File size: 28,432 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import Counter
from collections.abc import Iterable
from typing import Any, Optional, Union, cast

import torch
from typing_extensions import get_args

from lightning_fabric.accelerators import ACCELERATOR_REGISTRY
from lightning_fabric.accelerators.accelerator import Accelerator
from lightning_fabric.accelerators.cuda import CUDAAccelerator
from lightning_fabric.accelerators.mps import MPSAccelerator
from lightning_fabric.accelerators.xla import XLAAccelerator
from lightning_fabric.plugins import (
    BitsandbytesPrecision,
    CheckpointIO,
    DeepSpeedPrecision,
    HalfPrecision,
    MixedPrecision,
    Precision,
    TransformerEnginePrecision,
    XLAPrecision,
)
from lightning_fabric.plugins.environments import (
    ClusterEnvironment,
    LightningEnvironment,
    LSFEnvironment,
    MPIEnvironment,
    SLURMEnvironment,
    TorchElasticEnvironment,
)
from lightning_fabric.plugins.precision.double import DoublePrecision
from lightning_fabric.plugins.precision.fsdp import FSDPPrecision
from lightning_fabric.plugins.precision.precision import (
    _PRECISION_INPUT,
    _PRECISION_INPUT_INT,
    _PRECISION_INPUT_STR,
    _PRECISION_INPUT_STR_ALIAS,
    _PRECISION_INPUT_STR_ALIAS_CONVERSION,
)
from lightning_fabric.strategies import (
    STRATEGY_REGISTRY,
    DeepSpeedStrategy,
    ParallelStrategy,
    SingleDeviceStrategy,
    SingleDeviceXLAStrategy,
    Strategy,
    XLAFSDPStrategy,
    XLAStrategy,
)
from lightning_fabric.strategies.ddp import _DDP_FORK_ALIASES
from lightning_fabric.strategies.fsdp import _FSDP_ALIASES, FSDPStrategy
from lightning_fabric.strategies.model_parallel import ModelParallelStrategy
from lightning_fabric.utilities import rank_zero_info, rank_zero_warn
from lightning_fabric.utilities.device_parser import _determine_root_gpu_device
from lightning_fabric.utilities.imports import _IS_INTERACTIVE

_PLUGIN_INPUT = Union[Precision, ClusterEnvironment, CheckpointIO]


class _Connector:
    """The Connector parses several Fabric arguments and instantiates the Strategy including its owned components.

        A. accelerator flag could be:
            1. accelerator class
            2. accelerator str
            3. accelerator auto

        B. strategy flag could be:
            1. strategy class
            2. strategy str registered with STRATEGY_REGISTRY
            3. strategy str in _strategy_type enum which listed in each strategy as
               backend (registered these too, and _strategy_type could be deprecated)

        C. plugins flag could be:
            1. precision class (should be removed, and precision flag should allow user pass classes)
            2. checkpoint_io class
            3. cluster_environment class

    priorities which to take when:
        A. Class > str
        B. Strategy > Accelerator/precision/plugins

    """

    def __init__(
        self,
        accelerator: Union[str, Accelerator] = "auto",
        strategy: Union[str, Strategy] = "auto",
        devices: Union[list[int], str, int] = "auto",
        num_nodes: int = 1,
        precision: Optional[_PRECISION_INPUT] = None,
        plugins: Optional[Union[_PLUGIN_INPUT, Iterable[_PLUGIN_INPUT]]] = None,
    ) -> None:
        # These arguments can be set through environment variables set by the CLI
        accelerator = self._argument_from_env("accelerator", accelerator, default="auto")
        strategy = self._argument_from_env("strategy", strategy, default="auto")
        devices = self._argument_from_env("devices", devices, default="auto")
        num_nodes = int(self._argument_from_env("num_nodes", num_nodes, default=1))
        precision = self._argument_from_env("precision", precision, default=None)

        # 1. Parsing flags
        # Get registered strategies, built-in accelerators and precision plugins
        self._registered_strategies = STRATEGY_REGISTRY.available_strategies()
        self._registered_accelerators = ACCELERATOR_REGISTRY.available_accelerators()

        # Raise an exception if there are conflicts between flags
        # Set each valid flag to `self._x_flag` after validation
        # For devices: Assign gpus, etc. to the accelerator flag and devices flag
        self._strategy_flag: Union[Strategy, str] = "auto"
        self._accelerator_flag: Union[Accelerator, str] = "auto"
        self._precision_input: _PRECISION_INPUT_STR = "32-true"
        self._precision_instance: Optional[Precision] = None
        self._cluster_environment_flag: Optional[Union[ClusterEnvironment, str]] = None
        self._parallel_devices: list[Union[int, torch.device, str]] = []
        self.checkpoint_io: Optional[CheckpointIO] = None

        self._check_config_and_set_final_flags(
            strategy=strategy,
            accelerator=accelerator,
            precision=precision,
            plugins=plugins,
        )
        self._check_device_config_and_set_final_flags(devices=devices, num_nodes=num_nodes)

        # 2. Instantiate Accelerator
        # handle `auto`, `None` and `gpu`
        if self._accelerator_flag == "auto":
            self._accelerator_flag = self._choose_auto_accelerator()
        elif self._accelerator_flag == "gpu":
            self._accelerator_flag = self._choose_gpu_accelerator_backend()

        self._set_parallel_devices_and_init_accelerator()

        # 3. Instantiate ClusterEnvironment
        self.cluster_environment: ClusterEnvironment = self._choose_and_init_cluster_environment()

        # 4. Instantiate Strategy - Part 1
        if self._strategy_flag == "auto":
            self._strategy_flag = self._choose_strategy()
        # In specific cases, ignore user selection and fall back to a different strategy
        self._check_strategy_and_fallback()
        self._init_strategy()

        # 5. Instantiate Precision Plugin
        self.precision = self._check_and_init_precision()

        # 6. Instantiate Strategy - Part 2
        self._lazy_init_strategy()

    def _check_config_and_set_final_flags(
        self,
        strategy: Union[str, Strategy],
        accelerator: Union[str, Accelerator],
        precision: Optional[_PRECISION_INPUT],
        plugins: Optional[Union[_PLUGIN_INPUT, Iterable[_PLUGIN_INPUT]]],
    ) -> None:
        """This method checks:

        1. strategy: whether the strategy name is valid, and sets the internal flags if it is.
        2. accelerator: if the value of the accelerator argument is a type of accelerator (instance or string),
            set self._accelerator_flag accordingly.
        3. precision: The final value of the precision flag may be determined either by the precision argument or
            by a plugin instance.
        4. plugins: The list of plugins may contain a Precision plugin, CheckpointIO, ClusterEnvironment and others.
            Additionally, other flags such as `precision` can populate the list with the
            corresponding plugin instances.

        """
        if plugins is not None:
            plugins = [plugins] if not isinstance(plugins, Iterable) else plugins

        if isinstance(strategy, str):
            strategy = strategy.lower()

        self._strategy_flag = strategy

        if strategy != "auto" and strategy not in self._registered_strategies and not isinstance(strategy, Strategy):
            raise ValueError(
                f"You selected an invalid strategy name: `strategy={strategy!r}`."
                " It must be either a string or an instance of `lightning_fabric.strategies.Strategy`."
                " Example choices: auto, ddp, ddp_spawn, deepspeed, dp, ..."
                " Find a complete list of options in our documentation at https://lightning.ai"
            )

        if (
            accelerator not in self._registered_accelerators
            and accelerator not in ("auto", "gpu")
            and not isinstance(accelerator, Accelerator)
        ):
            raise ValueError(
                f"You selected an invalid accelerator name: `accelerator={accelerator!r}`."
                f" Available names are: auto, {', '.join(self._registered_accelerators)}."
            )

        # MPS accelerator is incompatible with DDP family of strategies. It supports single-device operation only.
        is_ddp_str = isinstance(strategy, str) and "ddp" in strategy
        is_dp_str = isinstance(strategy, str) and "dp" in strategy
        is_deepspeed_str = isinstance(strategy, str) and "deepspeed" in strategy
        is_parallel_strategy = isinstance(strategy, ParallelStrategy) or is_ddp_str or is_dp_str or is_deepspeed_str
        is_mps_accelerator = MPSAccelerator.is_available() and (
            accelerator in ("mps", "auto", "gpu", None) or isinstance(accelerator, MPSAccelerator)
        )
        if is_mps_accelerator and is_parallel_strategy:
            raise ValueError(
                f"You set `strategy={strategy}` but strategies from the DDP family are not supported on the"
                f" MPS accelerator. Either explicitly set `accelerator='cpu'` or change the strategy."
            )

        self._accelerator_flag = accelerator

        precision_input = _convert_precision_to_unified_args(precision)

        if plugins:
            plugins_flags_types: dict[str, int] = Counter()
            for plugin in plugins:
                if isinstance(plugin, Precision):
                    self._precision_instance = plugin
                    plugins_flags_types[Precision.__name__] += 1
                elif isinstance(plugin, CheckpointIO):
                    self.checkpoint_io = plugin
                    plugins_flags_types[CheckpointIO.__name__] += 1
                elif isinstance(plugin, ClusterEnvironment):
                    self._cluster_environment_flag = plugin
                    plugins_flags_types[ClusterEnvironment.__name__] += 1
                else:
                    raise TypeError(
                        f"Found invalid type for plugin {plugin}. Expected one of: Precision, "
                        "CheckpointIO, ClusterEnvironment."
                    )

            duplicated_plugin_key = [k for k, v in plugins_flags_types.items() if v > 1]
            if duplicated_plugin_key:
                raise ValueError(
                    f"Received multiple values for {', '.join(duplicated_plugin_key)} flags in `plugins`."
                    " Expected one value for each type at most."
                )

            if plugins_flags_types.get(Precision.__name__) and precision_input is not None:
                raise ValueError(
                    f"Received both `precision={precision_input}` and `plugins={self._precision_instance}`. Choose one."
                )

        self._precision_input = "32-true" if precision_input is None else precision_input

        # handle the case when the user passes in a strategy instance which has an accelerator, precision,
        # checkpoint io or cluster env set up
        # TODO: improve the error messages below
        if isinstance(self._strategy_flag, Strategy):
            if self._strategy_flag._accelerator:
                if self._accelerator_flag != "auto":
                    raise ValueError("accelerator set through both strategy class and accelerator flag, choose one")
                self._accelerator_flag = self._strategy_flag._accelerator
            if self._strategy_flag._precision:
                # [RFC] handle precision plugin set up conflict?
                if self._precision_instance:
                    raise ValueError("precision set through both strategy class and plugins, choose one")
                self._precision_instance = self._strategy_flag._precision
            if self._strategy_flag._checkpoint_io:
                if self.checkpoint_io:
                    raise ValueError("checkpoint_io set through both strategy class and plugins, choose one")
                self.checkpoint_io = self._strategy_flag._checkpoint_io
            if getattr(self._strategy_flag, "cluster_environment", None):
                if self._cluster_environment_flag:
                    raise ValueError("cluster_environment set through both strategy class and plugins, choose one")
                self._cluster_environment_flag = getattr(self._strategy_flag, "cluster_environment")

            if hasattr(self._strategy_flag, "parallel_devices") and self._strategy_flag.parallel_devices:
                if self._strategy_flag.parallel_devices[0].type == "cpu":
                    if self._accelerator_flag and self._accelerator_flag not in ("auto", "cpu"):
                        raise ValueError(
                            f"CPU parallel_devices set through {self._strategy_flag.__class__.__name__} class,"
                            f" but accelerator set to {self._accelerator_flag}, please choose one device type"
                        )
                    self._accelerator_flag = "cpu"
                if self._strategy_flag.parallel_devices[0].type == "cuda":
                    if self._accelerator_flag and self._accelerator_flag not in ("auto", "cuda", "gpu"):
                        raise ValueError(
                            f"GPU parallel_devices set through {self._strategy_flag.__class__.__name__} class,"
                            f" but accelerator set to {self._accelerator_flag}, please choose one device type"
                        )
                    self._accelerator_flag = "cuda"
                self._parallel_devices = self._strategy_flag.parallel_devices

    def _check_device_config_and_set_final_flags(self, devices: Union[list[int], str, int], num_nodes: int) -> None:
        if not isinstance(num_nodes, int) or num_nodes < 1:
            raise ValueError(f"`num_nodes` must be a positive integer, but got {num_nodes}.")

        self._num_nodes_flag = num_nodes
        self._devices_flag = devices

        if self._devices_flag in ([], 0, "0"):
            accelerator_name = (
                self._accelerator_flag.__class__.__qualname__
                if isinstance(self._accelerator_flag, Accelerator)
                else self._accelerator_flag
            )
            raise ValueError(
                f"`Fabric(devices={self._devices_flag!r})` value is not a valid input"
                f" using {accelerator_name} accelerator."
            )

    @staticmethod
    def _choose_auto_accelerator() -> str:
        """Choose the accelerator type (str) based on availability when ``accelerator='auto'``."""
        if XLAAccelerator.is_available():
            return "tpu"
        if MPSAccelerator.is_available():
            return "mps"
        if CUDAAccelerator.is_available():
            return "cuda"
        return "cpu"

    @staticmethod
    def _choose_gpu_accelerator_backend() -> str:
        if MPSAccelerator.is_available():
            return "mps"
        if CUDAAccelerator.is_available():
            return "cuda"
        raise RuntimeError("No supported gpu backend found!")

    def _set_parallel_devices_and_init_accelerator(self) -> None:
        if isinstance(self._accelerator_flag, Accelerator):
            self.accelerator: Accelerator = self._accelerator_flag
        else:
            assert self._accelerator_flag is not None
            self.accelerator = ACCELERATOR_REGISTRY.get(self._accelerator_flag)
        accelerator_cls = self.accelerator.__class__

        if not accelerator_cls.is_available():
            available_accelerator = [
                acc_str
                for acc_str in self._registered_accelerators
                if ACCELERATOR_REGISTRY[acc_str]["accelerator"].is_available()
            ]
            raise RuntimeError(
                f"`{accelerator_cls.__qualname__}` can not run on your system"
                " since the accelerator is not available. The following accelerator(s)"
                " is available and can be passed into `accelerator` argument of"
                f" `Fabric`: {available_accelerator}."
            )

        self._set_devices_flag_if_auto_passed()

        self._devices_flag = accelerator_cls.parse_devices(self._devices_flag)
        if not self._parallel_devices:
            self._parallel_devices = accelerator_cls.get_parallel_devices(self._devices_flag)

    def _set_devices_flag_if_auto_passed(self) -> None:
        if self._devices_flag != "auto":
            return
        if (
            _IS_INTERACTIVE
            and isinstance(self.accelerator, CUDAAccelerator)
            and self.accelerator.auto_device_count() > 1
        ):
            self._devices_flag = 1
            rank_zero_info(
                f"Fabric will use only 1 of {self.accelerator.auto_device_count()} GPUs because it is running inside"
                " an interactive / notebook environment. You may try to set `Fabric(devices="
                f"{self.accelerator.auto_device_count()})` but please note that multi-GPU inside interactive /"
                " notebook environments is considered experimental and unstable. Your mileage may vary."
            )
        else:
            self._devices_flag = self.accelerator.auto_device_count()

    def _choose_and_init_cluster_environment(self) -> ClusterEnvironment:
        if isinstance(self._cluster_environment_flag, ClusterEnvironment):
            return self._cluster_environment_flag
        for env_type in (
            # TorchElastic has the highest priority since it can also be used inside SLURM
            TorchElasticEnvironment,
            SLURMEnvironment,
            LSFEnvironment,
            MPIEnvironment,
        ):
            if env_type.detect():
                return env_type()
        return LightningEnvironment()

    def _choose_strategy(self) -> Union[Strategy, str]:
        if self._accelerator_flag == "tpu" or isinstance(self._accelerator_flag, XLAAccelerator):
            if self._parallel_devices and len(self._parallel_devices) > 1:
                return "xla"
            # TODO: lazy initialized device, then here could be self._strategy_flag = "single_xla"
            return SingleDeviceXLAStrategy(device=self._parallel_devices[0])
        if self._num_nodes_flag > 1:
            return "ddp"
        if len(self._parallel_devices) <= 1:
            if isinstance(self._accelerator_flag, (CUDAAccelerator, MPSAccelerator)) or (
                isinstance(self._accelerator_flag, str) and self._accelerator_flag in ("cuda", "gpu", "mps")
            ):
                device = _determine_root_gpu_device(self._parallel_devices)
            else:
                device = "cpu"
            # TODO: lazy initialized device, then here could be self._strategy_flag = "single_device"
            return SingleDeviceStrategy(device=device)  # type: ignore
        if len(self._parallel_devices) > 1 and _IS_INTERACTIVE:
            return "ddp_fork"
        return "ddp"

    def _check_strategy_and_fallback(self) -> None:
        """Checks edge cases when the strategy selection was a string input, and we need to fall back to a different
        choice depending on other parameters or the environment."""
        # current fallback and check logic only apply to user pass in str config and object config
        # TODO this logic should apply to both str and object config
        strategy_flag = "" if isinstance(self._strategy_flag, Strategy) else self._strategy_flag

        # Change fsdp to xla_fsdp if using TPU
        if strategy_flag == "fsdp" and self._accelerator_flag == "tpu":
            strategy_flag = "xla_fsdp"
        if strategy_flag == "dp" and self._accelerator_flag == "cpu":
            rank_zero_warn(f"{strategy_flag!r} is not supported on CPUs, hence setting `strategy='ddp'`.")
            strategy_flag = "ddp"
        if strategy_flag in _DDP_FORK_ALIASES and "fork" not in torch.multiprocessing.get_all_start_methods():
            raise ValueError(
                f"You selected `Fabric(strategy='{strategy_flag}')` but process forking is not supported on this"
                f" platform. We recommend `Fabric(strategy='ddp_spawn')` instead."
            )
        if (
            strategy_flag in _FSDP_ALIASES or type(self._strategy_flag) is FSDPStrategy
        ) and self._accelerator_flag not in ("cuda", "gpu"):
            raise ValueError(
                "You selected the FSDP strategy but FSDP is only available on GPU. Set `Fabric(accelerator='gpu', ...)`"
                " to continue or select a different strategy."
            )
        if strategy_flag:
            self._strategy_flag = strategy_flag

    def _init_strategy(self) -> None:
        """Instantiate the Strategy given depending on the setting of ``_strategy_flag``."""
        # The validation of `_strategy_flag` already happened earlier on in the connector
        assert isinstance(self._strategy_flag, (str, Strategy))
        if isinstance(self._strategy_flag, str):
            self.strategy = STRATEGY_REGISTRY.get(self._strategy_flag)
        else:
            self.strategy = self._strategy_flag

    def _check_and_init_precision(self) -> Precision:
        if isinstance(self._precision_instance, Precision):
            if isinstance(self._precision_instance, BitsandbytesPrecision) and not isinstance(
                self.accelerator, CUDAAccelerator
            ):
                raise RuntimeError("Bitsandbytes is only supported on CUDA GPUs.")
            return self._precision_instance
        if isinstance(self.strategy, (SingleDeviceXLAStrategy, XLAStrategy, XLAFSDPStrategy)):
            return XLAPrecision(self._precision_input)  # type: ignore
        if isinstance(self.strategy, DeepSpeedStrategy):
            return DeepSpeedPrecision(self._precision_input)  # type: ignore
        if isinstance(self.strategy, FSDPStrategy):
            return FSDPPrecision(precision=self._precision_input)  # type: ignore[arg-type]
        mp_precision_supported = ("32-true", "bf16-mixed", "bf16-true", "16-true")
        if isinstance(self.strategy, ModelParallelStrategy) and self._precision_input not in mp_precision_supported:
            raise ValueError(
                f"The `ModelParallelStrategy` does not support `Fabric(..., precision={self._precision_input!r})`."
                f" Choose a different precision among: {', '.join(mp_precision_supported)}."
            )
        if self._precision_input in ("16-true", "bf16-true"):
            return HalfPrecision(self._precision_input)  # type: ignore
        if self._precision_input == "32-true":
            return Precision()
        if self._precision_input == "64-true":
            return DoublePrecision()
        if self._precision_input == "transformer-engine":
            return TransformerEnginePrecision(weights_dtype=torch.bfloat16)
        if self._precision_input == "transformer-engine-float16":
            return TransformerEnginePrecision(weights_dtype=torch.float16)

        if self._precision_input == "16-mixed" and self._accelerator_flag == "cpu":
            rank_zero_warn(
                "You passed `Fabric(accelerator='cpu', precision='16-mixed')` but AMP with fp16 is not supported on "
                "CPU. Using `precision='bf16-mixed'` instead."
            )
            self._precision_input = "bf16-mixed"

        if self._precision_input in ("16-mixed", "bf16-mixed"):
            rank_zero_info(
                "Using 16-bit Automatic Mixed Precision (AMP)"
                if self._precision_input == "16-mixed"
                else "Using bfloat16 Automatic Mixed Precision (AMP)"
            )
            device = self._accelerator_flag if self._accelerator_flag in ("cpu", "mps") else "cuda"
            return MixedPrecision(precision=self._precision_input, device=device)  # type: ignore[arg-type]

        raise RuntimeError("No precision set")

    def _lazy_init_strategy(self) -> None:
        """Lazily set missing attributes on the previously instantiated strategy."""
        self.strategy.accelerator = self.accelerator
        if self.precision:
            self.strategy.precision = self.precision
        if self.checkpoint_io:
            self.strategy.checkpoint_io = self.checkpoint_io
        if hasattr(self.strategy, "cluster_environment"):
            if self.strategy.cluster_environment is None:
                self.strategy.cluster_environment = self.cluster_environment
            self.cluster_environment = self.strategy.cluster_environment
        if hasattr(self.strategy, "parallel_devices"):
            if self.strategy.parallel_devices:
                self._parallel_devices = self.strategy.parallel_devices
            else:
                self.strategy.parallel_devices = self._parallel_devices
        if hasattr(self.strategy, "num_nodes"):
            self.strategy._num_nodes = self._num_nodes_flag
        if hasattr(self.strategy, "_set_world_ranks"):
            self.strategy._set_world_ranks()
        self.strategy._configure_launcher()

        if _IS_INTERACTIVE and self.strategy.launcher and not self.strategy.launcher.is_interactive_compatible:
            raise RuntimeError(
                f"`Fabric(strategy={self._strategy_flag!r})` is not compatible with an interactive"
                " environment. Run your code as a script, or choose one of the compatible strategies:"
                f" `Fabric(strategy='dp'|'ddp_notebook')`."
                " In case you are spawning processes yourself, make sure to include the Fabric"
                " creation inside the worker function."
            )

        # TODO: should be moved to _check_strategy_and_fallback().
        # Current test check precision first, so keep this check here to meet error order
        if isinstance(self.accelerator, XLAAccelerator) and not isinstance(
            self.strategy, (SingleDeviceXLAStrategy, XLAStrategy, XLAFSDPStrategy)
        ):
            raise ValueError(
                "The `XLAAccelerator` can only be used with a `SingleDeviceXLAStrategy`, `XLAStrategy`, or"
                f" `XLAFSDPStrategy`. Found {self.strategy.__class__.__name__}."
            )

    @staticmethod
    def _argument_from_env(name: str, current: Any, default: Any) -> Any:
        env_value: Optional[str] = os.environ.get("LT_" + name.upper())

        if env_value is None:
            return current

        if env_value is not None and env_value != str(current) and str(current) != str(default) and _is_using_cli():
            raise ValueError(
                f"Your code has `Fabric({name}={current!r}, ...)` but it conflicts with the value "
                f"`--{name}={env_value}` set through the CLI. "
                " Remove it either from the CLI or from the Lightning Fabric object."
            )
        return env_value


def _convert_precision_to_unified_args(precision: Optional[_PRECISION_INPUT]) -> Optional[_PRECISION_INPUT_STR]:
    if precision is None:
        return None

    supported_precision = (
        get_args(_PRECISION_INPUT_STR) + get_args(_PRECISION_INPUT_INT) + get_args(_PRECISION_INPUT_STR_ALIAS)
    )
    if precision not in supported_precision:
        raise ValueError(f"Precision {repr(precision)} is invalid. Allowed precision values: {supported_precision}")

    precision = str(precision)  # convert int flags to str here to enable the legacy-conversion below

    if precision in get_args(_PRECISION_INPUT_STR_ALIAS):
        if str(precision)[:2] not in ("32", "64"):
            rank_zero_warn(
                f"`precision={precision}` is supported for historical reasons but its usage is discouraged. "
                f"Please set your precision to {_PRECISION_INPUT_STR_ALIAS_CONVERSION[precision]} instead!"
            )
        precision = _PRECISION_INPUT_STR_ALIAS_CONVERSION[precision]
    return cast(_PRECISION_INPUT_STR, precision)


def _is_using_cli() -> bool:
    return bool(int(os.environ.get("LT_CLI_USED", "0")))