File size: 28,608 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
# MIT License
# Copyright (c) 2024 The HuggingFace Team
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Heavily inspired by https://github.com/QwenLM/Qwen2.5-Math and https://github.com/huggingface/lm-evaluation-harness
import logging
import re
from itertools import product
from math_verify.errors import TimeoutException
from latex2sympy2_extended.sets import FiniteSet
from sympy import (
E,
Basic,
Eq,
Float,
GreaterThan,
Interval,
LessThan,
MatrixBase,
MatrixExpr,
Mul,
Number,
Rational,
Set,
StrictGreaterThan,
StrictLessThan,
Symbol,
Tuple,
default_sort_key,
ordered,
simplify,
nan,
solve,
zoo,
)
from latex2sympy2_extended.logic import And
from sympy.core.relational import Relational
from sympy.core.function import UndefinedFunction
from sympy import FiniteSet as SympyFiniteSet
from math_verify.utils import timeout
from latex2sympy2_extended import is_expr_of_only_symbols
logger = logging.getLogger(__name__)
INVERSE_RELATIONS = {
GreaterThan: LessThan,
LessThan: GreaterThan,
StrictGreaterThan: StrictLessThan,
StrictLessThan: StrictGreaterThan,
Eq: Eq,
}
def safe_sympy_doit(a: Basic | MatrixBase):
"""Safely execute doit() on a sympy expression, catching exceptions.
Doit in sympy will evaluate expressions it will pass the expression tree and evluate nodes.
For example for 1+1+1 it will evaluate the additions and return 3. One issue with it is that it maybe
evaluates too much as integrals will also be evaluated.
As we are using latex2sympy2_extended, evaluates are
Args:
a: A sympy Basic or MatrixBase expression to evaluate
Returns:
The result of a.doit() if successful, otherwise returns the original expression
"""
try:
return a.doit()
except Exception:
pass
return a
def is_atomic_or_pct_atomic(expr: Basic | MatrixBase, atomic_type: type) -> bool:
"""Check if expression is either an atomic type or percentage atomic type.
Args:
expr: The sympy expression to check
atomic_type: The atomic type to check for
Returns:
True if expr is atomic_type or percentage atomic type, False otherwise
"""
return isinstance(expr, atomic_type) or (
# Check for percentage representation: latex2sympy_extended converts "X%" into X*Rational(1,100)
# So we detect percentages by looking for this multiplication structure
isinstance(expr, Mul)
and len(expr.args) == 2
and expr.args[1] == Rational(1, 100)
and isinstance(expr.args[0], atomic_type)
)
def sympy_numeric_eq(
a: Basic | MatrixBase,
b: Basic | MatrixBase,
float_rounding: int,
numeric_precision: int,
):
"""Compare two sympy expressions numerically with given precision.
Args:
a: First sympy expression
b: Second sympy expression
precision: Number of decimal places to compare
Returns:
True if expressions are numerically equal within precision, False otherwise
"""
# Only do this when one of the two is a float, in other cases use symbolic equality as this could lead to false positives
# E.g we want 1/3 == 0.333333 to work
if isinstance(a, (MatrixBase, MatrixExpr)) and isinstance(
b, (MatrixBase, MatrixExpr)
):
a = safe_sympy_doit(a)
b = safe_sympy_doit(b)
# If we have matrices and one of them is only made of floats, we can use the same logic as above
if (
isinstance(a, (MatrixBase))
and isinstance(b, (MatrixBase))
and a.shape == b.shape
):
return all(
sympy_numeric_eq(a_elem, b_elem, float_rounding, numeric_precision)
for a_elem, b_elem in zip(a.flat(), b.flat())
)
# Ensure this also works for percentage numbers so that 0.333333% = 0.33333333333 with precision 4
elif is_atomic_or_pct_atomic(a, Number) or is_atomic_or_pct_atomic(b, Number):
# If one of them is a float or a negative atomic number, we can try to use precision
if is_atomic_or_pct_atomic(a, Float) or is_atomic_or_pct_atomic(b, Float):
a = safe_sympy_doit(a)
b = safe_sympy_doit(b)
# Now if both are numbers, we can use precision
if isinstance(a, (Number)) and isinstance(b, (Number)):
return a.round(float_rounding) == b.round(float_rounding)
else:
return safe_sympy_doit(a) == safe_sympy_doit(b)
else:
try:
return (a - b).evalf(chop=True, n=numeric_precision) == 0 # type: ignore
except Exception:
pass
return False
def sympy_symbolic_eq(a: Basic | MatrixBase, b: Basic | MatrixBase) -> bool:
"""Compare two sympy expressions symbolically.
Args:
a: First sympy expression
b: Second sympy expression
Returns:
True if expressions are symbolically equal, False otherwise
"""
try:
a_b_diff = simplify((a - b)) # type: ignore
if isinstance(a_b_diff, MatrixBase) and a_b_diff.is_zero_matrix:
return True
elif isinstance(a_b_diff, Basic) and a_b_diff.is_zero:
return True
except Exception:
pass
return False
def sympy_deep_compare_set_and_tuple(
gold: SympyFiniteSet | Tuple,
pred: SympyFiniteSet | Tuple,
float_rounding: int,
numeric_precision: int,
) -> bool:
"""Compare two finite sets by comparing each element with given precision.
Args:
a: First finite set
b: Second finite set
precision: Number of decimal places to compare
Returns:
True if sets contain equal elements within precision, False otherwise
Note: in order to fully support finite sets, we should ideally do kartesian product comparison
but this is not implemented yet. We kinda hope sympy will order the elements.
"""
def unwrap_eq(s):
if is_assignment_relation(s):
return take_last_relation(s).rhs
return s
def sort_key(x):
try:
return default_sort_key(unwrap_eq(x).evalf())
except Exception:
return default_sort_key(unwrap_eq(x))
# This ensures it works for {1/3} and {0.333333}
if len(gold) == len(pred):
if isinstance(gold, SympyFiniteSet):
gold_args = list(ordered(gold.args, keys=sort_key, default=False))
pred_args = list(ordered(pred.args, keys=sort_key, default=False))
elif isinstance(gold, Tuple) and isinstance(pred, FiniteSet):
# We treat the pred as tuple too
pred_args = pred._unsorted_args
gold_args = gold.args
elif isinstance(pred, SympyFiniteSet):
pred_args = list(ordered(pred.args, keys=sort_key, default=False))
gold_args = gold.args
else:
gold_args = gold.args
pred_args = pred.args
return all(
sympy_expr_eq(a, b, float_rounding, numeric_precision)
for a, b in zip(gold_args, pred_args)
)
return False
def sympy_compare_interval(
a: Interval, b: Interval, float_rounding: int, numeric_precision: int
) -> bool:
"""Compare two intervals.
Args:
a: First interval
b: Second interval
precision: Number of decimal places to compare endpoints
Returns:
True if intervals are equal, False otherwise
"""
return (
a.left_open == b.left_open
and a.right_open == b.right_open
and sympy_expr_eq(a.start, b.start, float_rounding, numeric_precision)
and sympy_expr_eq(a.end, b.end, float_rounding, numeric_precision)
)
def sympy_solve_and_compare(
gold: Relational, pred: Relational, float_rounding: int, numeric_precision: int
) -> bool:
solved_gold = list(ordered(solve(gold, gold.free_symbols)))
solved_pred = list(ordered(solve(pred, pred.free_symbols)))
# Equalities should return list of dicts of solutions
if isinstance(gold, Eq) and isinstance(pred, Eq):
return all(
all(
g_k == p_k
and sympy_expr_eq(g_v, p_v, float_rounding, numeric_precision)
for (g_k, g_v), (p_k, p_v) in zip(sorted(g.items()), sorted(p.items()))
)
for g, p in zip(sorted(solved_gold), sorted(solved_pred))
)
else:
return sympy_expr_eq(
solved_gold, solved_pred, float_rounding, numeric_precision
)
def sympy_compare_relational(
gold: Relational | And,
pred: Relational | And,
float_rounding: int,
numeric_precision: int,
) -> bool:
"""Compare two relational expressions.
Args:
gold: First relational expression
pred: Second relational expression
precision: Number of decimal places to compare
Returns:
True if relations are equivalent, False otherwise
"""
if isinstance(gold, And) and isinstance(pred, And):
return all(
sympy_compare_relational(g, p, float_rounding, numeric_precision)
for g, p in zip(gold._unsorted_args, pred._unsorted_args)
)
elif not isinstance(gold, Relational) or not isinstance(pred, Relational):
return False
# Helper to check if expressions are equivalent when flipped
def are_flipped_inequalities_equal(a: Relational, b: Relational) -> bool:
try:
return sympy_expr_eq(
a.lhs - a.rhs, b.rhs - b.lhs, float_rounding, numeric_precision
) # type: ignore
except Exception:
pass
return False
# Same type of relation (e.g. both <= or both >=)
try:
if type(gold) is type(pred) and sympy_expr_eq(
gold.lhs - gold.rhs, pred.lhs - pred.rhs, float_rounding, numeric_precision
): # type: ignore
return True
except Exception:
pass
# Check flipped inequalities (a <= b equals b >= a)
if INVERSE_RELATIONS[type(gold)] is type(pred) and are_flipped_inequalities_equal( # type: ignore
gold, pred
):
return True
if sympy_solve_and_compare(gold, pred, float_rounding, numeric_precision):
return True
return False
def sympy_str_eq(a: Basic | MatrixBase, b: Basic | MatrixBase) -> bool:
"""Compare two sympy expressions by string representation.
Args:
a: First sympy expression
b: Second sympy expression
Returns:
True if string representations are equal, False otherwise
"""
# We can't evaluate nan or zoo
if a == nan or a == zoo:
raise ValueError("Can't evaluate nan or zoo")
try:
return a == b
except Exception:
pass
return False
def sympy_compare_sets(
gold: Set | Basic | MatrixBase | Tuple,
pred: Set | Basic | MatrixBase | Tuple,
float_rounding: int,
numeric_precision: int,
) -> bool:
"""Compare two sympy sets for equality using multiple methods.
Args:
gold: First sympy set (expected)
pred: Second sympy set (predicted)
precision: Number of decimal places to compare
Returns:
True if sets are equal by any comparison method, False otherwise
"""
# Convert non-sets to singleton sets
a_set = gold if isinstance(gold, (Set, Tuple)) else SympyFiniteSet(gold)
b_set = pred if isinstance(pred, (Set, Tuple)) else SympyFiniteSet(pred)
# If both are intervals, use interval comparison
if isinstance(a_set, Interval) and isinstance(b_set, Interval):
return sympy_compare_interval(a_set, b_set, float_rounding, numeric_precision)
# Try direct set equality
if a_set == b_set:
return True
# If both are sets, check if they are equal
try:
if (
isinstance(a_set, Set)
and isinstance(b_set, Set)
and a_set.symmetric_difference(b_set).is_empty
):
return True
except Exception:
pass
# For finite sets, compare elements
if isinstance(a_set, (SympyFiniteSet, Tuple)) and isinstance(
b_set, (SympyFiniteSet, Tuple)
):
return sympy_deep_compare_set_and_tuple(
a_set, b_set, float_rounding, numeric_precision
)
# Because (1,2) is parsed as Interval(1,2,left_open=True,right_open=True), it could have that the
# correct is (1,2) and predicted is 1,2, which is parsed as Set(1,2)
if isinstance(a_set, Interval) and isinstance(b_set, (SympyFiniteSet, Tuple)):
if a_set.is_open and len(b_set) == 2:
return sympy_deep_compare_set_and_tuple(
Tuple(a_set.start, a_set.end), b_set, float_rounding, numeric_precision
)
if isinstance(b_set, Interval) and isinstance(a_set, (SympyFiniteSet, Tuple)):
if b_set.is_open and len(a_set) == 2:
return sympy_deep_compare_set_and_tuple(
a_set, Tuple(b_set.start, b_set.end), float_rounding, numeric_precision
)
return False
def sympy_compare_symbols(gold: Basic | MatrixBase, pred: Basic | MatrixBase) -> bool:
"""Compare two sympy expressions where at least one is a Symbol.
Handles special cases:
- One is Symbol and other is E (limitation of parsed expressions)
- One is multiplication of symbols and other is single symbol (concatenated comparison)
Args:
gold: First sympy expression (expected)
pred: Second sympy expression (predicted)
precision: Number of decimal places to compare
Returns:
True if expressions are equal by any comparison method, False otherwise
"""
# Handle E vs symbol case
if (isinstance(gold, Symbol) and gold.name.lower() == "e" and pred == E) or (
isinstance(pred, Symbol) and pred.name.lower() == "e" and gold == E
):
return True
# Handle multiplication of symbols vs single symbol, because parsing return $abc$ -> abc
# We also handle E as it's a symbol, because E will be always parsed as exp
if (
isinstance(gold, Symbol)
and isinstance(pred, Mul)
and all(arg == E or isinstance(arg, (Symbol)) for arg in pred.args)
):
concat_pred = "".join(
arg.name if isinstance(arg, Symbol) else "e" for arg in pred.args
)
return gold.name.lower() == concat_pred.lower()
if (
isinstance(pred, Symbol)
and isinstance(gold, Mul)
and all(arg == E or isinstance(arg, (Symbol)) for arg in gold.args)
):
concat_gold = "".join(
arg.name if isinstance(arg, Symbol) else "e" for arg in gold.args
)
return pred.name.lower() == concat_gold.lower()
# Simple
if isinstance(gold, Symbol) and isinstance(pred, Symbol):
g_name = gold.name
p_name = pred.name
if len(p_name) > 1:
p_name = p_name.lower()
if len(g_name) > 1:
g_name = g_name.lower()
return g_name == p_name
return False
def is_relation(expr: Basic | MatrixBase) -> bool:
"""Check if an expression is a relational expression.
Args:
expr: The expression to check
Returns:
bool: True if expr is a relational expression or And of relations, False otherwise
"""
if isinstance(expr, Relational):
return True
if isinstance(expr, And) and len(expr._unsorted_args) > 0:
return all(isinstance(arg, Relational) for arg in expr._unsorted_args)
return False
def is_equation(expr: Basic | MatrixBase) -> bool:
"""Check if an expression is an equation.
Args:
expr: The expression to check
Returns:
bool: True if expr is an equation, False otherwise
"""
if isinstance(expr, Eq):
return True
if isinstance(expr, And) and len(expr._unsorted_args) > 0:
return all(isinstance(arg, Eq) for arg in expr._unsorted_args)
return False
def is_assignment_relation(expr: Basic | MatrixBase) -> bool:
"""Check if an expression is an assignment relation. E.g a=1
Args:
expr: The expression to check
Returns:
bool: True if expr is a relational expression or And of relations, False otherwise
"""
if isinstance(expr, Eq) and is_expr_of_only_symbols(expr.lhs):
return True
if isinstance(expr, And) and len(expr._unsorted_args) > 0:
return all(
isinstance(arg, Eq) for arg in expr._unsorted_args
) and is_expr_of_only_symbols(expr._unsorted_args[0].lhs)
return False
def take_last_relation(expr: And | Relational) -> Relational:
"""Take the last relation from an And expression."""
if isinstance(expr, And):
return take_last_relation(expr._unsorted_args[-1])
return expr
def take_first_relation(expr: And | Relational) -> Relational:
"""Take the first relation from an And expression."""
if isinstance(expr, And):
return expr._unsorted_args[0]
return expr
def unwrap_fcs(expr: Basic | MatrixBase) -> Basic | MatrixBase:
"""Unwrap function calls to their arguments.
For example, Function('f')(x) becomes Symbol('f_x')
Args:
expr: The expression to unwrap
Returns:
The unwrapped expression with functions replaced by concatenated symbols
"""
# Base case - not a Basic type
if not isinstance(expr, Basic):
return expr
# Handle function case
if hasattr(expr, "func") and isinstance(expr.func, UndefinedFunction):
# Get function name and arguments
func_name = expr.func.__name__
# Recursively unwrap arguments before converting to string
unwrapped_args = [str(unwrap_fcs(arg)) for arg in expr.args]
# Create new symbol by concatenating function name and args
return Symbol(f"{func_name}_{'_'.join(unwrapped_args)}")
# Recursively unwrap all arguments
try:
new_args = [unwrap_fcs(arg) for arg in expr.args]
if new_args:
return expr.func(*new_args)
except Exception:
pass
return expr
def sympy_expr_eq(
gold: Basic | MatrixBase,
pred: Basic | MatrixBase,
float_rounding: int,
numeric_precision: int,
strict: bool = True,
) -> bool:
"""Compare two sympy expressions for equality using multiple methods.
Args:
gold: First sympy expression (expected)
pred: Second sympy expression (predicted)
precision: Number of decimal places to compare
strict: If true, variables do matter otherwise they don't
Returns:
True if expressions are equal by any comparison method, False otherwise
"""
# This ensures that f(x) == f(y) is true
if not strict:
try:
gold_variables = gold.free_symbols
pred_variables = pred.free_symbols
if len(gold_variables) == len(pred_variables):
pred = pred.subs(list(zip(pred_variables, gold_variables)))
except Exception:
pass
# If both are assigments, we don't want to unwrap them, so that x=1 != y=1
# But if one is assignment and other is equation, we want to unwrap both
# We always want to truncate if it's assignment, assignment
is_gold_assignment = is_assignment_relation(gold)
is_pred_assignment = is_assignment_relation(pred)
is_gold_equation = is_equation(gold)
is_pred_equation = is_equation(pred)
# Truncate equations chains in case of assignment, this doesn't change any of the above values,
# so no need to recompute them
if is_gold_assignment:
gold = Eq(
take_first_relation(gold).lhs, take_last_relation(gold).rhs, evaluate=False
)
if is_pred_assignment:
pred = Eq(
take_first_relation(pred).lhs, take_last_relation(pred).rhs, evaluate=False
)
# We follow what the gold format is
# 1 and 9=1 -> 1,1
if is_pred_equation and not is_gold_equation:
# Unwrap pred
pred = take_last_relation(pred).rhs
# We respect what the pred format is only if the gold is assignment so that x=1 and 1 -> 1,1, but not 2x + z = 1 and 1 -> 1,1
elif is_gold_assignment and not is_pred_equation:
gold = take_last_relation(gold).rhs
if is_relation(gold) and isinstance(pred, Set):
# This is to ensure that 1 < x < 2 equals (-oo, 1) U (2, oo)
# We also unwrap the functions because othewise it creates some conditional set based on the function name
try:
gold = unwrap_fcs(gold).as_set()
except Exception:
pass
# Start with simple str and expr comparisson as it's the fastest
# str comparison is better, than simple eq, because it will also handle missarangments
if sympy_str_eq(gold, pred):
return True
# Support for equations
if is_relation(gold) and is_relation(pred):
return sympy_compare_relational(gold, pred, float_rounding, numeric_precision)
elif isinstance(gold, (Set, Tuple)) or isinstance(pred, (Set, Tuple)):
return sympy_compare_sets(gold, pred, float_rounding, numeric_precision)
# Handles $\text{answer}$ == $answer$, one is symbol, is multiplication of symbols (a*n*s*w*e*r)
elif isinstance(gold, Symbol) or isinstance(pred, Symbol):
return sympy_compare_symbols(gold, pred)
elif isinstance(gold, (Basic, MatrixBase)) and isinstance(
pred, (Basic, MatrixBase)
):
# Mostly so that 0.333333 = 1/3
if sympy_numeric_eq(gold, pred, float_rounding, numeric_precision):
return True
# Then try symbolic equality
if sympy_symbolic_eq(gold, pred):
return True
return False
complex_number_pattern = re.compile(
r"""
# Complex number indicators
\\mathbb\{C\}| # Complex number set β
\\i\b| # Complex i
\bi\b| # Standalone i
\\text\{i\}| # Text i
\\mathrm\{i\}| # Roman i
\\imath\b| # Alternative i notation
# Matrix operations
\\det| # Determinant
\\operatorname\{tr\}| # Trace
\\operatorname\{rank\}| # Rank
\\text\{rank\}|
\\arg\{| # Complex argument
\\Re\{| # Real part
\\Im\{| # Imaginary part
\\operatorname\{Re\}| # Real part alternate
\\operatorname\{Im\}| # Imaginary part alternate
\\text\{Re\}| # Real part text
\\text\{Im\} # Imaginary part text
""",
re.VERBOSE,
)
def should_treat_as_complex(latex_str: str) -> bool:
"""
Returns True if the latex string likely contains complex numbers, matrices, or vectors.
"""
return bool(complex_number_pattern.search(latex_str))
def verify(
gold: list[Basic | MatrixBase | str] | Basic | MatrixBase | str,
target: list[Basic | MatrixBase | str] | Basic | MatrixBase | str,
float_rounding: int = 6,
numeric_precision: int = 15,
strict: bool = True,
timeout_seconds: int = 5,
) -> bool:
"""Verifies if the target expression matches the gold expression using multiple comparison strategies.
This function implements a comprehensive comparison system for mathematical expressions,
handling various types of mathematical objects (numbers, expressions, sets, matrices, etc.)
with multiple fallback strategies.
Note:
- It's expected that both gold and pred has been parsed with math_verify.parse function.
- Function is not symmetric, gold answer should be passed as gold and prediction as pred. The non-symmetric nature appears at assignment simplification and equation interval conversion.
Args:
gold: The reference/correct expression(s). Can be:
- A single SymPy expression (Basic or MatrixBase)
- A string
- A list of any of the above
target: The expression(s) to verify. Same types as gold.
float_rounding: Number of decimal places to round floats to. Defaults to 6.
numeric_precision: Number of decimal places to consider for numeric comparisons. Defaults to 15.
- If you know the evaluated expressions will be small, you should increase this. See: https://docs.sympy.org/latest/modules/evalf.html
strict: Whether to enforce strict comparison mode. Defaults to True.
- In strict mode: Variables matter and sets are not comparable with tuples
- In non-strict mode: Variables are matched by position and sets can be compared with tuples
timeout_seconds: Maximum time in seconds to spend on any single comparison operation.
Defaults to 5 seconds.
Returns:
bool: True if target matches gold according to any of the comparison strategies,
False otherwise.
Comparison Strategy:
1. String to String comparison
2. Numeric expressions: Comparison within specified precision
3. Symbolic equality through simplification
4. Special handling for:
- Relational expressions (equations/inequalities)
- Sets and intervals
- Matrices and vectors
- Complex numbers
5. Robust error handling with timeout protection
Example:
>>> verify(sympy.Rational(1, 3), 0.333333) # Numeric comparison
True
>>> verify(sympy.Symbol('x') + 1, sympy.Symbol('y') + 1, strict=False) # Variable matching
True
>>> verify(sympy.FiniteSet(1, 2), sympy.Tuple(1, 2), strict=False) # Set-tuple comparison
True
"""
@timeout(timeout_seconds=timeout_seconds)
def compare_single_extraction(
gold: Basic | MatrixBase | str, target: Basic | MatrixBase | str
) -> bool:
# If both are sympy expressions, we can use sympy to compare them
if isinstance(gold, (Basic, MatrixBase)) and isinstance(
target, (Basic, MatrixBase)
):
return sympy_expr_eq(
gold, target, float_rounding, numeric_precision, strict
)
# We don't support str / sympy.Expr comparison. Imo there is no point in doing this, as chances
# of this happening are very low. The only why one of them is not converted to sympy expression
# is usually because the parsing logic failed in this case we should improve the parsing logic
# instead of somehow fixing adhoc.
elif isinstance(gold, str) and isinstance(target, str):
# We just do string comparison for everything else
gold = gold.strip()
target = target.strip()
# Ensure it's both not empty and equal
return len(gold) > 0 and len(target) > 0 and gold == target
return False
def compare_single_extraction_wrapper(g, t):
try:
return compare_single_extraction(g, t)
except Exception:
#! Do not attempt to print out the g and t during handling of exception
# Because a) it can throw an exception itself and b) it can cause it to be stuck forever during str conversion
logger.exception("Error during comparison")
return False
except TimeoutException:
logger.error("Timeout during comparison")
return False
if not isinstance(gold, list):
gold = [gold]
if not isinstance(target, list):
target = [target]
return any(
compare_single_extraction_wrapper(g, t) for g, t in product(gold, target)
)
|