File size: 26,321 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import shutil
from collections.abc import Generator
from contextlib import AbstractContextManager, ExitStack
from datetime import timedelta
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, TypeVar, Union

import torch
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
from typing_extensions import TypeGuard, override

from lightning_fabric.plugins import CheckpointIO
from lightning_fabric.plugins.collectives.torch_collective import default_pg_timeout
from lightning_fabric.strategies.fsdp import (
    _distributed_checkpoint_load,
    _distributed_checkpoint_save,
    _get_full_state_dict_context,
    _is_full_checkpoint,
    _is_sharded_checkpoint,
)
from lightning_fabric.strategies.launchers.subprocess_script import _SubprocessScriptLauncher
from lightning_fabric.strategies.parallel import ParallelStrategy
from lightning_fabric.strategies.strategy import (
    TBroadcast,
    _apply_filter,
    _BackwardSyncControl,
    _validate_keys_for_strict_loading,
)
from lightning_fabric.utilities.distributed import (
    ReduceOp,
    _distributed_is_initialized,
    _get_default_process_group_backend_for_device,
    _init_dist_connection,
    _sync_ddp_if_available,
)
from lightning_fabric.utilities.distributed import group as _group
from lightning_fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_3, _TORCH_GREATER_EQUAL_2_4
from lightning_fabric.utilities.init import _materialize_distributed_module
from lightning_fabric.utilities.load import _METADATA_FILENAME, _lazy_load, _move_state_into
from lightning_fabric.utilities.rank_zero import rank_zero_only
from lightning_fabric.utilities.seed import reset_seed
from lightning_fabric.utilities.types import _PATH, _Stateful

if TYPE_CHECKING:
    from torch.distributed.device_mesh import DeviceMesh

TModel = TypeVar("TModel", bound=Module)


class ModelParallelStrategy(ParallelStrategy):
    """Enables user-defined parallelism applied to a model.

    .. warning::  This is an :ref:`experimental <versioning:Experimental API>` feature.

    Currently supports up to 2D parallelism. Specifically, it supports the combination of
    Fully Sharded Data-Parallel 2 (FSDP2) with Tensor Parallelism (DTensor). These PyTorch APIs are currently still
    experimental in PyTorch. Requires PyTorch 2.4 or newer.

    Arguments:
        parallelize_fn: A function that applies parallelisms to a module. The strategy will provide the
            model and device mesh as input.
        data_parallel_size: The number of devices within a data-parallel group. Defaults to ``"auto"``, which
            sets this size to the number of nodes in the cluster.
        tensor_parallel_size: The number of devices within a tensor-parallel group. Defaults to ``"auto"``, which
            sets this size to the number of GPUs in a single node.
        save_distributed_checkpoint: If ``True``, each rank saves its shard of weights and optimizer states to a file.
            The checkpoint is a folder with as many files as the world size.
            If ``False``, the full weights and optimizer states get assembled on rank 0 and saved to a single file.

    """

    def __init__(
        self,
        parallelize_fn: Callable[[TModel, "DeviceMesh"], TModel],
        data_parallel_size: Union[Literal["auto"], int] = "auto",
        tensor_parallel_size: Union[Literal["auto"], int] = "auto",
        save_distributed_checkpoint: bool = True,
        process_group_backend: Optional[str] = None,
        timeout: Optional[timedelta] = default_pg_timeout,
    ) -> None:
        super().__init__()
        if not _TORCH_GREATER_EQUAL_2_4:
            raise ImportError(f"{type(self).__name__} requires PyTorch 2.4 or higher.")
        self._parallelize_fn = parallelize_fn
        self._data_parallel_size = data_parallel_size
        self._tensor_parallel_size = tensor_parallel_size
        self._num_nodes = 1
        self._save_distributed_checkpoint = save_distributed_checkpoint
        self._process_group_backend: Optional[str] = process_group_backend
        self._timeout: Optional[timedelta] = timeout
        self._backward_sync_control = _ParallelBackwardSyncControl()

        self._device_mesh: Optional[DeviceMesh] = None

    @property
    def device_mesh(self) -> "DeviceMesh":
        if self._device_mesh is None:
            raise RuntimeError("Accessing the device mesh before processes have initialized is not allowed.")
        return self._device_mesh

    @property
    @override
    def checkpoint_io(self) -> CheckpointIO:
        raise NotImplementedError(f"The `{type(self).__name__}` does not use the `CheckpointIO` plugin interface.")

    @checkpoint_io.setter
    @override
    def checkpoint_io(self, io: CheckpointIO) -> None:
        raise NotImplementedError(f"The `{type(self).__name__}` does not support setting a `CheckpointIO` plugin.")

    @property
    @override
    def root_device(self) -> torch.device:
        assert self.parallel_devices is not None
        return self.parallel_devices[self.local_rank]

    @property
    def num_nodes(self) -> int:
        return self._num_nodes

    @num_nodes.setter
    def num_nodes(self, num_nodes: int) -> None:
        self._num_nodes = num_nodes

    @property
    def num_processes(self) -> int:
        return len(self.parallel_devices) if self.parallel_devices is not None else 0

    @property
    @override
    def distributed_sampler_kwargs(self) -> dict[str, Any]:
        assert self.device_mesh is not None
        data_parallel_mesh = self.device_mesh["data_parallel"]
        return {"num_replicas": data_parallel_mesh.size(), "rank": data_parallel_mesh.get_local_rank()}

    @property
    def process_group_backend(self) -> Optional[str]:
        return self._process_group_backend

    @override
    def _configure_launcher(self) -> None:
        assert self.cluster_environment is not None
        if not self.cluster_environment.creates_processes_externally:
            self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes)

    @override
    def setup_environment(self) -> None:
        super().setup_environment()
        self._setup_distributed()
        if self._data_parallel_size == "auto":
            self._data_parallel_size = self.num_nodes
        if self._tensor_parallel_size == "auto":
            self._tensor_parallel_size = self.num_processes
        self._device_mesh = _setup_device_mesh(
            self._data_parallel_size, self._tensor_parallel_size, self.world_size, self.root_device
        )

    @override
    def setup_module(self, module: Module) -> Module:
        from torch.distributed.fsdp import FullyShardedDataParallel

        if any(isinstance(mod, FullyShardedDataParallel) for mod in module.modules()):
            raise TypeError(
                "Found modules that are wrapped with `torch.distributed.fsdp.FullyShardedDataParallel`."
                f" The `{self.__class__.__name__}` only supports the new FSDP2 APIs in PyTorch >= 2.4."
            )

        module = self._parallelize_fn(module, self.device_mesh)  # type: ignore[arg-type]
        if not isinstance(module, Module):
            raise TypeError(
                f"The `parallelize_fn` must return a `nn.Module` instance, but got: {type(module).__name__}"
            )
        _materialize_distributed_module(module, self.root_device)
        return module

    @override
    def module_to_device(self, module: Module) -> None:
        pass

    @override
    def module_init_context(self, empty_init: Optional[bool] = None) -> AbstractContextManager:
        precision_init_ctx = self.precision.module_init_context()
        stack = ExitStack()
        if empty_init:
            # Materializaton happens in `setup_module`
            # TODO: Introduce `Fabric.materialize(module)` to give user control over materialization
            stack.enter_context(torch.device("meta"))
        stack.enter_context(precision_init_ctx)
        return stack

    @override
    def all_reduce(
        self, tensor: Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
    ) -> Tensor:
        if isinstance(tensor, Tensor):
            return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op)
        return tensor

    @override
    def barrier(self, *args: Any, **kwargs: Any) -> None:
        if not _distributed_is_initialized():
            return
        if torch.distributed.get_backend() == "nccl":
            torch.distributed.barrier(device_ids=[self.root_device.index])
        else:
            torch.distributed.barrier()

    @override
    def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
        if not _distributed_is_initialized():
            return obj

        obj = [obj]
        torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD)
        return obj[0]

    @override
    def save_checkpoint(
        self,
        path: _PATH,
        state: dict[str, Union[Module, Optimizer, Any]],
        storage_options: Optional[Any] = None,
        filter: Optional[dict[str, Callable[[str, Any], bool]]] = None,
    ) -> None:
        """Save model, optimizer, and other state to a checkpoint on disk.

        If distributed checkpointing is enabled (default), the checkpoint gets saved as a directory containing one file
        per process, with model- and optimizer shards stored per file. Additionally, it creates a metadata file
        `meta.pt` with the rest of the user's state (only saved from rank 0).
        If distributed checkpointing is disabled (``save_distributed_checkpoint=False``), the checkpoint will be
        written to a single file containing the weights, optimizer state and other metadata.

        """
        if storage_options is not None:
            raise TypeError(
                f"`{type(self).__name__}.save_checkpoint(..., storage_options=...)` is not supported because"
                f" `{type(self).__name__}` does not use the `CheckpointIO`."
            )
        if filter is not None and self._save_distributed_checkpoint:
            # https://github.com/pytorch/pytorch/issues/105379
            raise NotImplementedError(
                f"{type(self).__name__} doesn't support loading distributed filtered checkpoints,"
                " so saving them is disabled."
            )
        # broadcast the path from rank 0 to ensure all the states are saved in a common path
        path = Path(self.broadcast(path))
        _save_checkpoint(
            path=path,
            state=state,
            full_state_dict=(not self._save_distributed_checkpoint),
            rank=self.global_rank,
            filter=filter,
        )

    @override
    def load_checkpoint(
        self,
        path: _PATH,
        state: Optional[Union[Module, Optimizer, dict[str, Union[Module, Optimizer, Any]]]] = None,
        strict: bool = True,
    ) -> dict[str, Any]:
        """Load the contents from a checkpoint and restore the state of the given objects."""
        if not state:
            raise ValueError(
                f"Got {type(self).__name__}.load_checkpoint(..., state={state!r}) but a state with at least "
                " a model instance to reload is required. Pass it in like so:"
                f" {type(self).__name__}.load_checkpoint(..., state={{'model': model, ...}})"
            )
        # broadcast the path from rank 0 to ensure all the states are loaded from a common path
        path = Path(self.broadcast(path))

        if isinstance(state, Module):
            _load_raw_module_state_from_path(path, module=state, world_size=self.world_size, strict=strict)
            return {}

        if isinstance(state, Optimizer):
            raise NotImplementedError(
                f"Loading a single optimizer object from a checkpoint is not supported yet with {type(self).__name__}."
            )

        return _load_checkpoint(path=path, state=state, strict=strict)

    def _setup_distributed(self) -> None:
        reset_seed()
        self._set_world_ranks()
        self._process_group_backend = self._get_process_group_backend()
        assert self.cluster_environment is not None
        _init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout)

    def _get_process_group_backend(self) -> str:
        return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device)

    def _set_world_ranks(self) -> None:
        if self.cluster_environment is not None:
            self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank)
            self.cluster_environment.set_world_size(self.num_nodes * self.num_processes)
        # `LightningEnvironment.set_global_rank` will do this too, but we cannot rely on that implementation detail
        # additionally, for some implementations, the setter is a no-op, so it's safer to access the getter
        rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank


class _ParallelBackwardSyncControl(_BackwardSyncControl):
    @override
    def no_backward_sync(self, module: Module, enabled: bool) -> AbstractContextManager:
        """Blocks gradient synchronization inside the FSDP2 modules."""
        return _FSDPNoSync(module=module, enabled=enabled)


class _FSDPNoSync(AbstractContextManager):
    def __init__(self, module: Module, enabled: bool) -> None:
        self._module = module
        self._enabled = enabled

    def _set_requires_grad_sync(self, requires_grad_sync: bool) -> None:
        from torch.distributed._composable.fsdp import FSDPModule

        for mod in self._module.modules():
            if isinstance(mod, FSDPModule):
                mod.set_requires_gradient_sync(requires_grad_sync, recurse=False)

    def __enter__(self) -> None:
        self._set_requires_grad_sync(not self._enabled)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        self._set_requires_grad_sync(self._enabled)


def _save_checkpoint(
    path: Path,
    state: dict[str, Union[Module, Optimizer, Any]],
    full_state_dict: bool,
    rank: int,
    filter: Optional[dict[str, Callable[[str, Any], bool]]] = None,
) -> None:
    if path.is_dir() and full_state_dict and not _is_sharded_checkpoint(path):
        raise IsADirectoryError(f"The checkpoint path exists and is a directory: {path}")

    modules = [module for module in state.values() if _has_dtensor_modules(module)]
    if len(modules) == 0:
        raise ValueError(
            "Could not find a distributed model in the provided checkpoint state. Please provide the model as"
            " part of the state like so: `save_checkpoint(..., state={'model': model, ...})`. Make sure"
            " you set up the model (and optimizers if any) through the strategy before saving the checkpoint."
        )
    if len(modules) > 1:
        raise ValueError(
            "Found multiple distributed models in the given state. Saving distributed checkpoints is"
            " currently limited to a single model per checkpoint. To save multiple models, call the"
            " save method for each model separately with a different path."
        )
    module = modules[0]

    from torch.distributed.checkpoint.state_dict import StateDictOptions, get_model_state_dict, get_optimizer_state_dict

    state_dict_options = StateDictOptions(full_state_dict=full_state_dict, cpu_offload=True)

    # replace the modules and optimizer objects in the state with their local state dict
    # and separate the user's metadata
    converted_state: dict[str, Any] = {}
    metadata: dict[str, Any] = {}
    for key, obj in state.items():
        converted: Any
        if isinstance(obj, Module):
            converted = get_model_state_dict(obj, options=state_dict_options)
            target_dict = converted_state
        elif isinstance(obj, Optimizer):
            converted = get_optimizer_state_dict(module, obj, options=state_dict_options)
            target_dict = converted_state
        else:  # everything not a module or optimizer is considered metadata
            converted = obj.state_dict() if isinstance(obj, _Stateful) else obj
            target_dict = metadata
        _apply_filter(key, filter or {}, converted, target_dict)

    if full_state_dict:
        if _is_sharded_checkpoint(path):
            shutil.rmtree(path)
        converted_state.update(metadata)
        if rank == 0:
            torch.save(converted_state, path)
    else:
        if path.is_file():
            path.unlink()
        path.mkdir(parents=True, exist_ok=True)
        _distributed_checkpoint_save(converted_state, path)
        if rank == 0:
            torch.save(metadata, path / _METADATA_FILENAME)


def _load_checkpoint(
    path: Path,
    state: dict[str, Union[Module, Optimizer, Any]],
    strict: bool = True,
    optimizer_states_from_list: bool = False,
) -> dict[str, Any]:
    from torch.distributed.checkpoint.state_dict import (
        StateDictOptions,
        get_model_state_dict,
        get_optimizer_state_dict,
        set_optimizer_state_dict,
    )

    modules = {key: module for key, module in state.items() if _has_dtensor_modules(module)}
    if len(modules) == 0:
        raise ValueError(
            "Could not find a distributed model in the provided checkpoint state. Please provide the model as"
            " part of the state like so: `load_checkpoint(..., state={'model': model, ...})`. Make sure"
            " you set up the model (and optimizers if any) through the strategy before loading the checkpoint."
        )
    optimizers = {key: optim for key, optim in state.items() if isinstance(optim, Optimizer)}
    if len(modules) > 1:
        raise ValueError(
            "Found multiple distributed models in the given state. Loading distributed checkpoints is"
            " currently limited to a single model per checkpoint. To load multiple models, call the"
            " load method for each model separately with a different path."
        )
    module_key, module = list(modules.items())[0]

    if _is_sharded_checkpoint(path):
        state_dict_options = StateDictOptions(cpu_offload=True)

        module_state = {module_key: get_model_state_dict(module)}
        _distributed_checkpoint_load(module_state, path)
        module.load_state_dict(module_state[module_key], strict=strict)

        # the optimizer states must be loaded separately
        for optim_key, optim in optimizers.items():
            optim_state = {optim_key: get_optimizer_state_dict(module, optim)}
            _distributed_checkpoint_load(optim_state, path)
            set_optimizer_state_dict(module, optim, optim_state_dict=optim_state[optim_key], options=state_dict_options)

        # Load metadata (anything not a module or optimizer)
        metadata = torch.load(path / _METADATA_FILENAME)
        requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys()
        _validate_keys_for_strict_loading(requested_metadata_keys, metadata.keys(), strict=strict)
        for key in requested_metadata_keys:
            if key not in metadata:
                continue
            state[key] = metadata.pop(key)

        # return the remaining metadata that wasn't requested as part of `state`
        return metadata

    if _is_full_checkpoint(path):
        checkpoint = torch.load(path, mmap=True, map_location="cpu", weights_only=False)
        _load_raw_module_state(checkpoint.pop(module_key), module, strict=strict)

        state_dict_options = StateDictOptions(
            broadcast_from_rank0=True,
            full_state_dict=True,
            strict=strict,
        )
        for optimizer_idx, (optimizer_name, optimizer) in enumerate(optimizers.items()):
            if optimizer_states_from_list:
                # This code path is only used by `pytorch_lightning`, which saves optimizer states as a list
                # rather than individual states at the top level.
                optimizer_state = checkpoint["optimizer_states"][optimizer_idx]
            else:
                optimizer_state = checkpoint.pop(optimizer_name)

            optimizer_state = _rekey_optimizer_state_if_needed(optimizer_state, module)
            set_optimizer_state_dict(
                module,
                optimizer,
                optim_state_dict=optimizer_state,
                options=state_dict_options,
            )

        requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys()
        _validate_keys_for_strict_loading(requested_metadata_keys, checkpoint.keys(), strict=strict)

        # Load metadata (anything not a module or optimizer)
        _move_state_into(source=checkpoint, destination=state, keys=requested_metadata_keys)

        # return the remaining metadata that wasn't requested as part of `state`
        return checkpoint

    raise ValueError(
        f"The path {str(path)!r} does not point to a valid checkpoint. Make sure the path points to either a"
        " directory with distributed checkpoint shards, or a single file with a full checkpoint."
    )


def _setup_device_mesh(
    data_parallel_size: int,
    tensor_parallel_size: int,
    world_size: int,
    device: torch.device,
) -> "DeviceMesh":
    from torch.distributed.device_mesh import init_device_mesh

    if data_parallel_size * tensor_parallel_size != world_size:
        raise RuntimeError(
            f"The sizes `data_parallel_size={data_parallel_size}` and"
            f" `tensor_parallel_size={tensor_parallel_size}` multiplied should equal the world size"
            f" ({world_size})."
        )
    return init_device_mesh(
        device_type=device.type,
        mesh_shape=(data_parallel_size, tensor_parallel_size),
        mesh_dim_names=("data_parallel", "tensor_parallel"),
    )


def _has_dtensor_modules(module: object) -> TypeGuard[Module]:
    from torch.distributed._tensor import DTensor

    return isinstance(module, Module) and any(isinstance(t, DTensor) for t in module.parameters())


def _load_raw_module_state_from_path(path: Path, module: Module, world_size: int, strict: bool = True) -> None:
    """Loads the state dict from a file path into the FSDP module."""
    if not _is_full_checkpoint(path):
        raise ValueError(
            "Failed to load checkpoint directly into the model. The given path must be a single file containing the"
            f" full state dict: {path}"
        )
    # Use `lazy_load`/`mmap` instead to avoid storing a copy of the full checkpoint per rank
    state_dict = torch.load(path, mmap=True, map_location="cpu") if _TORCH_GREATER_EQUAL_2_3 else _lazy_load(path)
    _load_raw_module_state(state_dict=state_dict, module=module, world_size=world_size, strict=strict)


def _load_raw_module_state(
    state_dict: dict[str, Any], module: Module, world_size: int = 1, strict: bool = True
) -> None:
    """Loads the state dict into the module by gathering all weights first and then and writing back to each shard."""
    from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

    if _has_dtensor_modules(module):
        from torch.distributed.checkpoint.state_dict import StateDictOptions, set_model_state_dict

        state_dict_options = StateDictOptions(
            broadcast_from_rank0=True,
            full_state_dict=True,
            # must be set False to allow loading each param separately below
            strict=False,
        )

        for submodule_name, submodule in module.named_modules():
            for param_name, _ in _named_parameters_and_buffers_to_load(submodule):
                full_param_name = f"{submodule_name}{'.' if submodule_name else ''}{param_name}"
                if full_param_name not in state_dict:
                    if not strict:
                        continue
                    raise KeyError(
                        f"The model contains a key '{full_param_name}' that does not exist in the loaded checkpoint."
                        " To disable strict loading, set `strict=False`."
                    )
                local_state_dict = {param_name: state_dict[full_param_name]}
                set_model_state_dict(submodule, local_state_dict, options=state_dict_options)

    elif isinstance(module, FSDP):
        with _get_full_state_dict_context(module, world_size=world_size, rank0_only=False):
            module.load_state_dict(state_dict, strict=strict)
    else:
        module.load_state_dict(state_dict, strict=strict)


def _named_parameters_and_buffers_to_load(module: Module) -> Generator:
    """Returns parameters and buffers, with non-persistent buffers excluded."""
    for param_name, param in itertools.chain(
        module.named_buffers(recurse=False),
        module.named_parameters(recurse=False),
    ):
        if param_name in module._non_persistent_buffers_set:
            continue
        yield param_name, param


def _rekey_optimizer_state_if_needed(optimizer_state_dict: dict[str, Any], module: Module) -> dict[str, Any]:
    """Handles the case where the optimizer state is saved from a normal optimizer and converts the keys to parameter
    names."""
    from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
    from torch.distributed.fsdp import OptimStateKeyType

    if isinstance(list(optimizer_state_dict["state"].keys())[0], int):
        optimizer_state_dict = FSDP.rekey_optim_state_dict(optimizer_state_dict, OptimStateKeyType.PARAM_NAME, module)
    return optimizer_state_dict