destroyed when all scan operations for the
  /// fragment have completed.
  virtual ~FragmentEvolutionStrategy() = default;
  /// \brief A guarantee that applies to all batches of this fragment
  ///
  /// For example, if a fragment is missing one of the fields in the dataset
  /// schema then a typical evolution strategy is to set that field to null.
  ///
  /// So if the column at index 3 is missing then the guarantee is
  /// FieldRef(3) == null
  ///
  /// Individual field guarantees should be AND'd together and returned
  /// as a single expression.
  virtual Result<compute::Expression> GetGuarantee(
      const std::vector<FieldPath>& dataset_schema_selection) const = 0;

  /// \brief Return a fragment schema selection given a dataset schema selection
  ///
  /// For example, if the user wants fields 2 & 4 of the dataset schema and
  /// in this fragment the field 2 is missing and the field 4 is at index 1 then
  /// this should return {1}
  virtual Result<std::unique_ptr<FragmentSelection>> DevolveSelection(
      const std::vector<FieldPath>& dataset_schema_selection) const = 0;

  /// \brief Return a filter expression bound to the fragment schema given
  ///        a filter expression bound to the dataset schema
  ///
  /// The dataset scan filter will first be simplified by the guarantee returned
  /// by GetGuarantee.  This means an evolution that only handles dropping or casting
  /// fields doesn't need to do anything here except return the given filter.
  ///
  /// On the other hand, an evolution that is doing some kind of aliasing will likely
  /// need to convert field references in the filter to the aliased field references
  /// where appropriate.
  virtual Result<compute::Expression> DevolveFilter(
      const compute::Expression& filter) const = 0;

  /// \brief Convert a batch from the fragment schema to the dataset schema
  ///
  /// Typically this involves casting columns from the data type stored on disk
  /// to the data type of the dataset schema.  For example, this fragment might
  /// have columns stored as int32 and the dataset schema might have int64 for
  /// the column.  In this case we should cast the column from int32 to int64.
  ///
  /// Note: A fragment may perform this cast as the data is read from disk.  In
  /// that case a cast might not be needed.
  virtual Result<compute::ExecBatch> EvolveBatch(
      const std::shared_ptr<RecordBatch>& batch,
      const std::vector<FieldPath>& dataset_selection,
      const FragmentSelection& selection) const = 0;

  /// \brief Return a string description of this strategy
  virtual std::string ToString() const = 0;
};

/// \brief Lookup to create a FragmentEvolutionStrategy for a given fragment
class ARROW_DS_EXPORT DatasetEvolutionStrategy {
 public:
  virtual ~DatasetEvolutionStrategy() = default;
  /// \brief Create a strategy for evolving from the given fragment
  ///        to the schema of the given dataset
  virtual std::unique_ptr<FragmentEvolutionStrategy> GetStrategy(
      const Dataset& dataset, const Fragment& fragment,
      const InspectedFragment& inspected_fragment) = 0;

  /// \brief Return a string description of this strategy
  virtual std::string ToString() const = 0;
};

ARROW_DS_EXPORT std::unique_ptr<DatasetEvolutionStrategy>
MakeBasicDatasetEvolutionStrategy();

/// \brief A container of zero or more Fragments.
///
/// A Dataset acts as a union of Fragments, e.g. files deeply nested in a
/// directory. A Dataset has a schema to which Fragments must align during a
/// scan operation. This is analogous to Avro's reader and writer schema.
class ARROW_DS_EXPORT Dataset : public std::enable_shared_from_this<Dataset> {
 public:
  /// \brief Begin to build a new Scan operation against this Dataset
  Result<std::shared_ptr<ScannerBuilder>> NewScan();

  /// \brief GetFragments returns an iterator of Fragments given a predicate.
  Result<FragmentIterator> GetFragments(compute::Expression predicate);
  Result<FragmentIterator> GetFragments();

  /// \brief Async versions of `GetFragments`.
  Result<FragmentGenerator> GetFragmentsAsync(compute::Expression predicate);
  Result<FragmentGenerator> GetFragmentsAsync();

  const std::shared_ptr<Schema>& schema() const { return schema_; }

  /// \brief An expression which evaluates to true for all data viewed by this Dataset.
  /// May be null, which indicates no information is available.
  const compute::Expression& partition_expression() const {
    return partition_expression_;
  }

  /// \brief The name identifying the kind of Dataset
  virtual std::string type_name() const = 0;

  /// \brief Return a copy of this Dataset with a different schema.
  ///
  /// The copy will view the same Fragments. If the new schema is not compatible with the
  /// original dataset's schema then an error will be raised.
  virtual Result<std::shared_ptr<Dataset>> ReplaceSchema(
      std::shared_ptr<Schema> schema) const = 0;

  /// \brief Rules used by this dataset to handle schema evolution
  DatasetEvolutionStrategy* evolution_strategy() { return evolution_strategy_.get(); }

  virtual ~Dataset() = default;

 protected:
  explicit Dataset(std::shared_ptr<Schema> schema) : schema_(std::move(schema)) {}

  Dataset(std::shared_ptr<Schema> schema, compute::Expression partition_expression);

  virtual Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) = 0;
  /// \brief Default non-virtual implementation method for the base
  /// `GetFragmentsAsyncImpl` method, which creates a fragment generator for
  /// the dataset, possibly filtering results with a predicate (forwarding to
  /// the synchronous `GetFragmentsImpl` method and moving the computations
  /// to the background, using the IO thread pool).
  ///
  /// Currently, `executor` is always the same as `internal::GetCPUThreadPool()`,
  /// which means the results from the underlying fragment generator will be
  /// transferred to the default CPU thread pool. The generator itself is
  /// offloaded to run on the default IO thread pool.
  virtual Result<FragmentGenerator> GetFragmentsAsyncImpl(
      compute::Expression predicate, arrow::internal::Executor* executor);

  std::shared_ptr<Schema> schema_;
  compute::Expression partition_expression_ = compute::literal(true);
  std::unique_ptr<DatasetEvolutionStrategy> evolution_strategy_ =
      MakeBasicDatasetEvolutionStrategy();
};

/// \addtogroup dataset-implementations
///
/// @{

/// \brief A Source which yields fragments wrapping a stream of record batches.
///
/// The record batches must match the schema provided to the source at construction.
class ARROW_DS_EXPORT InMemoryDataset : public Dataset {
 public:
  class RecordBatchGenerator {
   public:
    virtual ~RecordBatchGenerator() = default;
    virtual RecordBatchIterator Get() const = 0;
  };

  /// Construct a dataset from a schema and a factory of record batch iterators.
  InMemoryDataset(std::shared_ptr<Schema> schema,
                  std::shared_ptr<RecordBatchGenerator> get_batches)
      : Dataset(std::move(schema)), get_batches_(std::move(get_batches)) {}

  /// Convenience constructor taking a fixed list of batches
  InMemoryDataset(std::shared_ptr<Schema> schema, RecordBatchVector batches);

  /// Convenience constructor taking a Table
  explicit InMemoryDataset(std::shared_ptr<Table> table);

  std::string type_name() const override { return "in-memory"; }

  Result<std::shared_ptr<Dataset>> ReplaceSchema(
      std::shared_ptr<Schema> schema) const override;

 protected:
  Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) override;

  std::shared_ptr<RecordBatchGenerator> get_batches_;
};

/// \brief A Dataset wrapping child Datasets.
class ARROW_DS_EXPORT UnionDataset : public Dataset {
 public:
  /// \brief Construct a UnionDataset wrapping child Datasets.
  ///
  /// \param[in] schema the schema of the resulting dataset.
  /// \param[in] children one or more child Datasets. Their schemas must be identical to
  /// schema.
  static Result<std::shared_ptr<UnionDataset>> Make(std::shared_ptr<Schema> schema,
                                                    DatasetVector children);

  const DatasetVector& children() const { return children_; }

  std::string type_name() const override { return "union"; }

  Result<std::shared_ptr<Dataset>> ReplaceSchema(
      std::shared_ptr<Schema> schema) const override;

 protected:
  Result<FragmentIterator> GetFragmentsImpl(compute::Expression predicate) override;

  explicit UnionDataset(std::shared_ptr<Schema> schema, DatasetVector children)
      : Dataset(std::move(schema)), children_(std::move(children)) {}

  DatasetVector children_;

  friend class UnionDatasetFactory;
};

/// @}

}  // namespace dataset
}  // namespace arrow