File size: 23,131 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Neptune Logger
--------------
"""

import contextlib
import logging
import os
from argparse import Namespace
from collections.abc import Generator
from functools import wraps
from typing import TYPE_CHECKING, Any, Callable, Optional, Union

from lightning_utilities.core.imports import RequirementCache
from torch import Tensor
from typing_extensions import override

import lightning.pytorch as pl
from lightning.fabric.utilities.logger import _add_prefix, _convert_params, _sanitize_callable_params
from lightning.pytorch.callbacks import Checkpoint
from lightning.pytorch.loggers.logger import Logger, rank_zero_experiment
from lightning.pytorch.utilities.model_summary import ModelSummary
from lightning.pytorch.utilities.rank_zero import rank_zero_only

if TYPE_CHECKING:
    from neptune import Run
    from neptune.handler import Handler

log = logging.getLogger(__name__)

# Neptune is available with two names on PyPI : `neptune` and `neptune-client`
# `neptune` was introduced as a name transition of neptune-client and the long-term target is to get
# rid of Neptune-client package completely someday. It was introduced as a part of breaking-changes with a release
# of neptune-client==1.0. neptune-client>=1.0 is just an alias of neptune package and have some breaking-changes
# in compare to neptune-client<1.0.0.
_NEPTUNE_AVAILABLE = RequirementCache("neptune>=1.0")
_INTEGRATION_VERSION_KEY = "source_code/integrations/pytorch-lightning"


# Neptune client throws `InactiveRunException` when trying to log to an inactive run.
# This may happen when the run was stopped through the UI and the logger is still trying to log to it.
def _catch_inactive(func: Callable) -> Callable:
    @wraps(func)
    def wrapper(*args: Any, **kwargs: Any) -> Any:
        from neptune.exceptions import InactiveRunException

        with contextlib.suppress(InactiveRunException):
            return func(*args, **kwargs)

    return wrapper


class NeptuneLogger(Logger):
    r"""Log using `Neptune <https://docs.neptune.ai/integrations/lightning/>`_.

    Install it with pip:

    .. code-block:: bash

        pip install neptune

    or conda:

    .. code-block:: bash

        conda install -c conda-forge neptune-client

    **Quickstart**

    Pass a NeptuneLogger instance to the Trainer to log metadata with Neptune:

    .. code-block:: python


        from lightning.pytorch import Trainer
        from lightning.pytorch.loggers import NeptuneLogger
        import neptune

        neptune_logger = NeptuneLogger(
            api_key=neptune.ANONYMOUS_API_TOKEN,  # replace with your own
            project="common/pytorch-lightning-integration",  # format "workspace-name/project-name"
            tags=["training", "resnet"],  # optional
        )
        trainer = Trainer(max_epochs=10, logger=neptune_logger)

    **How to use NeptuneLogger?**

    Use the logger anywhere in your :class:`~lightning.pytorch.core.LightningModule` as follows:

    .. code-block:: python

        from neptune.types import File
        from lightning.pytorch import LightningModule


        class LitModel(LightningModule):
            def training_step(self, batch, batch_idx):
                # log metrics
                acc = ...
                self.append("train/loss", loss)

            def any_lightning_module_function_or_hook(self):
                # log images
                img = ...
                self.logger.experiment["train/misclassified_images"].append(File.as_image(img))

                # generic recipe
                metadata = ...
                self.logger.experiment["your/metadata/structure"] = metadata

    Note that the syntax ``self.logger.experiment["your/metadata/structure"].append(metadata)`` is specific to
    Neptune and extends the logger capabilities. It lets you log various types of metadata, such as
    scores, files, images, interactive visuals, and CSVs.
    Refer to the `Neptune docs <https://docs.neptune.ai/logging/methods>`_
    for details.
    You can also use the regular logger methods ``log_metrics()``, and ``log_hyperparams()`` with NeptuneLogger.

    **Log after fitting or testing is finished**

    You can log objects after the fitting or testing methods are finished:

    .. code-block:: python

        neptune_logger = NeptuneLogger(project="common/pytorch-lightning-integration")

        trainer = pl.Trainer(logger=neptune_logger)
        model = ...
        datamodule = ...
        trainer.fit(model, datamodule=datamodule)
        trainer.test(model, datamodule=datamodule)

        # Log objects after `fit` or `test` methods
        # model summary
        neptune_logger.log_model_summary(model=model, max_depth=-1)

        # generic recipe
        metadata = ...
        neptune_logger.experiment["your/metadata/structure"] = metadata

    **Log model checkpoints**

    If you have :class:`~lightning.pytorch.callbacks.ModelCheckpoint` configured,
    the Neptune logger automatically logs model checkpoints.
    Model weights will be uploaded to the "model/checkpoints" namespace in the Neptune run.
    You can disable this option with:

    .. code-block:: python

        neptune_logger = NeptuneLogger(log_model_checkpoints=False)

    **Pass additional parameters to the Neptune run**

    You can also pass ``neptune_run_kwargs`` to add details to the run, like ``tags`` or ``description``:

    .. testcode::
        :skipif: not _NEPTUNE_AVAILABLE

        from lightning.pytorch import Trainer
        from lightning.pytorch.loggers import NeptuneLogger

        neptune_logger = NeptuneLogger(
            project="common/pytorch-lightning-integration",
            name="lightning-run",
            description="mlp quick run with pytorch-lightning",
            tags=["mlp", "quick-run"],
        )
        trainer = Trainer(max_epochs=3, logger=neptune_logger)

    Check `run documentation <https://docs.neptune.ai/api/neptune/#init_run>`_
    for more info about additional run parameters.

    **Details about Neptune run structure**

    Runs can be viewed as nested dictionary-like structures that you can define in your code.
    Thanks to this you can easily organize your metadata in a way that is most convenient for you.

    The hierarchical structure that you apply to your metadata is reflected in the Neptune web app.

    See also:
        - Read about
          `what objects you can log to Neptune <https://docs.neptune.ai/logging/what_you_can_log/>`_.
        - Check out an `example run <https://app.neptune.ai/o/common/org/pytorch-lightning-integration/e/PTL-1/all>`_
          with multiple types of metadata logged.
        - For more detailed examples, see the
          `user guide <https://docs.neptune.ai/integrations/lightning/>`_.

    Args:
        api_key: Optional.
            Neptune API token, found on https://www.neptune.ai upon registration.
            You should save your token to the `NEPTUNE_API_TOKEN`
            environment variable and leave the api_key argument out of your code.
            Instructions: `Setting your API token <https://docs.neptune.ai/setup/setting_api_token/>`_.
        project: Optional.
            Name of a project in the form "workspace-name/project-name", for example "tom/mask-rcnn".
            If ``None``, the value of `NEPTUNE_PROJECT` environment variable is used.
            You need to create the project on https://www.neptune.ai first.
        name: Optional. Editable name of the run.
            The run name is displayed in the Neptune web app.
        run: Optional. Default is ``None``. A Neptune ``Run`` object.
            If specified, this existing run will be used for logging, instead of a new run being created.
            You can also pass a namespace handler object; for example, ``run["test"]``, in which case all
            metadata is logged under the "test" namespace inside the run.
        log_model_checkpoints: Optional. Default is ``True``. Log model checkpoint to Neptune.
            Works only if ``ModelCheckpoint`` is passed to the ``Trainer``.
        prefix: Optional. Default is ``"training"``. Root namespace for all metadata logging.
        \**neptune_run_kwargs: Additional arguments like ``tags``, ``description``, ``capture_stdout``, etc.
            used when a run is created.

    Raises:
        ModuleNotFoundError:
            If the required Neptune package is not installed.
        ValueError:
            If an argument passed to the logger's constructor is incorrect.

    """

    LOGGER_JOIN_CHAR = "/"
    PARAMETERS_KEY = "hyperparams"
    ARTIFACTS_KEY = "artifacts"

    def __init__(
        self,
        *,  # force users to call `NeptuneLogger` initializer with `kwargs`
        api_key: Optional[str] = None,
        project: Optional[str] = None,
        name: Optional[str] = None,
        run: Optional[Union["Run", "Handler"]] = None,
        log_model_checkpoints: Optional[bool] = True,
        prefix: str = "training",
        **neptune_run_kwargs: Any,
    ):
        if not _NEPTUNE_AVAILABLE:
            raise ModuleNotFoundError(str(_NEPTUNE_AVAILABLE))

        # verify if user passed proper init arguments
        self._verify_input_arguments(api_key, project, name, run, neptune_run_kwargs)
        super().__init__()
        self._log_model_checkpoints = log_model_checkpoints
        self._prefix = prefix
        self._run_name = name
        self._project_name = project
        self._api_key = api_key
        self._run_instance = run
        self._neptune_run_kwargs = neptune_run_kwargs
        self._run_short_id: Optional[str] = None

        if self._run_instance is not None:
            self._retrieve_run_data()

            from neptune.handler import Handler

            # make sure that we've log integration version for outside `Run` instances
            root_obj = self._run_instance
            if isinstance(root_obj, Handler):
                root_obj = root_obj.get_root_object()

            root_obj[_INTEGRATION_VERSION_KEY] = pl.__version__

    def _retrieve_run_data(self) -> None:
        from neptune.handler import Handler

        assert self._run_instance is not None
        root_obj = self._run_instance
        if isinstance(root_obj, Handler):
            root_obj = root_obj.get_root_object()

        root_obj.wait()

        if root_obj.exists("sys/id"):
            self._run_short_id = root_obj["sys/id"].fetch()
            self._run_name = root_obj["sys/name"].fetch()
        else:
            self._run_short_id = "OFFLINE"
            self._run_name = "offline-name"

    @property
    def _neptune_init_args(self) -> dict:
        args: dict = {}
        # Backward compatibility in case of previous version retrieval
        with contextlib.suppress(AttributeError):
            args = self._neptune_run_kwargs

        if self._project_name is not None:
            args["project"] = self._project_name

        if self._api_key is not None:
            args["api_token"] = self._api_key

        if self._run_short_id is not None:
            args["run"] = self._run_short_id

        # Backward compatibility in case of previous version retrieval
        with contextlib.suppress(AttributeError):
            if self._run_name is not None:
                args["name"] = self._run_name

        return args

    def _construct_path_with_prefix(self, *keys: str) -> str:
        """Return sequence of keys joined by `LOGGER_JOIN_CHAR`, started with `_prefix` if defined."""
        if self._prefix:
            return self.LOGGER_JOIN_CHAR.join([self._prefix, *keys])
        return self.LOGGER_JOIN_CHAR.join(keys)

    @staticmethod
    def _verify_input_arguments(
        api_key: Optional[str],
        project: Optional[str],
        name: Optional[str],
        run: Optional[Union["Run", "Handler"]],
        neptune_run_kwargs: dict,
    ) -> None:
        from neptune import Run
        from neptune.handler import Handler

        # check if user passed the client `Run`/`Handler` object
        if run is not None and not isinstance(run, (Run, Handler)):
            raise ValueError("Run parameter expected to be of type `neptune.Run`, or `neptune.handler.Handler`.")

        # check if user passed redundant neptune.init_run arguments when passed run
        any_neptune_init_arg_passed = any(arg is not None for arg in [api_key, project, name]) or neptune_run_kwargs
        if run is not None and any_neptune_init_arg_passed:
            raise ValueError(
                "When an already initialized run object is provided, you can't provide other `neptune.init_run()`"
                " parameters."
            )

    def __getstate__(self) -> dict[str, Any]:
        state = self.__dict__.copy()
        # Run instance can't be pickled
        state["_run_instance"] = None
        return state

    def __setstate__(self, state: dict[str, Any]) -> None:
        import neptune

        self.__dict__ = state
        self._run_instance = neptune.init_run(**self._neptune_init_args)

    @property
    @rank_zero_experiment
    def experiment(self) -> "Run":
        r"""Actual Neptune run object. Allows you to use neptune logging features in your
        :class:`~lightning.pytorch.core.LightningModule`.

        Example::

            class LitModel(LightningModule):
                def training_step(self, batch, batch_idx):
                    # log metrics
                    acc = ...
                    self.logger.experiment["train/acc"].append(acc)

                    # log images
                    img = ...
                    self.logger.experiment["train/misclassified_images"].append(File.as_image(img))

        Note that the syntax ``self.logger.experiment["your/metadata/structure"].append(metadata)``
        is specific to Neptune and extends the logger capabilities.
        It lets you log various types of metadata, such as scores, files,
        images, interactive visuals, and CSVs. Refer to the
        `Neptune docs <https://docs.neptune.ai/logging/methods>`_
        for more detailed explanations.
        You can also use the regular logger methods ``log_metrics()``, and ``log_hyperparams()``
        with NeptuneLogger.

        """
        return self.run

    @property
    @rank_zero_experiment
    def run(self) -> "Run":
        import neptune

        if not self._run_instance:
            self._run_instance = neptune.init_run(**self._neptune_init_args)
            self._retrieve_run_data()
            # make sure that we've log integration version for newly created
            self._run_instance[_INTEGRATION_VERSION_KEY] = pl.__version__

        return self._run_instance

    @override
    @rank_zero_only
    @_catch_inactive
    def log_hyperparams(self, params: Union[dict[str, Any], Namespace]) -> None:
        r"""Log hyperparameters to the run.

        Hyperparameters will be logged under the "<prefix>/hyperparams" namespace.

        Note:

            You can also log parameters by directly using the logger instance:
            ``neptune_logger.experiment["model/hyper-parameters"] = params_dict``.

            In this way you can keep hierarchical structure of the parameters.

        Args:
            params: `dict`.
                Python dictionary structure with parameters.

        Example::

            from lightning.pytorch.loggers import NeptuneLogger
            import neptune

            PARAMS = {
                "batch_size": 64,
                "lr": 0.07,
                "decay_factor": 0.97,
            }

            neptune_logger = NeptuneLogger(
                api_key=neptune.ANONYMOUS_API_TOKEN,
                project="common/pytorch-lightning-integration"
            )

            neptune_logger.log_hyperparams(PARAMS)

        """
        from neptune.utils import stringify_unsupported

        params = _convert_params(params)
        params = _sanitize_callable_params(params)

        parameters_key = self.PARAMETERS_KEY
        parameters_key = self._construct_path_with_prefix(parameters_key)

        self.run[parameters_key] = stringify_unsupported(params)

    @override
    @rank_zero_only
    @_catch_inactive
    def log_metrics(self, metrics: dict[str, Union[Tensor, float]], step: Optional[int] = None) -> None:
        """Log metrics (numeric values) in Neptune runs.

        Args:
            metrics: Dictionary with metric names as keys and measured quantities as values.
            step: Step number at which the metrics should be recorded

        """
        if rank_zero_only.rank != 0:
            raise ValueError("run tried to log from global_rank != 0")

        metrics = _add_prefix(metrics, self._prefix, self.LOGGER_JOIN_CHAR)

        for key, val in metrics.items():
            self.run[key].append(val, step=step)

    @override
    @rank_zero_only
    @_catch_inactive
    def finalize(self, status: str) -> None:
        if not self._run_instance:
            # When using multiprocessing, finalize() should be a no-op on the main process, as no experiment has been
            # initialized there
            return
        if status:
            self.run[self._construct_path_with_prefix("status")] = status

        super().finalize(status)

    @property
    @override
    def save_dir(self) -> Optional[str]:
        """Gets the save directory of the experiment which in this case is ``None`` because Neptune does not save
        locally.

        Returns:
            the root directory where experiment logs get saved

        """
        return os.path.join(os.getcwd(), ".neptune")

    @rank_zero_only
    @_catch_inactive
    def log_model_summary(self, model: "pl.LightningModule", max_depth: int = -1) -> None:
        from neptune.types import File

        model_str = str(ModelSummary(model=model, max_depth=max_depth))
        self.run[self._construct_path_with_prefix("model/summary")] = File.from_content(
            content=model_str, extension="txt"
        )

    @override
    @rank_zero_only
    @_catch_inactive
    def after_save_checkpoint(self, checkpoint_callback: Checkpoint) -> None:
        """Automatically log checkpointed model. Called after model checkpoint callback saves a new checkpoint.

        Args:
            checkpoint_callback: the model checkpoint callback instance

        """
        if not self._log_model_checkpoints:
            return

        file_names = set()
        checkpoints_namespace = self._construct_path_with_prefix("model/checkpoints")

        # save last model
        if hasattr(checkpoint_callback, "last_model_path") and checkpoint_callback.last_model_path:
            model_last_name = self._get_full_model_name(checkpoint_callback.last_model_path, checkpoint_callback)
            file_names.add(model_last_name)
            self.run[f"{checkpoints_namespace}/{model_last_name}"].upload(checkpoint_callback.last_model_path)

        # save best k models
        if hasattr(checkpoint_callback, "best_k_models"):
            for key in checkpoint_callback.best_k_models:
                model_name = self._get_full_model_name(key, checkpoint_callback)
                file_names.add(model_name)
                self.run[f"{checkpoints_namespace}/{model_name}"].upload(key)

        # log best model path and checkpoint
        if hasattr(checkpoint_callback, "best_model_path") and checkpoint_callback.best_model_path:
            self.run[self._construct_path_with_prefix("model/best_model_path")] = checkpoint_callback.best_model_path

            model_name = self._get_full_model_name(checkpoint_callback.best_model_path, checkpoint_callback)
            file_names.add(model_name)
            self.run[f"{checkpoints_namespace}/{model_name}"].upload(checkpoint_callback.best_model_path)

        # remove old models logged to experiment if they are not part of best k models at this point
        if self.run.exists(checkpoints_namespace):
            exp_structure = self.run.get_structure()
            uploaded_model_names = self._get_full_model_names_from_exp_structure(exp_structure, checkpoints_namespace)

            for file_to_drop in list(uploaded_model_names - file_names):
                del self.run[f"{checkpoints_namespace}/{file_to_drop}"]

        # log best model score
        if hasattr(checkpoint_callback, "best_model_score") and checkpoint_callback.best_model_score:
            self.run[self._construct_path_with_prefix("model/best_model_score")] = (
                checkpoint_callback.best_model_score.cpu().detach().numpy()
            )

    @staticmethod
    def _get_full_model_name(model_path: str, checkpoint_callback: Checkpoint) -> str:
        """Returns model name which is string `model_path` appended to `checkpoint_callback.dirpath`."""
        if hasattr(checkpoint_callback, "dirpath"):
            model_path = os.path.normpath(model_path)
            expected_model_path = os.path.normpath(checkpoint_callback.dirpath)
            if not model_path.startswith(expected_model_path):
                raise ValueError(f"{model_path} was expected to start with {expected_model_path}.")
            # Remove extension from filepath
            filepath, _ = os.path.splitext(model_path[len(expected_model_path) + 1 :])
            return filepath.replace(os.sep, "/")
        return model_path.replace(os.sep, "/")

    @classmethod
    def _get_full_model_names_from_exp_structure(cls, exp_structure: dict[str, Any], namespace: str) -> set[str]:
        """Returns all paths to properties which were already logged in `namespace`"""
        structure_keys: list[str] = namespace.split(cls.LOGGER_JOIN_CHAR)
        for key in structure_keys:
            exp_structure = exp_structure[key]
        uploaded_models_dict = exp_structure
        return set(cls._dict_paths(uploaded_models_dict))

    @classmethod
    def _dict_paths(cls, d: dict[str, Any], path_in_build: Optional[str] = None) -> Generator:
        for k, v in d.items():
            path = f"{path_in_build}/{k}" if path_in_build is not None else k
            if not isinstance(v, dict):
                yield path
            else:
                yield from cls._dict_paths(v, path)

    @property
    @override
    def name(self) -> Optional[str]:
        """Return the experiment name or 'offline-name' when exp is run in offline mode."""
        return self._run_name

    @property
    @override
    def version(self) -> Optional[str]:
        """Return the experiment version.

        It's Neptune Run's short_id

        """
        return self._run_short_id