File size: 29,958 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
from contextlib import AbstractContextManager, ExitStack, nullcontext
from functools import partial
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union
import torch
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from typing_extensions import override
from lightning_fabric.accelerators import Accelerator
from lightning_fabric.accelerators.xla import _XLA_AVAILABLE
from lightning_fabric.plugins import CheckpointIO, Precision, XLAPrecision
from lightning_fabric.plugins.environments import XLAEnvironment
from lightning_fabric.plugins.io.xla import XLACheckpointIO
from lightning_fabric.strategies import ParallelStrategy, _StrategyRegistry
from lightning_fabric.strategies.fsdp import _apply_filter
from lightning_fabric.strategies.launchers.xla import _XLALauncher
from lightning_fabric.strategies.strategy import (
TBroadcast,
_BackwardSyncControl,
_Sharded,
_validate_keys_for_strict_loading,
)
from lightning_fabric.utilities.cloud_io import get_filesystem
from lightning_fabric.utilities.init import _EmptyInit
from lightning_fabric.utilities.rank_zero import rank_zero_only, rank_zero_warn
from lightning_fabric.utilities.types import _PATH, Optimizable, ReduceOp
if TYPE_CHECKING:
from torch_xla.distributed.parallel_loader import MpDeviceLoader
_POLICY_SET = set[type[Module]]
_POLICY = Union[_POLICY_SET, Callable[[Module, bool, int], bool]]
class XLAFSDPStrategy(ParallelStrategy, _Sharded):
r"""Strategy for training multiple XLA devices using the
:func:`torch_xla.distributed.xla_fully_sharded_data_parallel.XlaFullyShardedDataParallel` method.
.. warning:: This is an :ref:`experimental <versioning:Experimental API>` feature.
For more information check out https://github.com/pytorch/xla/blob/v2.5.0/docs/fsdp.md
Args:
auto_wrap_policy: Same as ``auto_wrap_policy`` parameter in
:class:`torch_xla.distributed.fsdp.XlaFullyShardedDataParallel`.
For convenience, this also accepts a set of the layer classes to wrap.
activation_checkpointing_policy: Used when selecting the modules for
which you want to enable activation checkpointing. Enabling this can free up a significant amount of memory
at the cost of speed since activations in these layers need to be recomputed during backpropagation.
This accepts a set of the layer classes to wrap.
state_dict_type: The format in which the state of the model and optimizers gets saved into the checkpoint.
- ``"full"``: The full weights and optimizer states get assembled on rank 0 and saved to a single file.
- ``"sharded"``: Each rank saves its shard of weights and optimizer states to a file. The checkpoint is
a folder with files for each shard in the host. Note that TPU VM multihost does not have a shared
filesystem.
sequential_save: With this enabled, individual ranks consecutively save their state dictionary shards, reducing
peak system RAM usage, although it elongates the saving process.
\**kwargs: See available parameters in :class:`torch_xla.distributed.fsdp.XlaFullyShardedDataParallel`.
"""
def __init__(
self,
accelerator: Optional[Accelerator] = None,
parallel_devices: Optional[list[torch.device]] = None,
checkpoint_io: Optional[XLACheckpointIO] = None,
precision: Optional[XLAPrecision] = None,
auto_wrap_policy: Optional[_POLICY] = None,
activation_checkpointing_policy: Optional[_POLICY_SET] = None,
state_dict_type: Literal["full", "sharded"] = "sharded",
sequential_save: bool = False,
**kwargs: Any,
) -> None:
if not _XLA_AVAILABLE:
raise ModuleNotFoundError(str(_XLA_AVAILABLE))
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=XLAEnvironment(),
checkpoint_io=checkpoint_io,
precision=precision,
)
self._backward_sync_control = _XLAFSDPBackwardSyncControl()
self._auto_wrap_policy = auto_wrap_policy
self._activation_checkpointing_policy = activation_checkpointing_policy
self._fsdp_kwargs = kwargs
self._state_dict_type = state_dict_type
self._sequential_save = sequential_save
self._launched = False
@property
@override
def root_device(self) -> torch.device:
if not self._launched:
raise RuntimeError("Accessing the XLA device before processes have spawned is not allowed.")
import torch_xla.core.xla_model as xm
return xm.xla_device()
@property
def num_processes(self) -> int:
return len(self.parallel_devices) if self.parallel_devices is not None else 0
@property
@override
def checkpoint_io(self) -> XLACheckpointIO:
plugin = self._checkpoint_io
if plugin is not None:
assert isinstance(plugin, XLACheckpointIO)
return plugin
return XLACheckpointIO()
@checkpoint_io.setter
@override
def checkpoint_io(self, io: Optional[CheckpointIO]) -> None:
if io is not None and not isinstance(io, XLACheckpointIO):
raise TypeError(f"The XLA strategy can only work with the `XLACheckpointIO` plugin, found {io}")
self._checkpoint_io = io
@property
@override
def precision(self) -> XLAPrecision:
plugin = self._precision
if plugin is not None:
assert isinstance(plugin, XLAPrecision)
return plugin
return XLAPrecision("32-true")
@precision.setter
@override
def precision(self, precision: Optional[Precision]) -> None:
if precision is not None and not isinstance(precision, XLAPrecision):
raise TypeError(f"The XLA FSDP strategy can only work with the `XLAPrecision` plugin, found {precision}")
self._precision = precision
@property
@override
def global_rank(self) -> int:
return super().global_rank if self._launched else 0
@property
@override
def local_rank(self) -> int:
return super().local_rank if self._launched else 0
@property
@override
def node_rank(self) -> int:
return super().node_rank if self._launched else 0
@property
@override
def world_size(self) -> int:
return super().world_size if self._launched else 1
@override
def _configure_launcher(self) -> None:
self._launcher = _XLALauncher(self)
@override
def setup_environment(self) -> None:
assert self.parallel_devices is not None
if len(self.parallel_devices) == 1:
# spawning only 1 device with PjRT is not supported:
# https://github.com/Lightning-AI/pytorch-lightning/pull/17408#discussion_r1170671732
raise NotImplementedError(
f"The {type(self).__name__} does not support running on a single device with the PjRT runtime."
" Try using all devices or the `SingleDeviceXLAStrategy` strategy"
)
self._launched = True
rank_zero_only.rank = self.global_rank
super().setup_environment()
@override
def setup_module_and_optimizers(
self, module: Module, optimizers: list[Optimizer]
) -> tuple[Module, list[Optimizer]]:
"""Returns NotImplementedError since for XLAFSDP optimizer setup must happen after module setup."""
raise NotImplementedError(
f"The `{type(self).__name__}` does not support the joint setup of module and optimizer(s)."
" Please do it in this order: Create the model, call `setup_module`, create the optimizer,"
" call `setup_optimizer`."
)
@override
def setup_module(self, module: Module) -> Module:
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as XLAFSDP
kwargs = self._parse_fsdp_kwargs()
if any(isinstance(mod, XLAFSDP) for mod in module.modules()) and "auto_wrap_policy" in kwargs:
rank_zero_warn(
"A XLAFSDP `auto_wrap_policy` is set, but at least one submodule is already wrapped."
" The policy will be ignored."
)
del kwargs["auto_wrap_policy"]
# XLA FSDP requires that the root is wrapped, even if submodules are already wrapped
if not isinstance(module, XLAFSDP):
module = XLAFSDP(module=module, **kwargs)
return module
@override
def module_to_device(self, module: Module) -> None:
pass
def module_init_context(self, empty_init: Optional[bool] = None) -> AbstractContextManager:
precision_init_ctx = self.precision.module_init_context()
module_sharded_ctx = self.module_sharded_context()
stack = ExitStack()
stack.enter_context(_EmptyInit(enabled=bool(empty_init)))
stack.enter_context(precision_init_ctx)
stack.enter_context(module_sharded_ctx)
return stack
@override
def module_sharded_context(self) -> AbstractContextManager:
return nullcontext()
@override
def process_dataloader(self, dataloader: DataLoader) -> "MpDeviceLoader":
from torch_xla.distributed.parallel_loader import MpDeviceLoader
if isinstance(dataloader, MpDeviceLoader):
# dataloader is already wrapped by MpDeviceLoader
return dataloader
dataloader = MpDeviceLoader(dataloader, self.root_device)
# Mimic interface to torch.utils.data.DataLoader
dataloader.dataset = dataloader._loader.dataset
dataloader.batch_sampler = getattr(dataloader._loader, "batch_sampler", None)
return dataloader
@override
def setup_optimizer(self, optimizer: Optimizer) -> Optimizer:
"""Set up an optimizer for a model wrapped with XLAFSDP.
This setup method doesn't modify the optimizer or wrap the optimizer. The only thing it currently does is verify
that the optimizer was created after the model was wrapped with :meth:`setup_module` with a reference to the
flattened parameters.
"""
if any(getattr(p, "_is_sharded", False) for group in optimizer.param_groups for p in group["params"]):
return optimizer
raise ValueError(
"The optimizer does not seem to reference any XLAFSDP parameters. HINT: Make sure to create the optimizer"
" after setting up the model."
)
@override
def optimizer_step(self, optimizer: Optimizable, **kwargs: Any) -> Any:
"""Overrides default tpu optimizer_step since FSDP should not call `torch_xla.core.xla_model.optimizer_step`.
Performs the actual optimizer step.
Args:
optimizer: the optimizer performing the step
**kwargs: Any extra arguments to ``optimizer.step``
"""
loss = optimizer.step(**kwargs)
import torch_xla.core.xla_model as xm
xm.mark_step()
return loss
@override
def clip_gradients_norm(
self,
module: Module,
optimizer: Optimizer,
max_norm: Union[float, int],
norm_type: Union[float, int] = 2.0,
error_if_nonfinite: bool = True,
) -> Tensor:
"""Clip gradients by norm."""
self.precision.unscale_gradients(optimizer)
assert callable(module.clip_grad_norm_)
return module.clip_grad_norm_(max_norm=max_norm, norm_type=norm_type)
@override
def clip_gradients_value(self, module: Module, optimizer: Optimizer, clip_val: Union[float, int]) -> None:
"""Clip gradients by value."""
raise NotImplementedError(
"XLA's FSDP strategy does not support to clip gradients by value."
" Consider clipping by norm instead or choose another strategy!"
)
@override
def all_gather(self, tensor: Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> Tensor:
"""Function to gather a tensor from several distributed processes.
Args:
tensor: tensor to all-gather.
group: unused.
sync_grads: flag that allows users to synchronize gradients for the all-gather operation.
Return:
A tensor of shape (world_size, ...)
"""
if not self._launched:
return tensor
if not isinstance(tensor, Tensor):
raise NotImplementedError(
f"`{type(self).__name__}.all_gather` is only implemented for tensors. Given {tensor}"
)
if tensor.dim() == 0:
tensor = tensor.unsqueeze(0)
original_device = tensor.device
tensor = tensor.to(self.root_device)
import torch_xla.core.functions as xf
import torch_xla.core.xla_model as xm
tensor = xf.all_gather(tensor) if sync_grads else xm.all_gather(tensor)
tensor = tensor.to(original_device)
return tensor
@override
def all_reduce(
self, output: Union[Tensor, Any], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None
) -> Tensor:
if not isinstance(output, Tensor):
output = torch.tensor(output, device=self.root_device)
invalid_reduce_op = isinstance(reduce_op, ReduceOp) and reduce_op != ReduceOp.SUM
invalid_reduce_op_str = isinstance(reduce_op, str) and reduce_op.lower() not in ("sum", "mean", "avg")
if invalid_reduce_op or invalid_reduce_op_str:
raise ValueError(
"Currently, the XLAFSDPStrategy only supports `sum`, `mean`, `avg` for the reduce operation, got:"
f" {reduce_op}"
)
import torch_xla.core.xla_model as xm
output = xm.mesh_reduce("reduce", output, sum)
if isinstance(reduce_op, str) and reduce_op.lower() in ("avg", "mean"):
output = output / self.world_size
return output
@override
def barrier(self, name: Optional[str] = None, *args: Any, **kwargs: Any) -> None:
if not self._launched:
return
import torch_xla.core.xla_model as xm
if name is None:
# `None` is not supported: "TypeError: _xla_rendezvous(): incompatible function arguments"
name = ""
xm.rendezvous(name)
@override
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
if not self._launched:
return obj
import torch_xla.core.xla_model as xm
is_tensor = isinstance(obj, Tensor)
if is_tensor:
if obj.dim() == 0:
obj = obj.unsqueeze(0)
original_device = obj.device
# XLA distributed requires that the data is on the XLA device
obj = obj.to(self.root_device)
else:
# support for arbitrary pickle-ables
buffer = io.BytesIO()
torch.save(obj, buffer)
obj = torch.tensor( # type: ignore[assignment]
bytearray(buffer.getbuffer()), device=self.root_device, dtype=torch.float
)
obj = [obj]
xm.collective_broadcast(obj, root_ordinal=src)
obj = obj[0]
if not is_tensor:
# this will preserve the dtype and device of any tensors
buffer = io.BytesIO(obj.cpu().byte().numpy())
obj = torch.load(buffer)
else:
obj = obj.to(original_device)
return obj
@override
def save_checkpoint(
self,
path: _PATH,
state: dict[str, Union[Module, Optimizer, Any]],
storage_options: Optional[Any] = None,
filter: Optional[dict[str, Callable[[str, Any], bool]]] = None,
) -> None:
"""Save model, optimizer, and other state in the provided checkpoint directory.
If the user specifies sharded checkpointing, the directory will contain one file per process, with model- and
optimizer shards stored per file. If the user specifies full checkpointing, the directory will contain a
consolidated checkpoint combining all of the sharded checkpoints.
"""
# broadcast the path from rank 0 to ensure all the states are saved in a common path
path = Path(self.broadcast(path))
if path.is_dir() and any(path.iterdir()):
raise FileExistsError(f"The checkpoint directory already exists and is not empty: {path}")
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as XLAFSDP
modules = [module for module in state.values() if isinstance(module, XLAFSDP)]
if len(modules) == 0:
raise ValueError(
"Could not find a XLAFSDP model in the provided checkpoint state. Please provide the model as"
" part of the state like so: `save_checkpoint(..., state={'model': model, ...})`. Make sure"
" you set up the model (and optimizers if any) through the strategy before saving the checkpoint."
)
if len(modules) > 1:
raise ValueError(
"Found multiple XLAFSDP modules in the given state. Saving checkpoints with FSDP is"
" currently limited to a single model per checkpoint. To save multiple models, call the"
" save method for each model separately with a different path."
)
import torch_xla.core.xla_model as xm
# ensure model parameters are updated
xm.mark_step()
parallel_devices = self.parallel_devices
assert parallel_devices is not None
if self._sequential_save:
# each host runs this in parallel, but the ranks in the host run it sequentially
for rank in range(len(parallel_devices)):
if rank == self.local_rank:
self._save_checkpoint_shard(path, state, storage_options, filter)
self.barrier(f"wait-for-{rank}-save")
else:
self._save_checkpoint_shard(path, state, storage_options, filter)
if self._state_dict_type == "full":
ckpt_prefix = str(path / "checkpoint")
ckpt_suffix = "_rank-*-of-*.pth"
if len(parallel_devices) != self.world_size: # multihost
raise OSError(
"Multihost setups do not have a shared filesystem, so the checkpoint shards cannot be consolidated"
" into a single checkpoint after saving them. Please switch to"
" `XLAFSDPStrategy(state_dict_type='sharded')`. TIP: You can consolidate them manually by getting"
" them together into a single directory and running `python -m"
f" torch_xla.distributed.fsdp.consolidate_sharded_ckpts --ckpt_prefix {ckpt_prefix!r} --ckpt_suffix"
f" {ckpt_suffix!r} --save_path 'path/to/consolidated.ckpt'`."
)
from torch_xla.distributed.fsdp import consolidate_sharded_model_checkpoints
self.barrier("before_ckpt_consolidation")
if self.is_global_zero:
save_path = path.parent / "consolidated.ckpt"
# save consolidated checkpoint separate to the shards
consolidate_sharded_model_checkpoints(ckpt_prefix, ckpt_suffix, str(save_path))
# remove the shards directory
self.checkpoint_io.remove_checkpoint(path)
# mv the consolidated checkpoint where the user would expect it
get_filesystem(save_path).mv(str(save_path), str(path))
self.barrier("after_ckpt_consolidation")
def _save_checkpoint_shard(
self,
path: Path,
state: dict[str, Union[Module, Optimizer, Any]],
storage_options: Optional[Any],
filter: Optional[dict[str, Callable[[str, Any], bool]]],
) -> None:
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as XLAFSDP
converted_state: dict[str, Any] = {}
for key, obj in state.items():
# convert the state
if isinstance(obj, Module) and isinstance(obj, XLAFSDP):
converted = obj.state_dict()
# add shard_metadata to state
converted_state["shard_metadata"] = obj.get_shard_metadata()
elif isinstance(obj, Optimizer):
converted = obj.state_dict()
else:
converted = obj
_apply_filter(key, filter or {}, converted, converted_state)
self.checkpoint_io.save_checkpoint(
converted_state,
path / f"checkpoint_rank-{self.global_rank:08d}-of-{self.world_size:08d}.pth",
storage_options=storage_options,
)
@override
def load_checkpoint(
self,
path: _PATH,
state: Optional[Union[Module, Optimizer, dict[str, Union[Module, Optimizer, Any]]]] = None,
strict: bool = True,
) -> dict[str, Any]:
"""Given a folder, load the contents from a checkpoint and restore the state of the given objects.
The strategy currently only supports saving and loading sharded checkpoints which are stored in form of a
directory of multiple files rather than a single file.
"""
if not state:
raise ValueError(
f"Got `XLAFSDPStrategy.load_checkpoint(..., state={state!r})` but a state with at least "
" a model instance to reload is required. Pass it in like so:"
" `FSDPStrategy.load_checkpoint(..., state={'model': model, ...})`"
)
# broadcast the path from rank 0 to ensure all the states are loaded from a common path
path = Path(self.broadcast(path))
if isinstance(state, (Module, Optimizer)):
raise NotImplementedError(
"Loading a single module or optimizer object from a checkpoint"
" is not supported yet with the XLAFSDP strategy."
)
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as XLAFSDP
modules = {key: module for key, module in state.items() if isinstance(module, XLAFSDP)}
optimizers = {key: optim for key, optim in state.items() if isinstance(optim, Optimizer)}
if self._state_dict_type == "sharded":
file = path / f"checkpoint_rank-{self.global_rank:08d}-of-{self.world_size:08d}.pth"
if not file.is_file():
raise ValueError(
f"The path {str(file)!r} does not point to valid sharded checkpoints. Make sure the path points to"
" a directory with XLAFSDP checkpoint shards."
)
if len(modules) == 0:
raise ValueError(
"Could not find a XLAFSDP model in the provided checkpoint state. Please provide the model as"
" part of the state like so: `load_checkpoint(..., state={'model': model, ...})`. Make sure"
" you set up the model (and optimizers if any) through the strategy before loading the checkpoint."
)
if len(modules) > 1:
raise ValueError(
"Found multiple XLAFSDP modules in the given state. Loading checkpoints with FSDP is"
" currently limited to a single model per checkpoint. To load multiple models, call the"
" load method for each model separately with a different path."
)
_, module = list(modules.items())[0]
sharded_ckpt = torch.load(file)
module.load_state_dict(sharded_ckpt["model"], strict=strict)
for opt_key, opt in optimizers.items():
opt.load_state_dict(sharded_ckpt[opt_key])
# Load anything leftover from sharded_ckpt
loaded_metadata_keys = sharded_ckpt.keys() - modules.keys() - optimizers.keys()
requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys()
_validate_keys_for_strict_loading(requested_metadata_keys, loaded_metadata_keys, strict=strict)
for key in requested_metadata_keys:
if key in loaded_metadata_keys:
state[key] = sharded_ckpt[key]
loaded_metadata_keys.remove(key)
metadata = {}
if len(loaded_metadata_keys):
for key in loaded_metadata_keys:
metadata[key] = sharded_ckpt[key]
# remove "shard_metadata" that is loaded in
if "shard_metadata" in metadata:
metadata.pop("shard_metadata")
return metadata
if self._state_dict_type == "full":
if not path.is_file():
raise ValueError(
f"The path {str(path)!r} does not point to a valid full checkpoint. Make sure the path points to a"
" directory with a full XLAFSDP checkpoint."
)
if len(optimizers) > 0 or len(state.keys() - modules.keys() - optimizers.keys()) > 0:
rank_zero_warn(
"Loading a full checkpoint will only load the full model."
" The optimizer and any additional metadata are not included."
)
if len(modules) > 0:
raise ValueError(
"Found a XLAFSDP model in the provided checkpoint state."
" Please provide the model without any XLAFSDP wrapper."
)
if "model" not in state or not isinstance(model := state["model"], torch.nn.Module):
raise NotImplementedError("XLAFSDP only supports a single model instance with 'model' as the key.")
full_ckpt = torch.load(path)
model.load_state_dict(full_ckpt.pop("model"), strict=strict)
return full_ckpt
raise ValueError(f"Unknown state_dict_type: {self._state_dict_type}")
@classmethod
@override
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None:
strategy_registry.register("xla_fsdp", cls, description=cls.__name__)
def _parse_fsdp_kwargs(self) -> dict:
# this needs to be delayed because `self.precision` isn't available at init
kwargs = self._fsdp_kwargs.copy()
precision = self.precision
if isinstance(precision, XLAPrecision):
# the `compute_dtype` will be passed to the `auto_wrapper_callable` automatically, so we don't need to pass
# it when creating it
kwargs.setdefault("compute_dtype", precision._desired_dtype)
kwargs = _auto_wrap_policy_kwargs(self._auto_wrap_policy, kwargs)
return _activation_checkpointing_kwargs(self._activation_checkpointing_policy, kwargs)
def _auto_wrap_policy_kwargs(policy: Optional["_POLICY"], kwargs: dict) -> dict:
if policy is None:
return kwargs
if isinstance(policy, set):
from torch_xla.distributed.fsdp.wrap import transformer_auto_wrap_policy
# this is not transformer specific despite the name
policy = partial(transformer_auto_wrap_policy, transformer_layer_cls=policy)
kwargs["auto_wrap_policy"] = policy
return kwargs
def _activation_checkpointing_auto_wrapper(policy: _POLICY_SET, module: Module, *args: Any, **kwargs: Any) -> Module:
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as XLAFSDP
from torch_xla.distributed.fsdp import checkpoint_module
module = checkpoint_module(module) if isinstance(module, tuple(policy)) else module
return XLAFSDP(module, *args, **kwargs)
def _activation_checkpointing_kwargs(policy: Optional[_POLICY_SET], kwargs: dict) -> dict:
if not policy:
return kwargs
if "auto_wrapper_callable" in kwargs:
raise ValueError(
"You cannot set both `auto_wrapper_callable` and `activation_checkpointing_policy`. Choose one"
)
if not isinstance(policy, set):
raise TypeError(
f"`activation_checkpointing_policy` must be a set, found {policy}. You can try defining and"
" passing `auto_wrapper_callable` instead."
)
auto_wrapper_callable = partial(_activation_checkpointing_auto_wrapper, policy)
kwargs["auto_wrapper_callable"] = auto_wrapper_callable
return kwargs
class _XLAFSDPBackwardSyncControl(_BackwardSyncControl):
@override
def no_backward_sync(self, module: Module, enabled: bool) -> AbstractContextManager:
"""Blocks gradient synchronization inside the :class:`~torch_xla.distributed.fsdp.XlaFullyShardedDataParallel`
wrapper."""
if not enabled:
return nullcontext()
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as XLAFSDP
if not isinstance(module, XLAFSDP):
raise TypeError(
"Blocking backward sync is only possible if the module passed to"
f" `{self.__class__.__name__}.no_backward_sync` is wrapped in `XlaFullyShardedDataParallel`."
f" Got: {module.__class__.__name__}."
)
return module.no_sync()
|