File size: 26,321 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import shutil
from collections.abc import Generator
from contextlib import AbstractContextManager, ExitStack
from datetime import timedelta
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, TypeVar, Union
import torch
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
from typing_extensions import TypeGuard, override
from lightning_fabric.plugins import CheckpointIO
from lightning_fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning_fabric.strategies.fsdp import (
_distributed_checkpoint_load,
_distributed_checkpoint_save,
_get_full_state_dict_context,
_is_full_checkpoint,
_is_sharded_checkpoint,
)
from lightning_fabric.strategies.launchers.subprocess_script import _SubprocessScriptLauncher
from lightning_fabric.strategies.parallel import ParallelStrategy
from lightning_fabric.strategies.strategy import (
TBroadcast,
_apply_filter,
_BackwardSyncControl,
_validate_keys_for_strict_loading,
)
from lightning_fabric.utilities.distributed import (
ReduceOp,
_distributed_is_initialized,
_get_default_process_group_backend_for_device,
_init_dist_connection,
_sync_ddp_if_available,
)
from lightning_fabric.utilities.distributed import group as _group
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_3, _TORCH_GREATER_EQUAL_2_4
from lightning_fabric.utilities.init import _materialize_distributed_module
from lightning_fabric.utilities.load import _METADATA_FILENAME, _lazy_load, _move_state_into
from lightning_fabric.utilities.rank_zero import rank_zero_only
from lightning_fabric.utilities.seed import reset_seed
from lightning_fabric.utilities.types import _PATH, _Stateful
if TYPE_CHECKING:
from torch.distributed.device_mesh import DeviceMesh
TModel = TypeVar("TModel", bound=Module)
class ModelParallelStrategy(ParallelStrategy):
"""Enables user-defined parallelism applied to a model.
.. warning:: This is an :ref:`experimental <versioning:Experimental API>` feature.
Currently supports up to 2D parallelism. Specifically, it supports the combination of
Fully Sharded Data-Parallel 2 (FSDP2) with Tensor Parallelism (DTensor). These PyTorch APIs are currently still
experimental in PyTorch. Requires PyTorch 2.4 or newer.
Arguments:
parallelize_fn: A function that applies parallelisms to a module. The strategy will provide the
model and device mesh as input.
data_parallel_size: The number of devices within a data-parallel group. Defaults to ``"auto"``, which
sets this size to the number of nodes in the cluster.
tensor_parallel_size: The number of devices within a tensor-parallel group. Defaults to ``"auto"``, which
sets this size to the number of GPUs in a single node.
save_distributed_checkpoint: If ``True``, each rank saves its shard of weights and optimizer states to a file.
The checkpoint is a folder with as many files as the world size.
If ``False``, the full weights and optimizer states get assembled on rank 0 and saved to a single file.
"""
def __init__(
self,
parallelize_fn: Callable[[TModel, "DeviceMesh"], TModel],
data_parallel_size: Union[Literal["auto"], int] = "auto",
tensor_parallel_size: Union[Literal["auto"], int] = "auto",
save_distributed_checkpoint: bool = True,
process_group_backend: Optional[str] = None,
timeout: Optional[timedelta] = default_pg_timeout,
) -> None:
super().__init__()
if not _TORCH_GREATER_EQUAL_2_4:
raise ImportError(f"{type(self).__name__} requires PyTorch 2.4 or higher.")
self._parallelize_fn = parallelize_fn
self._data_parallel_size = data_parallel_size
self._tensor_parallel_size = tensor_parallel_size
self._num_nodes = 1
self._save_distributed_checkpoint = save_distributed_checkpoint
self._process_group_backend: Optional[str] = process_group_backend
self._timeout: Optional[timedelta] = timeout
self._backward_sync_control = _ParallelBackwardSyncControl()
self._device_mesh: Optional[DeviceMesh] = None
@property
def device_mesh(self) -> "DeviceMesh":
if self._device_mesh is None:
raise RuntimeError("Accessing the device mesh before processes have initialized is not allowed.")
return self._device_mesh
@property
@override
def checkpoint_io(self) -> CheckpointIO:
raise NotImplementedError(f"The `{type(self).__name__}` does not use the `CheckpointIO` plugin interface.")
@checkpoint_io.setter
@override
def checkpoint_io(self, io: CheckpointIO) -> None:
raise NotImplementedError(f"The `{type(self).__name__}` does not support setting a `CheckpointIO` plugin.")
@property
@override
def root_device(self) -> torch.device:
assert self.parallel_devices is not None
return self.parallel_devices[self.local_rank]
@property
def num_nodes(self) -> int:
return self._num_nodes
@num_nodes.setter
def num_nodes(self, num_nodes: int) -> None:
self._num_nodes = num_nodes
@property
def num_processes(self) -> int:
return len(self.parallel_devices) if self.parallel_devices is not None else 0
@property
@override
def distributed_sampler_kwargs(self) -> dict[str, Any]:
assert self.device_mesh is not None
data_parallel_mesh = self.device_mesh["data_parallel"]
return {"num_replicas": data_parallel_mesh.size(), "rank": data_parallel_mesh.get_local_rank()}
@property
def process_group_backend(self) -> Optional[str]:
return self._process_group_backend
@override
def _configure_launcher(self) -> None:
assert self.cluster_environment is not None
if not self.cluster_environment.creates_processes_externally:
self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes)
@override
def setup_environment(self) -> None:
super().setup_environment()
self._setup_distributed()
if self._data_parallel_size == "auto":
self._data_parallel_size = self.num_nodes
if self._tensor_parallel_size == "auto":
self._tensor_parallel_size = self.num_processes
self._device_mesh = _setup_device_mesh(
self._data_parallel_size, self._tensor_parallel_size, self.world_size, self.root_device
)
@override
def setup_module(self, module: Module) -> Module:
from torch.distributed.fsdp import FullyShardedDataParallel
if any(isinstance(mod, FullyShardedDataParallel) for mod in module.modules()):
raise TypeError(
"Found modules that are wrapped with `torch.distributed.fsdp.FullyShardedDataParallel`."
f" The `{self.__class__.__name__}` only supports the new FSDP2 APIs in PyTorch >= 2.4."
)
module = self._parallelize_fn(module, self.device_mesh) # type: ignore[arg-type]
if not isinstance(module, Module):
raise TypeError(
f"The `parallelize_fn` must return a `nn.Module` instance, but got: {type(module).__name__}"
)
_materialize_distributed_module(module, self.root_device)
return module
@override
def module_to_device(self, module: Module) -> None:
pass
@override
def module_init_context(self, empty_init: Optional[bool] = None) -> AbstractContextManager:
precision_init_ctx = self.precision.module_init_context()
stack = ExitStack()
if empty_init:
# Materializaton happens in `setup_module`
# TODO: Introduce `Fabric.materialize(module)` to give user control over materialization
stack.enter_context(torch.device("meta"))
stack.enter_context(precision_init_ctx)
return stack
@override
def all_reduce(
self, tensor: Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
) -> Tensor:
if isinstance(tensor, Tensor):
return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
return tensor
@override
def barrier(self, *args: Any, **kwargs: Any) -> None:
if not _distributed_is_initialized():
return
if torch.distributed.get_backend() == "nccl":
torch.distributed.barrier(device_ids=[self.root_device.index])
else:
torch.distributed.barrier()
@override
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
if not _distributed_is_initialized():
return obj
obj = [obj]
torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD)
return obj[0]
@override
def save_checkpoint(
self,
path: _PATH,
state: dict[str, Union[Module, Optimizer, Any]],
storage_options: Optional[Any] = None,
filter: Optional[dict[str, Callable[[str, Any], bool]]] = None,
) -> None:
"""Save model, optimizer, and other state to a checkpoint on disk.
If distributed checkpointing is enabled (default), the checkpoint gets saved as a directory containing one file
per process, with model- and optimizer shards stored per file. Additionally, it creates a metadata file
`meta.pt` with the rest of the user's state (only saved from rank 0).
If distributed checkpointing is disabled (``save_distributed_checkpoint=False``), the checkpoint will be
written to a single file containing the weights, optimizer state and other metadata.
"""
if storage_options is not None:
raise TypeError(
f"`{type(self).__name__}.save_checkpoint(..., storage_options=...)` is not supported because"
f" `{type(self).__name__}` does not use the `CheckpointIO`."
)
if filter is not None and self._save_distributed_checkpoint:
# https://github.com/pytorch/pytorch/issues/105379
raise NotImplementedError(
f"{type(self).__name__} doesn't support loading distributed filtered checkpoints,"
" so saving them is disabled."
)
# broadcast the path from rank 0 to ensure all the states are saved in a common path
path = Path(self.broadcast(path))
_save_checkpoint(
path=path,
state=state,
full_state_dict=(not self._save_distributed_checkpoint),
rank=self.global_rank,
filter=filter,
)
@override
def load_checkpoint(
self,
path: _PATH,
state: Optional[Union[Module, Optimizer, dict[str, Union[Module, Optimizer, Any]]]] = None,
strict: bool = True,
) -> dict[str, Any]:
"""Load the contents from a checkpoint and restore the state of the given objects."""
if not state:
raise ValueError(
f"Got {type(self).__name__}.load_checkpoint(..., state={state!r}) but a state with at least "
" a model instance to reload is required. Pass it in like so:"
f" {type(self).__name__}.load_checkpoint(..., state={{'model': model, ...}})"
)
# broadcast the path from rank 0 to ensure all the states are loaded from a common path
path = Path(self.broadcast(path))
if isinstance(state, Module):
_load_raw_module_state_from_path(path, module=state, world_size=self.world_size, strict=strict)
return {}
if isinstance(state, Optimizer):
raise NotImplementedError(
f"Loading a single optimizer object from a checkpoint is not supported yet with {type(self).__name__}."
)
return _load_checkpoint(path=path, state=state, strict=strict)
def _setup_distributed(self) -> None:
reset_seed()
self._set_world_ranks()
self._process_group_backend = self._get_process_group_backend()
assert self.cluster_environment is not None
_init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout)
def _get_process_group_backend(self) -> str:
return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device)
def _set_world_ranks(self) -> None:
if self.cluster_environment is not None:
self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank)
self.cluster_environment.set_world_size(self.num_nodes * self.num_processes)
# `LightningEnvironment.set_global_rank` will do this too, but we cannot rely on that implementation detail
# additionally, for some implementations, the setter is a no-op, so it's safer to access the getter
rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank
class _ParallelBackwardSyncControl(_BackwardSyncControl):
@override
def no_backward_sync(self, module: Module, enabled: bool) -> AbstractContextManager:
"""Blocks gradient synchronization inside the FSDP2 modules."""
return _FSDPNoSync(module=module, enabled=enabled)
class _FSDPNoSync(AbstractContextManager):
def __init__(self, module: Module, enabled: bool) -> None:
self._module = module
self._enabled = enabled
def _set_requires_grad_sync(self, requires_grad_sync: bool) -> None:
from torch.distributed._composable.fsdp import FSDPModule
for mod in self._module.modules():
if isinstance(mod, FSDPModule):
mod.set_requires_gradient_sync(requires_grad_sync, recurse=False)
def __enter__(self) -> None:
self._set_requires_grad_sync(not self._enabled)
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
self._set_requires_grad_sync(self._enabled)
def _save_checkpoint(
path: Path,
state: dict[str, Union[Module, Optimizer, Any]],
full_state_dict: bool,
rank: int,
filter: Optional[dict[str, Callable[[str, Any], bool]]] = None,
) -> None:
if path.is_dir() and full_state_dict and not _is_sharded_checkpoint(path):
raise IsADirectoryError(f"The checkpoint path exists and is a directory: {path}")
modules = [module for module in state.values() if _has_dtensor_modules(module)]
if len(modules) == 0:
raise ValueError(
"Could not find a distributed model in the provided checkpoint state. Please provide the model as"
" part of the state like so: `save_checkpoint(..., state={'model': model, ...})`. Make sure"
" you set up the model (and optimizers if any) through the strategy before saving the checkpoint."
)
if len(modules) > 1:
raise ValueError(
"Found multiple distributed models in the given state. Saving distributed checkpoints is"
" currently limited to a single model per checkpoint. To save multiple models, call the"
" save method for each model separately with a different path."
)
module = modules[0]
from torch.distributed.checkpoint.state_dict import StateDictOptions, get_model_state_dict, get_optimizer_state_dict
state_dict_options = StateDictOptions(full_state_dict=full_state_dict, cpu_offload=True)
# replace the modules and optimizer objects in the state with their local state dict
# and separate the user's metadata
converted_state: dict[str, Any] = {}
metadata: dict[str, Any] = {}
for key, obj in state.items():
converted: Any
if isinstance(obj, Module):
converted = get_model_state_dict(obj, options=state_dict_options)
target_dict = converted_state
elif isinstance(obj, Optimizer):
converted = get_optimizer_state_dict(module, obj, options=state_dict_options)
target_dict = converted_state
else: # everything not a module or optimizer is considered metadata
converted = obj.state_dict() if isinstance(obj, _Stateful) else obj
target_dict = metadata
_apply_filter(key, filter or {}, converted, target_dict)
if full_state_dict:
if _is_sharded_checkpoint(path):
shutil.rmtree(path)
converted_state.update(metadata)
if rank == 0:
torch.save(converted_state, path)
else:
if path.is_file():
path.unlink()
path.mkdir(parents=True, exist_ok=True)
_distributed_checkpoint_save(converted_state, path)
if rank == 0:
torch.save(metadata, path / _METADATA_FILENAME)
def _load_checkpoint(
path: Path,
state: dict[str, Union[Module, Optimizer, Any]],
strict: bool = True,
optimizer_states_from_list: bool = False,
) -> dict[str, Any]:
from torch.distributed.checkpoint.state_dict import (
StateDictOptions,
get_model_state_dict,
get_optimizer_state_dict,
set_optimizer_state_dict,
)
modules = {key: module for key, module in state.items() if _has_dtensor_modules(module)}
if len(modules) == 0:
raise ValueError(
"Could not find a distributed model in the provided checkpoint state. Please provide the model as"
" part of the state like so: `load_checkpoint(..., state={'model': model, ...})`. Make sure"
" you set up the model (and optimizers if any) through the strategy before loading the checkpoint."
)
optimizers = {key: optim for key, optim in state.items() if isinstance(optim, Optimizer)}
if len(modules) > 1:
raise ValueError(
"Found multiple distributed models in the given state. Loading distributed checkpoints is"
" currently limited to a single model per checkpoint. To load multiple models, call the"
" load method for each model separately with a different path."
)
module_key, module = list(modules.items())[0]
if _is_sharded_checkpoint(path):
state_dict_options = StateDictOptions(cpu_offload=True)
module_state = {module_key: get_model_state_dict(module)}
_distributed_checkpoint_load(module_state, path)
module.load_state_dict(module_state[module_key], strict=strict)
# the optimizer states must be loaded separately
for optim_key, optim in optimizers.items():
optim_state = {optim_key: get_optimizer_state_dict(module, optim)}
_distributed_checkpoint_load(optim_state, path)
set_optimizer_state_dict(module, optim, optim_state_dict=optim_state[optim_key], options=state_dict_options)
# Load metadata (anything not a module or optimizer)
metadata = torch.load(path / _METADATA_FILENAME)
requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys()
_validate_keys_for_strict_loading(requested_metadata_keys, metadata.keys(), strict=strict)
for key in requested_metadata_keys:
if key not in metadata:
continue
state[key] = metadata.pop(key)
# return the remaining metadata that wasn't requested as part of `state`
return metadata
if _is_full_checkpoint(path):
checkpoint = torch.load(path, mmap=True, map_location="cpu", weights_only=False)
_load_raw_module_state(checkpoint.pop(module_key), module, strict=strict)
state_dict_options = StateDictOptions(
broadcast_from_rank0=True,
full_state_dict=True,
strict=strict,
)
for optimizer_idx, (optimizer_name, optimizer) in enumerate(optimizers.items()):
if optimizer_states_from_list:
# This code path is only used by `pytorch_lightning`, which saves optimizer states as a list
# rather than individual states at the top level.
optimizer_state = checkpoint["optimizer_states"][optimizer_idx]
else:
optimizer_state = checkpoint.pop(optimizer_name)
optimizer_state = _rekey_optimizer_state_if_needed(optimizer_state, module)
set_optimizer_state_dict(
module,
optimizer,
optim_state_dict=optimizer_state,
options=state_dict_options,
)
requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys()
_validate_keys_for_strict_loading(requested_metadata_keys, checkpoint.keys(), strict=strict)
# Load metadata (anything not a module or optimizer)
_move_state_into(source=checkpoint, destination=state, keys=requested_metadata_keys)
# return the remaining metadata that wasn't requested as part of `state`
return checkpoint
raise ValueError(
f"The path {str(path)!r} does not point to a valid checkpoint. Make sure the path points to either a"
" directory with distributed checkpoint shards, or a single file with a full checkpoint."
)
def _setup_device_mesh(
data_parallel_size: int,
tensor_parallel_size: int,
world_size: int,
device: torch.device,
) -> "DeviceMesh":
from torch.distributed.device_mesh import init_device_mesh
if data_parallel_size * tensor_parallel_size != world_size:
raise RuntimeError(
f"The sizes `data_parallel_size={data_parallel_size}` and"
f" `tensor_parallel_size={tensor_parallel_size}` multiplied should equal the world size"
f" ({world_size})."
)
return init_device_mesh(
device_type=device.type,
mesh_shape=(data_parallel_size, tensor_parallel_size),
mesh_dim_names=("data_parallel", "tensor_parallel"),
)
def _has_dtensor_modules(module: object) -> TypeGuard[Module]:
from torch.distributed._tensor import DTensor
return isinstance(module, Module) and any(isinstance(t, DTensor) for t in module.parameters())
def _load_raw_module_state_from_path(path: Path, module: Module, world_size: int, strict: bool = True) -> None:
"""Loads the state dict from a file path into the FSDP module."""
if not _is_full_checkpoint(path):
raise ValueError(
"Failed to load checkpoint directly into the model. The given path must be a single file containing the"
f" full state dict: {path}"
)
# Use `lazy_load`/`mmap` instead to avoid storing a copy of the full checkpoint per rank
state_dict = torch.load(path, mmap=True, map_location="cpu") if _TORCH_GREATER_EQUAL_2_3 else _lazy_load(path)
_load_raw_module_state(state_dict=state_dict, module=module, world_size=world_size, strict=strict)
def _load_raw_module_state(
state_dict: dict[str, Any], module: Module, world_size: int = 1, strict: bool = True
) -> None:
"""Loads the state dict into the module by gathering all weights first and then and writing back to each shard."""
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
if _has_dtensor_modules(module):
from torch.distributed.checkpoint.state_dict import StateDictOptions, set_model_state_dict
state_dict_options = StateDictOptions(
broadcast_from_rank0=True,
full_state_dict=True,
# must be set False to allow loading each param separately below
strict=False,
)
for submodule_name, submodule in module.named_modules():
for param_name, _ in _named_parameters_and_buffers_to_load(submodule):
full_param_name = f"{submodule_name}{'.' if submodule_name else ''}{param_name}"
if full_param_name not in state_dict:
if not strict:
continue
raise KeyError(
f"The model contains a key '{full_param_name}' that does not exist in the loaded checkpoint."
" To disable strict loading, set `strict=False`."
)
local_state_dict = {param_name: state_dict[full_param_name]}
set_model_state_dict(submodule, local_state_dict, options=state_dict_options)
elif isinstance(module, FSDP):
with _get_full_state_dict_context(module, world_size=world_size, rank0_only=False):
module.load_state_dict(state_dict, strict=strict)
else:
module.load_state_dict(state_dict, strict=strict)
def _named_parameters_and_buffers_to_load(module: Module) -> Generator:
"""Returns parameters and buffers, with non-persistent buffers excluded."""
for param_name, param in itertools.chain(
module.named_buffers(recurse=False),
module.named_parameters(recurse=False),
):
if param_name in module._non_persistent_buffers_set:
continue
yield param_name, param
def _rekey_optimizer_state_if_needed(optimizer_state_dict: dict[str, Any], module: Module) -> dict[str, Any]:
"""Handles the case where the optimizer state is saved from a normal optimizer and converts the keys to parameter
names."""
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import OptimStateKeyType
if isinstance(list(optimizer_state_dict["state"].keys())[0], int):
optimizer_state_dict = FSDP.rekey_optim_state_dict(optimizer_state_dict, OptimStateKeyType.PARAM_NAME, module)
return optimizer_state_dict
|