File size: 23,131 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Neptune Logger
--------------
"""
import contextlib
import logging
import os
from argparse import Namespace
from collections.abc import Generator
from functools import wraps
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from typing_extensions import override
import lightning.pytorch as pl
from lightning.fabric.utilities.logger import _add_prefix, _convert_params, _sanitize_callable_params
from lightning.pytorch.callbacks import Checkpoint
from lightning.pytorch.loggers.logger import Logger, rank_zero_experiment
from lightning.pytorch.utilities.model_summary import ModelSummary
from lightning.pytorch.utilities.rank_zero import rank_zero_only
if TYPE_CHECKING:
from neptune import Run
from neptune.handler import Handler
log = logging.getLogger(__name__)
# Neptune is available with two names on PyPI : `neptune` and `neptune-client`
# `neptune` was introduced as a name transition of neptune-client and the long-term target is to get
# rid of Neptune-client package completely someday. It was introduced as a part of breaking-changes with a release
# of neptune-client==1.0. neptune-client>=1.0 is just an alias of neptune package and have some breaking-changes
# in compare to neptune-client<1.0.0.
_NEPTUNE_AVAILABLE = RequirementCache("neptune>=1.0")
_INTEGRATION_VERSION_KEY = "source_code/integrations/pytorch-lightning"
# Neptune client throws `InactiveRunException` when trying to log to an inactive run.
# This may happen when the run was stopped through the UI and the logger is still trying to log to it.
def _catch_inactive(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
from neptune.exceptions import InactiveRunException
with contextlib.suppress(InactiveRunException):
return func(*args, **kwargs)
return wrapper
class NeptuneLogger(Logger):
r"""Log using `Neptune <https://docs.neptune.ai/integrations/lightning/>`_.
Install it with pip:
.. code-block:: bash
pip install neptune
or conda:
.. code-block:: bash
conda install -c conda-forge neptune-client
**Quickstart**
Pass a NeptuneLogger instance to the Trainer to log metadata with Neptune:
.. code-block:: python
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import NeptuneLogger
import neptune
neptune_logger = NeptuneLogger(
api_key=neptune.ANONYMOUS_API_TOKEN, # replace with your own
project="common/pytorch-lightning-integration", # format "workspace-name/project-name"
tags=["training", "resnet"], # optional
)
trainer = Trainer(max_epochs=10, logger=neptune_logger)
**How to use NeptuneLogger?**
Use the logger anywhere in your :class:`~lightning.pytorch.core.LightningModule` as follows:
.. code-block:: python
from neptune.types import File
from lightning.pytorch import LightningModule
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# log metrics
acc = ...
self.append("train/loss", loss)
def any_lightning_module_function_or_hook(self):
# log images
img = ...
self.logger.experiment["train/misclassified_images"].append(File.as_image(img))
# generic recipe
metadata = ...
self.logger.experiment["your/metadata/structure"] = metadata
Note that the syntax ``self.logger.experiment["your/metadata/structure"].append(metadata)`` is specific to
Neptune and extends the logger capabilities. It lets you log various types of metadata, such as
scores, files, images, interactive visuals, and CSVs.
Refer to the `Neptune docs <https://docs.neptune.ai/logging/methods>`_
for details.
You can also use the regular logger methods ``log_metrics()``, and ``log_hyperparams()`` with NeptuneLogger.
**Log after fitting or testing is finished**
You can log objects after the fitting or testing methods are finished:
.. code-block:: python
neptune_logger = NeptuneLogger(project="common/pytorch-lightning-integration")
trainer = pl.Trainer(logger=neptune_logger)
model = ...
datamodule = ...
trainer.fit(model, datamodule=datamodule)
trainer.test(model, datamodule=datamodule)
# Log objects after `fit` or `test` methods
# model summary
neptune_logger.log_model_summary(model=model, max_depth=-1)
# generic recipe
metadata = ...
neptune_logger.experiment["your/metadata/structure"] = metadata
**Log model checkpoints**
If you have :class:`~lightning.pytorch.callbacks.ModelCheckpoint` configured,
the Neptune logger automatically logs model checkpoints.
Model weights will be uploaded to the "model/checkpoints" namespace in the Neptune run.
You can disable this option with:
.. code-block:: python
neptune_logger = NeptuneLogger(log_model_checkpoints=False)
**Pass additional parameters to the Neptune run**
You can also pass ``neptune_run_kwargs`` to add details to the run, like ``tags`` or ``description``:
.. testcode::
:skipif: not _NEPTUNE_AVAILABLE
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import NeptuneLogger
neptune_logger = NeptuneLogger(
project="common/pytorch-lightning-integration",
name="lightning-run",
description="mlp quick run with pytorch-lightning",
tags=["mlp", "quick-run"],
)
trainer = Trainer(max_epochs=3, logger=neptune_logger)
Check `run documentation <https://docs.neptune.ai/api/neptune/#init_run>`_
for more info about additional run parameters.
**Details about Neptune run structure**
Runs can be viewed as nested dictionary-like structures that you can define in your code.
Thanks to this you can easily organize your metadata in a way that is most convenient for you.
The hierarchical structure that you apply to your metadata is reflected in the Neptune web app.
See also:
- Read about
`what objects you can log to Neptune <https://docs.neptune.ai/logging/what_you_can_log/>`_.
- Check out an `example run <https://app.neptune.ai/o/common/org/pytorch-lightning-integration/e/PTL-1/all>`_
with multiple types of metadata logged.
- For more detailed examples, see the
`user guide <https://docs.neptune.ai/integrations/lightning/>`_.
Args:
api_key: Optional.
Neptune API token, found on https://www.neptune.ai upon registration.
You should save your token to the `NEPTUNE_API_TOKEN`
environment variable and leave the api_key argument out of your code.
Instructions: `Setting your API token <https://docs.neptune.ai/setup/setting_api_token/>`_.
project: Optional.
Name of a project in the form "workspace-name/project-name", for example "tom/mask-rcnn".
If ``None``, the value of `NEPTUNE_PROJECT` environment variable is used.
You need to create the project on https://www.neptune.ai first.
name: Optional. Editable name of the run.
The run name is displayed in the Neptune web app.
run: Optional. Default is ``None``. A Neptune ``Run`` object.
If specified, this existing run will be used for logging, instead of a new run being created.
You can also pass a namespace handler object; for example, ``run["test"]``, in which case all
metadata is logged under the "test" namespace inside the run.
log_model_checkpoints: Optional. Default is ``True``. Log model checkpoint to Neptune.
Works only if ``ModelCheckpoint`` is passed to the ``Trainer``.
prefix: Optional. Default is ``"training"``. Root namespace for all metadata logging.
\**neptune_run_kwargs: Additional arguments like ``tags``, ``description``, ``capture_stdout``, etc.
used when a run is created.
Raises:
ModuleNotFoundError:
If the required Neptune package is not installed.
ValueError:
If an argument passed to the logger's constructor is incorrect.
"""
LOGGER_JOIN_CHAR = "/"
PARAMETERS_KEY = "hyperparams"
ARTIFACTS_KEY = "artifacts"
def __init__(
self,
*, # force users to call `NeptuneLogger` initializer with `kwargs`
api_key: Optional[str] = None,
project: Optional[str] = None,
name: Optional[str] = None,
run: Optional[Union["Run", "Handler"]] = None,
log_model_checkpoints: Optional[bool] = True,
prefix: str = "training",
**neptune_run_kwargs: Any,
):
if not _NEPTUNE_AVAILABLE:
raise ModuleNotFoundError(str(_NEPTUNE_AVAILABLE))
# verify if user passed proper init arguments
self._verify_input_arguments(api_key, project, name, run, neptune_run_kwargs)
super().__init__()
self._log_model_checkpoints = log_model_checkpoints
self._prefix = prefix
self._run_name = name
self._project_name = project
self._api_key = api_key
self._run_instance = run
self._neptune_run_kwargs = neptune_run_kwargs
self._run_short_id: Optional[str] = None
if self._run_instance is not None:
self._retrieve_run_data()
from neptune.handler import Handler
# make sure that we've log integration version for outside `Run` instances
root_obj = self._run_instance
if isinstance(root_obj, Handler):
root_obj = root_obj.get_root_object()
root_obj[_INTEGRATION_VERSION_KEY] = pl.__version__
def _retrieve_run_data(self) -> None:
from neptune.handler import Handler
assert self._run_instance is not None
root_obj = self._run_instance
if isinstance(root_obj, Handler):
root_obj = root_obj.get_root_object()
root_obj.wait()
if root_obj.exists("sys/id"):
self._run_short_id = root_obj["sys/id"].fetch()
self._run_name = root_obj["sys/name"].fetch()
else:
self._run_short_id = "OFFLINE"
self._run_name = "offline-name"
@property
def _neptune_init_args(self) -> dict:
args: dict = {}
# Backward compatibility in case of previous version retrieval
with contextlib.suppress(AttributeError):
args = self._neptune_run_kwargs
if self._project_name is not None:
args["project"] = self._project_name
if self._api_key is not None:
args["api_token"] = self._api_key
if self._run_short_id is not None:
args["run"] = self._run_short_id
# Backward compatibility in case of previous version retrieval
with contextlib.suppress(AttributeError):
if self._run_name is not None:
args["name"] = self._run_name
return args
def _construct_path_with_prefix(self, *keys: str) -> str:
"""Return sequence of keys joined by `LOGGER_JOIN_CHAR`, started with `_prefix` if defined."""
if self._prefix:
return self.LOGGER_JOIN_CHAR.join([self._prefix, *keys])
return self.LOGGER_JOIN_CHAR.join(keys)
@staticmethod
def _verify_input_arguments(
api_key: Optional[str],
project: Optional[str],
name: Optional[str],
run: Optional[Union["Run", "Handler"]],
neptune_run_kwargs: dict,
) -> None:
from neptune import Run
from neptune.handler import Handler
# check if user passed the client `Run`/`Handler` object
if run is not None and not isinstance(run, (Run, Handler)):
raise ValueError("Run parameter expected to be of type `neptune.Run`, or `neptune.handler.Handler`.")
# check if user passed redundant neptune.init_run arguments when passed run
any_neptune_init_arg_passed = any(arg is not None for arg in [api_key, project, name]) or neptune_run_kwargs
if run is not None and any_neptune_init_arg_passed:
raise ValueError(
"When an already initialized run object is provided, you can't provide other `neptune.init_run()`"
" parameters."
)
def __getstate__(self) -> dict[str, Any]:
state = self.__dict__.copy()
# Run instance can't be pickled
state["_run_instance"] = None
return state
def __setstate__(self, state: dict[str, Any]) -> None:
import neptune
self.__dict__ = state
self._run_instance = neptune.init_run(**self._neptune_init_args)
@property
@rank_zero_experiment
def experiment(self) -> "Run":
r"""Actual Neptune run object. Allows you to use neptune logging features in your
:class:`~lightning.pytorch.core.LightningModule`.
Example::
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# log metrics
acc = ...
self.logger.experiment["train/acc"].append(acc)
# log images
img = ...
self.logger.experiment["train/misclassified_images"].append(File.as_image(img))
Note that the syntax ``self.logger.experiment["your/metadata/structure"].append(metadata)``
is specific to Neptune and extends the logger capabilities.
It lets you log various types of metadata, such as scores, files,
images, interactive visuals, and CSVs. Refer to the
`Neptune docs <https://docs.neptune.ai/logging/methods>`_
for more detailed explanations.
You can also use the regular logger methods ``log_metrics()``, and ``log_hyperparams()``
with NeptuneLogger.
"""
return self.run
@property
@rank_zero_experiment
def run(self) -> "Run":
import neptune
if not self._run_instance:
self._run_instance = neptune.init_run(**self._neptune_init_args)
self._retrieve_run_data()
# make sure that we've log integration version for newly created
self._run_instance[_INTEGRATION_VERSION_KEY] = pl.__version__
return self._run_instance
@override
@rank_zero_only
@_catch_inactive
def log_hyperparams(self, params: Union[dict[str, Any], Namespace]) -> None:
r"""Log hyperparameters to the run.
Hyperparameters will be logged under the "<prefix>/hyperparams" namespace.
Note:
You can also log parameters by directly using the logger instance:
``neptune_logger.experiment["model/hyper-parameters"] = params_dict``.
In this way you can keep hierarchical structure of the parameters.
Args:
params: `dict`.
Python dictionary structure with parameters.
Example::
from lightning.pytorch.loggers import NeptuneLogger
import neptune
PARAMS = {
"batch_size": 64,
"lr": 0.07,
"decay_factor": 0.97,
}
neptune_logger = NeptuneLogger(
api_key=neptune.ANONYMOUS_API_TOKEN,
project="common/pytorch-lightning-integration"
)
neptune_logger.log_hyperparams(PARAMS)
"""
from neptune.utils import stringify_unsupported
params = _convert_params(params)
params = _sanitize_callable_params(params)
parameters_key = self.PARAMETERS_KEY
parameters_key = self._construct_path_with_prefix(parameters_key)
self.run[parameters_key] = stringify_unsupported(params)
@override
@rank_zero_only
@_catch_inactive
def log_metrics(self, metrics: dict[str, Union[Tensor, float]], step: Optional[int] = None) -> None:
"""Log metrics (numeric values) in Neptune runs.
Args:
metrics: Dictionary with metric names as keys and measured quantities as values.
step: Step number at which the metrics should be recorded
"""
if rank_zero_only.rank != 0:
raise ValueError("run tried to log from global_rank != 0")
metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)
for key, val in metrics.items():
self.run[key].append(val, step=step)
@override
@rank_zero_only
@_catch_inactive
def finalize(self, status: str) -> None:
if not self._run_instance:
# When using multiprocessing, finalize() should be a no-op on the main process, as no experiment has been
# initialized there
return
if status:
self.run[self._construct_path_with_prefix("status")] = status
super().finalize(status)
@property
@override
def save_dir(self) -> Optional[str]:
"""Gets the save directory of the experiment which in this case is ``None`` because Neptune does not save
locally.
Returns:
the root directory where experiment logs get saved
"""
return os.path.join(os.getcwd(), ".neptune")
@rank_zero_only
@_catch_inactive
def log_model_summary(self, model: "pl.LightningModule", max_depth: int = -1) -> None:
from neptune.types import File
model_str = str(ModelSummary(model=model, max_depth=max_depth))
self.run[self._construct_path_with_prefix("model/summary")] = File.from_content(
content=model_str, extension="txt"
)
@override
@rank_zero_only
@_catch_inactive
def after_save_checkpoint(self, checkpoint_callback: Checkpoint) -> None:
"""Automatically log checkpointed model. Called after model checkpoint callback saves a new checkpoint.
Args:
checkpoint_callback: the model checkpoint callback instance
"""
if not self._log_model_checkpoints:
return
file_names = set()
checkpoints_namespace = self._construct_path_with_prefix("model/checkpoints")
# save last model
if hasattr(checkpoint_callback, "last_model_path") and checkpoint_callback.last_model_path:
model_last_name = self._get_full_model_name(checkpoint_callback.last_model_path, checkpoint_callback)
file_names.add(model_last_name)
self.run[f"{checkpoints_namespace}/{model_last_name}"].upload(checkpoint_callback.last_model_path)
# save best k models
if hasattr(checkpoint_callback, "best_k_models"):
for key in checkpoint_callback.best_k_models:
model_name = self._get_full_model_name(key, checkpoint_callback)
file_names.add(model_name)
self.run[f"{checkpoints_namespace}/{model_name}"].upload(key)
# log best model path and checkpoint
if hasattr(checkpoint_callback, "best_model_path") and checkpoint_callback.best_model_path:
self.run[self._construct_path_with_prefix("model/best_model_path")] = checkpoint_callback.best_model_path
model_name = self._get_full_model_name(checkpoint_callback.best_model_path, checkpoint_callback)
file_names.add(model_name)
self.run[f"{checkpoints_namespace}/{model_name}"].upload(checkpoint_callback.best_model_path)
# remove old models logged to experiment if they are not part of best k models at this point
if self.run.exists(checkpoints_namespace):
exp_structure = self.run.get_structure()
uploaded_model_names = self._get_full_model_names_from_exp_structure(exp_structure, checkpoints_namespace)
for file_to_drop in list(uploaded_model_names - file_names):
del self.run[f"{checkpoints_namespace}/{file_to_drop}"]
# log best model score
if hasattr(checkpoint_callback, "best_model_score") and checkpoint_callback.best_model_score:
self.run[self._construct_path_with_prefix("model/best_model_score")] = (
checkpoint_callback.best_model_score.cpu().detach().numpy()
)
@staticmethod
def _get_full_model_name(model_path: str, checkpoint_callback: Checkpoint) -> str:
"""Returns model name which is string `model_path` appended to `checkpoint_callback.dirpath`."""
if hasattr(checkpoint_callback, "dirpath"):
model_path = os.path.normpath(model_path)
expected_model_path = os.path.normpath(checkpoint_callback.dirpath)
if not model_path.startswith(expected_model_path):
raise ValueError(f"{model_path} was expected to start with {expected_model_path}.")
# Remove extension from filepath
filepath, _ = os.path.splitext(model_path[len(expected_model_path) + 1 :])
return filepath.replace(os.sep, "/")
return model_path.replace(os.sep, "/")
@classmethod
def _get_full_model_names_from_exp_structure(cls, exp_structure: dict[str, Any], namespace: str) -> set[str]:
"""Returns all paths to properties which were already logged in `namespace`"""
structure_keys: list[str] = namespace.split(cls.LOGGER_JOIN_CHAR)
for key in structure_keys:
exp_structure = exp_structure[key]
uploaded_models_dict = exp_structure
return set(cls._dict_paths(uploaded_models_dict))
@classmethod
def _dict_paths(cls, d: dict[str, Any], path_in_build: Optional[str] = None) -> Generator:
for k, v in d.items():
path = f"{path_in_build}/{k}" if path_in_build is not None else k
if not isinstance(v, dict):
yield path
else:
yield from cls._dict_paths(v, path)
@property
@override
def name(self) -> Optional[str]:
"""Return the experiment name or 'offline-name' when exp is run in offline mode."""
return self._run_name
@property
@override
def version(self) -> Optional[str]:
"""Return the experiment version.
It's Neptune Run's short_id
"""
return self._run_short_id
|