File size: 28,432 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import Counter
from collections.abc import Iterable
from typing import Any, Optional, Union, cast
import torch
from typing_extensions import get_args
from lightning_fabric.accelerators import ACCELERATOR_REGISTRY
from lightning_fabric.accelerators.accelerator import Accelerator
from lightning_fabric.accelerators.cuda import CUDAAccelerator
from lightning_fabric.accelerators.mps import MPSAccelerator
from lightning_fabric.accelerators.xla import XLAAccelerator
from lightning_fabric.plugins import (
BitsandbytesPrecision,
CheckpointIO,
DeepSpeedPrecision,
HalfPrecision,
MixedPrecision,
Precision,
TransformerEnginePrecision,
XLAPrecision,
)
from lightning_fabric.plugins.environments import (
ClusterEnvironment,
LightningEnvironment,
LSFEnvironment,
MPIEnvironment,
SLURMEnvironment,
TorchElasticEnvironment,
)
from lightning_fabric.plugins.precision.double import DoublePrecision
from lightning_fabric.plugins.precision.fsdp import FSDPPrecision
from lightning_fabric.plugins.precision.precision import (
_PRECISION_INPUT,
_PRECISION_INPUT_INT,
_PRECISION_INPUT_STR,
_PRECISION_INPUT_STR_ALIAS,
_PRECISION_INPUT_STR_ALIAS_CONVERSION,
)
from lightning_fabric.strategies import (
STRATEGY_REGISTRY,
DeepSpeedStrategy,
ParallelStrategy,
SingleDeviceStrategy,
SingleDeviceXLAStrategy,
Strategy,
XLAFSDPStrategy,
XLAStrategy,
)
from lightning_fabric.strategies.ddp import _DDP_FORK_ALIASES
from lightning_fabric.strategies.fsdp import _FSDP_ALIASES, FSDPStrategy
from lightning_fabric.strategies.model_parallel import ModelParallelStrategy
from lightning_fabric.utilities import rank_zero_info, rank_zero_warn
from lightning_fabric.utilities.device_parser import _determine_root_gpu_device
from lightning_fabric.utilities.imports import _IS_INTERACTIVE
_PLUGIN_INPUT = Union[Precision, ClusterEnvironment, CheckpointIO]
class _Connector:
"""The Connector parses several Fabric arguments and instantiates the Strategy including its owned components.
A. accelerator flag could be:
1. accelerator class
2. accelerator str
3. accelerator auto
B. strategy flag could be:
1. strategy class
2. strategy str registered with STRATEGY_REGISTRY
3. strategy str in _strategy_type enum which listed in each strategy as
backend (registered these too, and _strategy_type could be deprecated)
C. plugins flag could be:
1. precision class (should be removed, and precision flag should allow user pass classes)
2. checkpoint_io class
3. cluster_environment class
priorities which to take when:
A. Class > str
B. Strategy > Accelerator/precision/plugins
"""
def __init__(
self,
accelerator: Union[str, Accelerator] = "auto",
strategy: Union[str, Strategy] = "auto",
devices: Union[list[int], str, int] = "auto",
num_nodes: int = 1,
precision: Optional[_PRECISION_INPUT] = None,
plugins: Optional[Union[_PLUGIN_INPUT, Iterable[_PLUGIN_INPUT]]] = None,
) -> None:
# These arguments can be set through environment variables set by the CLI
accelerator = self._argument_from_env("accelerator", accelerator, default="auto")
strategy = self._argument_from_env("strategy", strategy, default="auto")
devices = self._argument_from_env("devices", devices, default="auto")
num_nodes = int(self._argument_from_env("num_nodes", num_nodes, default=1))
precision = self._argument_from_env("precision", precision, default=None)
# 1. Parsing flags
# Get registered strategies, built-in accelerators and precision plugins
self._registered_strategies = STRATEGY_REGISTRY.available_strategies()
self._registered_accelerators = ACCELERATOR_REGISTRY.available_accelerators()
# Raise an exception if there are conflicts between flags
# Set each valid flag to `self._x_flag` after validation
# For devices: Assign gpus, etc. to the accelerator flag and devices flag
self._strategy_flag: Union[Strategy, str] = "auto"
self._accelerator_flag: Union[Accelerator, str] = "auto"
self._precision_input: _PRECISION_INPUT_STR = "32-true"
self._precision_instance: Optional[Precision] = None
self._cluster_environment_flag: Optional[Union[ClusterEnvironment, str]] = None
self._parallel_devices: list[Union[int, torch.device, str]] = []
self.checkpoint_io: Optional[CheckpointIO] = None
self._check_config_and_set_final_flags(
strategy=strategy,
accelerator=accelerator,
precision=precision,
plugins=plugins,
)
self._check_device_config_and_set_final_flags(devices=devices, num_nodes=num_nodes)
# 2. Instantiate Accelerator
# handle `auto`, `None` and `gpu`
if self._accelerator_flag == "auto":
self._accelerator_flag = self._choose_auto_accelerator()
elif self._accelerator_flag == "gpu":
self._accelerator_flag = self._choose_gpu_accelerator_backend()
self._set_parallel_devices_and_init_accelerator()
# 3. Instantiate ClusterEnvironment
self.cluster_environment: ClusterEnvironment = self._choose_and_init_cluster_environment()
# 4. Instantiate Strategy - Part 1
if self._strategy_flag == "auto":
self._strategy_flag = self._choose_strategy()
# In specific cases, ignore user selection and fall back to a different strategy
self._check_strategy_and_fallback()
self._init_strategy()
# 5. Instantiate Precision Plugin
self.precision = self._check_and_init_precision()
# 6. Instantiate Strategy - Part 2
self._lazy_init_strategy()
def _check_config_and_set_final_flags(
self,
strategy: Union[str, Strategy],
accelerator: Union[str, Accelerator],
precision: Optional[_PRECISION_INPUT],
plugins: Optional[Union[_PLUGIN_INPUT, Iterable[_PLUGIN_INPUT]]],
) -> None:
"""This method checks:
1. strategy: whether the strategy name is valid, and sets the internal flags if it is.
2. accelerator: if the value of the accelerator argument is a type of accelerator (instance or string),
set self._accelerator_flag accordingly.
3. precision: The final value of the precision flag may be determined either by the precision argument or
by a plugin instance.
4. plugins: The list of plugins may contain a Precision plugin, CheckpointIO, ClusterEnvironment and others.
Additionally, other flags such as `precision` can populate the list with the
corresponding plugin instances.
"""
if plugins is not None:
plugins = [plugins] if not isinstance(plugins, Iterable) else plugins
if isinstance(strategy, str):
strategy = strategy.lower()
self._strategy_flag = strategy
if strategy != "auto" and strategy not in self._registered_strategies and not isinstance(strategy, Strategy):
raise ValueError(
f"You selected an invalid strategy name: `strategy={strategy!r}`."
" It must be either a string or an instance of `lightning_fabric.strategies.Strategy`."
" Example choices: auto, ddp, ddp_spawn, deepspeed, dp, ..."
" Find a complete list of options in our documentation at https://lightning.ai"
)
if (
accelerator not in self._registered_accelerators
and accelerator not in ("auto", "gpu")
and not isinstance(accelerator, Accelerator)
):
raise ValueError(
f"You selected an invalid accelerator name: `accelerator={accelerator!r}`."
f" Available names are: auto, {', '.join(self._registered_accelerators)}."
)
# MPS accelerator is incompatible with DDP family of strategies. It supports single-device operation only.
is_ddp_str = isinstance(strategy, str) and "ddp" in strategy
is_dp_str = isinstance(strategy, str) and "dp" in strategy
is_deepspeed_str = isinstance(strategy, str) and "deepspeed" in strategy
is_parallel_strategy = isinstance(strategy, ParallelStrategy) or is_ddp_str or is_dp_str or is_deepspeed_str
is_mps_accelerator = MPSAccelerator.is_available() and (
accelerator in ("mps", "auto", "gpu", None) or isinstance(accelerator, MPSAccelerator)
)
if is_mps_accelerator and is_parallel_strategy:
raise ValueError(
f"You set `strategy={strategy}` but strategies from the DDP family are not supported on the"
f" MPS accelerator. Either explicitly set `accelerator='cpu'` or change the strategy."
)
self._accelerator_flag = accelerator
precision_input = _convert_precision_to_unified_args(precision)
if plugins:
plugins_flags_types: dict[str, int] = Counter()
for plugin in plugins:
if isinstance(plugin, Precision):
self._precision_instance = plugin
plugins_flags_types[Precision.__name__] += 1
elif isinstance(plugin, CheckpointIO):
self.checkpoint_io = plugin
plugins_flags_types[CheckpointIO.__name__] += 1
elif isinstance(plugin, ClusterEnvironment):
self._cluster_environment_flag = plugin
plugins_flags_types[ClusterEnvironment.__name__] += 1
else:
raise TypeError(
f"Found invalid type for plugin {plugin}. Expected one of: Precision, "
"CheckpointIO, ClusterEnvironment."
)
duplicated_plugin_key = [k for k, v in plugins_flags_types.items() if v > 1]
if duplicated_plugin_key:
raise ValueError(
f"Received multiple values for {', '.join(duplicated_plugin_key)} flags in `plugins`."
" Expected one value for each type at most."
)
if plugins_flags_types.get(Precision.__name__) and precision_input is not None:
raise ValueError(
f"Received both `precision={precision_input}` and `plugins={self._precision_instance}`. Choose one."
)
self._precision_input = "32-true" if precision_input is None else precision_input
# handle the case when the user passes in a strategy instance which has an accelerator, precision,
# checkpoint io or cluster env set up
# TODO: improve the error messages below
if isinstance(self._strategy_flag, Strategy):
if self._strategy_flag._accelerator:
if self._accelerator_flag != "auto":
raise ValueError("accelerator set through both strategy class and accelerator flag, choose one")
self._accelerator_flag = self._strategy_flag._accelerator
if self._strategy_flag._precision:
# [RFC] handle precision plugin set up conflict?
if self._precision_instance:
raise ValueError("precision set through both strategy class and plugins, choose one")
self._precision_instance = self._strategy_flag._precision
if self._strategy_flag._checkpoint_io:
if self.checkpoint_io:
raise ValueError("checkpoint_io set through both strategy class and plugins, choose one")
self.checkpoint_io = self._strategy_flag._checkpoint_io
if getattr(self._strategy_flag, "cluster_environment", None):
if self._cluster_environment_flag:
raise ValueError("cluster_environment set through both strategy class and plugins, choose one")
self._cluster_environment_flag = getattr(self._strategy_flag, "cluster_environment")
if hasattr(self._strategy_flag, "parallel_devices") and self._strategy_flag.parallel_devices:
if self._strategy_flag.parallel_devices[0].type == "cpu":
if self._accelerator_flag and self._accelerator_flag not in ("auto", "cpu"):
raise ValueError(
f"CPU parallel_devices set through {self._strategy_flag.__class__.__name__} class,"
f" but accelerator set to {self._accelerator_flag}, please choose one device type"
)
self._accelerator_flag = "cpu"
if self._strategy_flag.parallel_devices[0].type == "cuda":
if self._accelerator_flag and self._accelerator_flag not in ("auto", "cuda", "gpu"):
raise ValueError(
f"GPU parallel_devices set through {self._strategy_flag.__class__.__name__} class,"
f" but accelerator set to {self._accelerator_flag}, please choose one device type"
)
self._accelerator_flag = "cuda"
self._parallel_devices = self._strategy_flag.parallel_devices
def _check_device_config_and_set_final_flags(self, devices: Union[list[int], str, int], num_nodes: int) -> None:
if not isinstance(num_nodes, int) or num_nodes < 1:
raise ValueError(f"`num_nodes` must be a positive integer, but got {num_nodes}.")
self._num_nodes_flag = num_nodes
self._devices_flag = devices
if self._devices_flag in ([], 0, "0"):
accelerator_name = (
self._accelerator_flag.__class__.__qualname__
if isinstance(self._accelerator_flag, Accelerator)
else self._accelerator_flag
)
raise ValueError(
f"`Fabric(devices={self._devices_flag!r})` value is not a valid input"
f" using {accelerator_name} accelerator."
)
@staticmethod
def _choose_auto_accelerator() -> str:
"""Choose the accelerator type (str) based on availability when ``accelerator='auto'``."""
if XLAAccelerator.is_available():
return "tpu"
if MPSAccelerator.is_available():
return "mps"
if CUDAAccelerator.is_available():
return "cuda"
return "cpu"
@staticmethod
def _choose_gpu_accelerator_backend() -> str:
if MPSAccelerator.is_available():
return "mps"
if CUDAAccelerator.is_available():
return "cuda"
raise RuntimeError("No supported gpu backend found!")
def _set_parallel_devices_and_init_accelerator(self) -> None:
if isinstance(self._accelerator_flag, Accelerator):
self.accelerator: Accelerator = self._accelerator_flag
else:
assert self._accelerator_flag is not None
self.accelerator = ACCELERATOR_REGISTRY.get(self._accelerator_flag)
accelerator_cls = self.accelerator.__class__
if not accelerator_cls.is_available():
available_accelerator = [
acc_str
for acc_str in self._registered_accelerators
if ACCELERATOR_REGISTRY[acc_str]["accelerator"].is_available()
]
raise RuntimeError(
f"`{accelerator_cls.__qualname__}` can not run on your system"
" since the accelerator is not available. The following accelerator(s)"
" is available and can be passed into `accelerator` argument of"
f" `Fabric`: {available_accelerator}."
)
self._set_devices_flag_if_auto_passed()
self._devices_flag = accelerator_cls.parse_devices(self._devices_flag)
if not self._parallel_devices:
self._parallel_devices = accelerator_cls.get_parallel_devices(self._devices_flag)
def _set_devices_flag_if_auto_passed(self) -> None:
if self._devices_flag != "auto":
return
if (
_IS_INTERACTIVE
and isinstance(self.accelerator, CUDAAccelerator)
and self.accelerator.auto_device_count() > 1
):
self._devices_flag = 1
rank_zero_info(
f"Fabric will use only 1 of {self.accelerator.auto_device_count()} GPUs because it is running inside"
" an interactive / notebook environment. You may try to set `Fabric(devices="
f"{self.accelerator.auto_device_count()})` but please note that multi-GPU inside interactive /"
" notebook environments is considered experimental and unstable. Your mileage may vary."
)
else:
self._devices_flag = self.accelerator.auto_device_count()
def _choose_and_init_cluster_environment(self) -> ClusterEnvironment:
if isinstance(self._cluster_environment_flag, ClusterEnvironment):
return self._cluster_environment_flag
for env_type in (
# TorchElastic has the highest priority since it can also be used inside SLURM
TorchElasticEnvironment,
SLURMEnvironment,
LSFEnvironment,
MPIEnvironment,
):
if env_type.detect():
return env_type()
return LightningEnvironment()
def _choose_strategy(self) -> Union[Strategy, str]:
if self._accelerator_flag == "tpu" or isinstance(self._accelerator_flag, XLAAccelerator):
if self._parallel_devices and len(self._parallel_devices) > 1:
return "xla"
# TODO: lazy initialized device, then here could be self._strategy_flag = "single_xla"
return SingleDeviceXLAStrategy(device=self._parallel_devices[0])
if self._num_nodes_flag > 1:
return "ddp"
if len(self._parallel_devices) <= 1:
if isinstance(self._accelerator_flag, (CUDAAccelerator, MPSAccelerator)) or (
isinstance(self._accelerator_flag, str) and self._accelerator_flag in ("cuda", "gpu", "mps")
):
device = _determine_root_gpu_device(self._parallel_devices)
else:
device = "cpu"
# TODO: lazy initialized device, then here could be self._strategy_flag = "single_device"
return SingleDeviceStrategy(device=device) # type: ignore
if len(self._parallel_devices) > 1 and _IS_INTERACTIVE:
return "ddp_fork"
return "ddp"
def _check_strategy_and_fallback(self) -> None:
"""Checks edge cases when the strategy selection was a string input, and we need to fall back to a different
choice depending on other parameters or the environment."""
# current fallback and check logic only apply to user pass in str config and object config
# TODO this logic should apply to both str and object config
strategy_flag = "" if isinstance(self._strategy_flag, Strategy) else self._strategy_flag
# Change fsdp to xla_fsdp if using TPU
if strategy_flag == "fsdp" and self._accelerator_flag == "tpu":
strategy_flag = "xla_fsdp"
if strategy_flag == "dp" and self._accelerator_flag == "cpu":
rank_zero_warn(f"{strategy_flag!r} is not supported on CPUs, hence setting `strategy='ddp'`.")
strategy_flag = "ddp"
if strategy_flag in _DDP_FORK_ALIASES and "fork" not in torch.multiprocessing.get_all_start_methods():
raise ValueError(
f"You selected `Fabric(strategy='{strategy_flag}')` but process forking is not supported on this"
f" platform. We recommend `Fabric(strategy='ddp_spawn')` instead."
)
if (
strategy_flag in _FSDP_ALIASES or type(self._strategy_flag) is FSDPStrategy
) and self._accelerator_flag not in ("cuda", "gpu"):
raise ValueError(
"You selected the FSDP strategy but FSDP is only available on GPU. Set `Fabric(accelerator='gpu', ...)`"
" to continue or select a different strategy."
)
if strategy_flag:
self._strategy_flag = strategy_flag
def _init_strategy(self) -> None:
"""Instantiate the Strategy given depending on the setting of ``_strategy_flag``."""
# The validation of `_strategy_flag` already happened earlier on in the connector
assert isinstance(self._strategy_flag, (str, Strategy))
if isinstance(self._strategy_flag, str):
self.strategy = STRATEGY_REGISTRY.get(self._strategy_flag)
else:
self.strategy = self._strategy_flag
def _check_and_init_precision(self) -> Precision:
if isinstance(self._precision_instance, Precision):
if isinstance(self._precision_instance, BitsandbytesPrecision) and not isinstance(
self.accelerator, CUDAAccelerator
):
raise RuntimeError("Bitsandbytes is only supported on CUDA GPUs.")
return self._precision_instance
if isinstance(self.strategy, (SingleDeviceXLAStrategy, XLAStrategy, XLAFSDPStrategy)):
return XLAPrecision(self._precision_input) # type: ignore
if isinstance(self.strategy, DeepSpeedStrategy):
return DeepSpeedPrecision(self._precision_input) # type: ignore
if isinstance(self.strategy, FSDPStrategy):
return FSDPPrecision(precision=self._precision_input) # type: ignore[arg-type]
mp_precision_supported = ("32-true", "bf16-mixed", "bf16-true", "16-true")
if isinstance(self.strategy, ModelParallelStrategy) and self._precision_input not in mp_precision_supported:
raise ValueError(
f"The `ModelParallelStrategy` does not support `Fabric(..., precision={self._precision_input!r})`."
f" Choose a different precision among: {', '.join(mp_precision_supported)}."
)
if self._precision_input in ("16-true", "bf16-true"):
return HalfPrecision(self._precision_input) # type: ignore
if self._precision_input == "32-true":
return Precision()
if self._precision_input == "64-true":
return DoublePrecision()
if self._precision_input == "transformer-engine":
return TransformerEnginePrecision(weights_dtype=torch.bfloat16)
if self._precision_input == "transformer-engine-float16":
return TransformerEnginePrecision(weights_dtype=torch.float16)
if self._precision_input == "16-mixed" and self._accelerator_flag == "cpu":
rank_zero_warn(
"You passed `Fabric(accelerator='cpu', precision='16-mixed')` but AMP with fp16 is not supported on "
"CPU. Using `precision='bf16-mixed'` instead."
)
self._precision_input = "bf16-mixed"
if self._precision_input in ("16-mixed", "bf16-mixed"):
rank_zero_info(
"Using 16-bit Automatic Mixed Precision (AMP)"
if self._precision_input == "16-mixed"
else "Using bfloat16 Automatic Mixed Precision (AMP)"
)
device = self._accelerator_flag if self._accelerator_flag in ("cpu", "mps") else "cuda"
return MixedPrecision(precision=self._precision_input, device=device) # type: ignore[arg-type]
raise RuntimeError("No precision set")
def _lazy_init_strategy(self) -> None:
"""Lazily set missing attributes on the previously instantiated strategy."""
self.strategy.accelerator = self.accelerator
if self.precision:
self.strategy.precision = self.precision
if self.checkpoint_io:
self.strategy.checkpoint_io = self.checkpoint_io
if hasattr(self.strategy, "cluster_environment"):
if self.strategy.cluster_environment is None:
self.strategy.cluster_environment = self.cluster_environment
self.cluster_environment = self.strategy.cluster_environment
if hasattr(self.strategy, "parallel_devices"):
if self.strategy.parallel_devices:
self._parallel_devices = self.strategy.parallel_devices
else:
self.strategy.parallel_devices = self._parallel_devices
if hasattr(self.strategy, "num_nodes"):
self.strategy._num_nodes = self._num_nodes_flag
if hasattr(self.strategy, "_set_world_ranks"):
self.strategy._set_world_ranks()
self.strategy._configure_launcher()
if _IS_INTERACTIVE and self.strategy.launcher and not self.strategy.launcher.is_interactive_compatible:
raise RuntimeError(
f"`Fabric(strategy={self._strategy_flag!r})` is not compatible with an interactive"
" environment. Run your code as a script, or choose one of the compatible strategies:"
f" `Fabric(strategy='dp'|'ddp_notebook')`."
" In case you are spawning processes yourself, make sure to include the Fabric"
" creation inside the worker function."
)
# TODO: should be moved to _check_strategy_and_fallback().
# Current test check precision first, so keep this check here to meet error order
if isinstance(self.accelerator, XLAAccelerator) and not isinstance(
self.strategy, (SingleDeviceXLAStrategy, XLAStrategy, XLAFSDPStrategy)
):
raise ValueError(
"The `XLAAccelerator` can only be used with a `SingleDeviceXLAStrategy`, `XLAStrategy`, or"
f" `XLAFSDPStrategy`. Found {self.strategy.__class__.__name__}."
)
@staticmethod
def _argument_from_env(name: str, current: Any, default: Any) -> Any:
env_value: Optional[str] = os.environ.get("LT_" + name.upper())
if env_value is None:
return current
if env_value is not None and env_value != str(current) and str(current) != str(default) and _is_using_cli():
raise ValueError(
f"Your code has `Fabric({name}={current!r}, ...)` but it conflicts with the value "
f"`--{name}={env_value}` set through the CLI. "
" Remove it either from the CLI or from the Lightning Fabric object."
)
return env_value
def _convert_precision_to_unified_args(precision: Optional[_PRECISION_INPUT]) -> Optional[_PRECISION_INPUT_STR]:
if precision is None:
return None
supported_precision = (
get_args(_PRECISION_INPUT_STR) + get_args(_PRECISION_INPUT_INT) + get_args(_PRECISION_INPUT_STR_ALIAS)
)
if precision not in supported_precision:
raise ValueError(f"Precision {repr(precision)} is invalid. Allowed precision values: {supported_precision}")
precision = str(precision) # convert int flags to str here to enable the legacy-conversion below
if precision in get_args(_PRECISION_INPUT_STR_ALIAS):
if str(precision)[:2] not in ("32", "64"):
rank_zero_warn(
f"`precision={precision}` is supported for historical reasons but its usage is discouraged. "
f"Please set your precision to {_PRECISION_INPUT_STR_ALIAS_CONVERSION[precision]} instead!"
)
precision = _PRECISION_INPUT_STR_ALIAS_CONVERSION[precision]
return cast(_PRECISION_INPUT_STR, precision)
def _is_using_cli() -> bool:
return bool(int(os.environ.get("LT_CLI_USED", "0")))
|