File size: 27,525 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from https://github.com/mosaicml/composer/blob/f2a2dc820/composer/callbacks/speed_monitor.py
from collections import deque
from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union
import torch
from typing_extensions import override
from lightning.fabric.utilities.rank_zero import rank_zero_only, rank_zero_warn
if TYPE_CHECKING:
from lightning.fabric import Fabric
from lightning.fabric.plugins import Precision
_THROUGHPUT_METRICS = dict[str, Union[int, float]]
# The API design of this class follows `torchmetrics.Metric` but it doesn't need to be an actual Metric because there's
# no need for synchronization or reduction as it doesn't use Tensors at all.
class Throughput:
"""Computes throughput.
+------------------------+-------------------------------------------------------------------------------------+
| Key | Value |
+========================+=====================================================================================+
| batches_per_sec | Rolling average (over ``window_size`` most recent updates) of the number of batches |
| | processed per second |
+--------------------------+-----------------------------------------------------------------------------------+
| samples_per_sec | Rolling average (over ``window_size`` most recent updates) of the number of samples |
| | processed per second |
+--------------------------+-----------------------------------------------------------------------------------+
| items_per_sec | Rolling average (over ``window_size`` most recent updates) of the number of items |
| | processed per second |
+--------------------------+-----------------------------------------------------------------------------------+
| flpps_per_sec | Rolling average (over ``window_size`` most recent updates) of the number of flops |
| | processed per second |
+--------------------------+-----------------------------------------------------------------------------------+
| device/batches_per_sec | batches_per_sec divided by world size |
+--------------------------+-----------------------------------------------------------------------------------+
| device/samples_per_sec | samples_per_sec divided by world size |
+--------------------------+-----------------------------------------------------------------------------------+
| device/items_per_sec | items_per_sec divided by world size. This may include padding depending on the data |
+--------------------------+-----------------------------------------------------------------------------------+
| device/flops_per_sec | flops_per_sec divided by world size. |
+--------------------------+-----------------------------------------------------------------------------------+
| device/mfu | device/flops_per_sec divided by world size. |
+--------------------------+-----------------------------------------------------------------------------------+
| time | Total elapsed time |
+--------------------------+-----------------------------------------------------------------------------------+
| batches | Total batches seen |
+--------------------------+-----------------------------------------------------------------------------------+
| samples | Total samples seen |
+--------------------------+-----------------------------------------------------------------------------------+
| lengths | Total items seen |
+--------------------------+-----------------------------------------------------------------------------------+
Example::
throughput = Throughput()
t0 = time()
for i in range(1000):
do_work()
if torch.cuda.is_available(): torch.cuda.synchronize() # required or else time() won't be correct
throughput.update(time=time() - t0, samples=i)
if i % 10 == 0:
print(throughput.compute())
Notes:
- The implementation assumes that devices FLOPs are all the same as it normalizes by the world size and only
takes a single ``available_flops`` value.
- items_per_sec, flops_per_sec and MFU do not account for padding if present. We suggest using
samples_per_sec or batches_per_sec to measure throughput under this circumstance.
Args:
available_flops: Number of theoretical flops available for a single device.
world_size: Number of devices available across hosts. Global metrics are not included if the world size is 1.
window_size: Number of batches to use for a rolling average.
separator: Key separator to use when creating per-device and global metrics.
"""
def __init__(
self, available_flops: Optional[float] = None, world_size: int = 1, window_size: int = 100, separator: str = "/"
) -> None:
self.available_flops = available_flops
self.separator = separator
assert world_size > 0
self.world_size = world_size
# throughput is computed over a window of values. at least 2 is enforced since it looks at the difference
# between the first and last elements
assert window_size > 1
# custom class instead of `deque(maxlen=)` because it's easy for users to mess up their timer/counters and log
# values that do not increase monotonically. this class will raise an error if that happens.
self._time: _MonotonicWindow[float] = _MonotonicWindow(maxlen=window_size)
self._batches: _MonotonicWindow[int] = _MonotonicWindow(maxlen=window_size)
self._samples: _MonotonicWindow[int] = _MonotonicWindow(maxlen=window_size)
self._lengths: _MonotonicWindow[int] = _MonotonicWindow(maxlen=window_size)
self._flops: deque[int] = deque(maxlen=window_size)
def update(
self,
*,
time: float,
batches: int,
samples: int,
lengths: Optional[int] = None,
flops: Optional[int] = None,
) -> None:
"""Update throughput metrics.
Args:
time: Total elapsed time in seconds. It should monotonically increase by the iteration time with each
call.
batches: Total batches seen per device. It should monotonically increase with each call.
samples: Total samples seen per device. It should monotonically increase by the batch size with each call.
lengths: Total length of the samples seen. It should monotonically increase by the lengths of a batch with
each call.
flops: Flops elapased per device since last ``update()`` call. You can easily compute this by using
:func:`measure_flops` and multiplying it by the number of batches that have been processed.
The value might be different in each device if the batch size is not the same.
"""
self._time.append(time)
if samples < batches:
raise ValueError(f"Expected samples ({samples}) to be greater or equal than batches ({batches})")
self._batches.append(batches)
self._samples.append(samples)
if lengths is not None:
if lengths < samples:
raise ValueError(f"Expected lengths ({lengths}) to be greater or equal than samples ({samples})")
self._lengths.append(lengths)
if len(self._samples) != len(self._lengths):
raise RuntimeError(
f"If lengths are passed ({len(self._lengths)}), there needs to be the same number of samples"
f" ({len(self._samples)})"
)
if flops is not None:
# sum of flops across ranks
self._flops.append(flops * self.world_size)
def compute(self) -> _THROUGHPUT_METRICS:
"""Compute throughput metrics."""
metrics = {
"time": self._time[-1],
"batches": self._batches[-1],
"samples": self._samples[-1],
}
if self._lengths:
metrics["lengths"] = self._lengths[-1]
add_global_metrics = self.world_size > 1
# a different but valid design choice would be to still compute all these metrics even if the window of values
# has not been filled
if len(self._time) == self._time.maxlen:
elapsed_time = self._time[-1] - self._time[0]
elapsed_batches = self._batches[-1] - self._batches[0]
elapsed_samples = self._samples[-1] - self._samples[0]
# we are safe from ZeroDivisionError thanks to `_MonotonicWindow`
dev_samples_per_sec = elapsed_samples / elapsed_time
dev_batches_per_sec = elapsed_batches / elapsed_time
metrics.update({
f"device{self.separator}batches_per_sec": elapsed_batches / elapsed_time,
f"device{self.separator}samples_per_sec": dev_samples_per_sec,
})
if add_global_metrics:
samples_per_sec = dev_batches_per_sec * self.world_size
metrics.update({
"batches_per_sec": samples_per_sec,
"samples_per_sec": dev_samples_per_sec * self.world_size,
})
if len(self._lengths) == self._lengths.maxlen:
elapsed_lengths = self._lengths[-1] - self._lengths[0]
dev_items_per_sec = elapsed_lengths / elapsed_time
metrics[f"device{self.separator}items_per_sec"] = dev_items_per_sec
if add_global_metrics:
items_per_sec = dev_items_per_sec * self.world_size
metrics["items_per_sec"] = items_per_sec
if len(self._flops) == self._flops.maxlen:
elapsed_flops = sum(self._flops) - self._flops[0]
elapsed_time = self._time[-1] - self._time[0]
flops_per_sec = elapsed_flops / elapsed_time
dev_flops_per_sec = flops_per_sec / self.world_size
if add_global_metrics:
metrics["flops_per_sec"] = flops_per_sec
metrics[f"device{self.separator}flops_per_sec"] = dev_flops_per_sec
if self.available_flops:
metrics[f"device{self.separator}mfu"] = dev_flops_per_sec / self.available_flops
return metrics
def reset(self) -> None:
self._time.clear()
self._batches.clear()
self._samples.clear()
self._lengths.clear()
self._flops.clear()
class ThroughputMonitor(Throughput):
r"""Computes throughput.
This class will automatically keep a count of the number of log calls (``step``). But that can be modified as
desired. For manual logging, using :class:`Throughput` directly might be desired.
Example::
logger = ...
fabric = Fabric(logger=logger)
throughput = ThroughputMonitor(fabric)
t0 = time()
for i in range(1, 100):
do_work()
if torch.cuda.is_available(): torch.cuda.synchronize() # required or else time() won't be correct
throughput.update(time=time() - t0, batches=i, samples=i)
if i % 10 == 0:
throughput.compute_and_log(step=i)
Args:
fabric: The Fabric object.
\**kwargs: See available parameters in :class:`Throughput`
"""
def __init__(self, fabric: "Fabric", **kwargs: Any) -> None:
fabric._validate_launched() # otherwise world_size might be incorrect
dtype = _plugin_to_compute_dtype(fabric.strategy.precision)
available_flops = get_available_flops(fabric.device, dtype)
super().__init__(available_flops=available_flops, world_size=fabric.world_size, **kwargs)
self._fabric = fabric
self.step = -1
self.update = rank_zero_only(self.update) # type: ignore[method-assign]
self.compute = rank_zero_only(self.compute, default={}) # type: ignore[method-assign]
self.compute_and_log = rank_zero_only(self.compute_and_log, default={}) # type: ignore[method-assign]
self.reset = rank_zero_only(self.reset) # type: ignore[method-assign]
def compute_and_log(self, step: Optional[int] = None, **kwargs: Any) -> _THROUGHPUT_METRICS:
r"""See :meth:`Throughput.compute`
Args:
step: Can be used to override the logging step.
\**kwargs: See available parameters in :meth:`Throughput.compute`
"""
self.step = (self.step + 1) if step is None else step
metrics = self.compute(**kwargs)
self._fabric.log_dict(metrics=metrics, step=self.step)
return metrics
def measure_flops(
model: torch.nn.Module,
forward_fn: Callable[[], torch.Tensor],
loss_fn: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
) -> int:
"""Utility to compute the total number of FLOPs used by a module during training or during inference.
It's recommended to create a meta-device model for this:
Example::
with torch.device("meta"):
model = MyModel()
x = torch.randn(2, 32)
model_fwd = lambda: model(x)
fwd_flops = measure_flops(model, model_fwd)
model_loss = lambda y: y.sum()
fwd_and_bwd_flops = measure_flops(model, model_fwd, model_loss)
Args:
model: The model whose FLOPs should be measured.
forward_fn: A function that runs ``forward`` on the model and returns the result.
loss_fn: A function that computes the loss given the ``forward_fn`` output. If provided, the loss and `backward`
FLOPs will be included in the result.
"""
from torch.utils.flop_counter import FlopCounterMode
flop_counter = FlopCounterMode(display=False)
with flop_counter:
if loss_fn is None:
forward_fn()
else:
loss_fn(forward_fn()).backward()
return flop_counter.get_total_flops()
_CUDA_FLOPS: dict[str, dict[Union[str, torch.dtype], float]] = {
# Hopper
# source: https://resources.nvidia.com/en-us-tensor-core
"h100 nvl": {
torch.float64: 67e12,
torch.float32: 133.8e12,
"tfloat32": 989.4e12,
torch.bfloat16: 1978.8e12,
torch.float16: 1978.8e12,
torch.int8: 3957.8e12,
},
"h100 sxm": {
torch.float64: 33.5e12,
torch.float32: 66.9e12,
"tfloat32": 494.7e12,
torch.bfloat16: 989.4e12,
torch.float16: 989.4e12,
torch.int8: 1978.9e12,
},
"h100 pcie": {
torch.float64: 25.6e12,
torch.float32: 51.2e12,
"tfloat32": 378e12,
torch.bfloat16: 756e12,
torch.float16: 756e12,
torch.int8: 1513e12,
},
# Ada
# source: https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf
"rtx 4090": {
torch.float32: 82.6e12,
"tfloat32": 82.6e12,
torch.bfloat16: 82.6e12,
torch.float16: 82.6e12,
torch.int8: 660.6e12,
"int4": 1321.2e12,
},
"rtx 4080": {
torch.float32: 48.7e12,
"tfloat32": 48.7e12,
torch.bfloat16: 48.7e12,
torch.float16: 48.7e12,
torch.int8: 389.9e12,
"int4": 779.8e12,
},
"rtx 4080 super": {
torch.float32: 52.2e12,
"tfloat32": 52.2e12,
torch.bfloat16: 52.2e12,
torch.float16: 52.2e12,
torch.int8: 417.6e12,
"int4": 835.2e12,
},
"l4": {
torch.float32: 30.3e12,
"tfloat32": 60e12,
torch.bfloat16: 121e12,
torch.float16: 121e12,
torch.int8: 242e12,
"int4": 484e12,
},
"l40": {
torch.float32: 90.5e12,
"tfloat32": 90.5e12,
torch.bfloat16: 181e12,
torch.float16: 181e12,
torch.int8: 362e12,
"int4": 724e12,
},
# Ampere
# source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
# sxm and pcie have same flop counts
"a100": {
torch.float64: 9.7e12,
torch.float32: 19.5e12,
"tfloat32": 156e12,
torch.bfloat16: 312e12,
torch.float16: 312e12,
torch.int8: 624e12,
},
"a6000": {
torch.float32: 38.7e12,
"tfloat32": 77.4e12,
torch.bfloat16: 38.7e12,
torch.float16: 38.7e12,
torch.int8: 309.7e12,
"int4": 619.3e12,
},
"a40": {
torch.float32: 37.4e12,
"tfloat32": 74.8e12,
torch.bfloat16: 37.4e12,
torch.float16: 37.4e12,
torch.int8: 299.3e12,
"int4": 598.7e12,
},
# source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/a10-datasheet.pdf
"a10g": {
torch.float32: 31.2e12,
"tfloat32": 62.5e12,
torch.bfloat16: 125e12,
torch.float16: 125e12,
torch.int8: 250e12,
"int4": 500e12,
},
"rtx 3090 ti": {
torch.float32: 40e12,
"tfloat32": 40e12,
torch.bfloat16: 40e12,
torch.float16: 40e12,
torch.int8: 320e12,
"int4": 640e12,
},
"rtx 3090": {
torch.float32: 35.6e12,
"tfloat32": 35.6e12,
torch.bfloat16: 35.6e12,
torch.float16: 35.6e12,
torch.int8: 284e12,
"int4": 568e12,
},
"rtx 3080 ti": {
torch.float32: 34.1e12,
"tfloat32": 34.1e12,
torch.bfloat16: 34.1e12,
torch.float16: 34.1e12,
torch.int8: 272.8e12,
"int4": 546.6e12,
},
"rtx 3080": {
torch.float32: 29.8e12,
"tfloat32": 29.8e12,
torch.bfloat16: 29.8e12,
torch.float16: 29.8e12,
torch.int8: 238e12,
"int4": 476e12,
},
"rtx 3070": {
torch.float32: 20.3e12,
"tfloat32": 20.3e12,
torch.bfloat16: 20.3e12,
torch.float16: 20.3e12,
torch.int8: 162.6e12,
"int4": 325.2e12,
},
# Turing
# source: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
# sxm and pcie have same flop counts
"t4": {
torch.float32: 8.1e12,
torch.float16: 65e12,
torch.int8: 130e12,
"int4": 260e12,
},
# https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-5000-data-sheet-us-nvidia-704120-r4-web.pdf
"quadro rtx 5000": {
torch.float32: 11.2e12,
torch.float16: 89.2e12,
},
"rtx 2080 super": {
torch.float32: 11.2e12,
torch.float16: 22.3e12,
torch.int8: 178.4e12,
"int4": 356.8e12,
},
"rtx 2080 ti": {
torch.float32: 14.2e12,
torch.float16: 28.5e12,
torch.int8: 227.7e12,
"int4": 455.4e12,
},
"rtx 2080": {
torch.float32: 10.6e12,
torch.float16: 21.2e12,
torch.int8: 169.6e12,
"int4": 339.1e12,
},
# https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
"rtx 2070 super": {
torch.float32: 9.1e12,
torch.float16: 18.1e12,
torch.int8: 145e12,
"int4": 290e12,
},
"titan rtx": {
torch.float32: 16.3e12,
torch.float16: 32.6e12,
torch.int8: 261e12,
"int4": 522e12,
},
# Volta
# source: https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
"v100 sxm": {
torch.float64: 7.8e12,
torch.float32: 15.7e12,
torch.float16: 125e12,
},
"v100 pcie": {
torch.float64: 7e12,
torch.float32: 14e12,
torch.float16: 112e12,
},
"v100s pcie": {
torch.float64: 8.2e12,
torch.float32: 16.4e12,
torch.float16: 130e12,
},
}
_TPU_FLOPS = {
# flop count for each TPU generation is the same for all precisions
# since bfloat16 precision is always used for performing matrix operations
# for more info: https://cloud.google.com/tpu/docs/bfloat16#choosing_bfloat16
# source: https://arxiv.org/pdf/1907.10701.pdf
"v2": 45e12,
# source: https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v3
"v3": 123e12,
# source: https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4
"v4": 275e12,
# source: https://cloud.google.com/tpu/docs/v5e-training
"v5litepod": 197e12,
}
def get_available_flops(device: torch.device, dtype: Union[torch.dtype, str]) -> Optional[int]:
"""Returns the available theoretical FLOPs.
This is an optimistic upper limit that could only be achievable if only thick matmuls were run in a benchmark
environment.
"""
if device.type == "cuda":
device_name = torch.cuda.get_device_name(device)
chip = device_name.lower()
if "h100" in chip:
if "hbm3" in chip:
chip = "h100 sxm"
elif "nvl" in chip:
chip = "h100 nvl"
elif "pcie" in chip or "hbm2e" in chip:
chip = "h100 pcie"
elif "l4" in chip:
chip = "l40" if "tesla" in chip else "l4"
elif "geforce rtx" in chip:
number = chip.split(" ")[3]
extra = ""
if "super" in chip:
extra = " super"
elif "ti" in chip:
extra = " ti"
chip = f"rtx {number}{extra}"
elif "a6000" in chip:
chip = "a6000"
elif "a100" in chip:
chip = "a100"
elif "a40" in chip:
chip = "a40"
elif "a10g" in chip:
chip = "a10g"
elif "t4" in chip:
chip = "t4"
elif "quadro rtx 5000" in chip:
chip = "quadro rtx 5000"
elif "titan rtx" in chip:
chip = "titan rtx"
elif "v100-sxm" in chip:
chip = "v100 sxm"
elif "v100-pcie" in chip:
chip = "v100 pcie"
elif "v100s-pcie" in chip:
chip = "v100s pcie"
else:
# the flops list is not exhaustive, return with a warning
rank_zero_warn(f"FLOPs not found for {device_name!r}")
return None
if chip not in _CUDA_FLOPS:
# parsing is implemented but we don't have the stats
rank_zero_warn(f"FLOPs not found for {device_name!r}, chip is {chip!r}")
return None
dtype_to_flops = _CUDA_FLOPS[chip]
if dtype is torch.float32:
from lightning.fabric.accelerators.cuda import _is_ampere_or_later
if _is_ampere_or_later() and torch.get_float32_matmul_precision() != "highest":
dtype = "tfloat32"
if dtype not in dtype_to_flops:
# for example, T4 doesn't support bfloat16. it might also be that we are missing this dtype from the list
rank_zero_warn(f"{device_name!r} does not support {dtype}")
return None
return int(dtype_to_flops[dtype])
if device.type == "xla":
from lightning.fabric.accelerators.xla import _XLA_GREATER_EQUAL_2_1
if _XLA_GREATER_EQUAL_2_1:
from torch_xla._internal import tpu
else:
from torch_xla.experimental import tpu
tpu_env = tpu.get_tpu_env()
# not all TPU generations define the "TYPE" envar. example: TYPE="V4", ACCELERATOR_TYPE="v4-8"
device_name = tpu_env.get("TYPE") or tpu_env["ACCELERATOR_TYPE"].split("-")[0]
chip = device_name.lower()
assert isinstance(device_name, str)
if chip not in _TPU_FLOPS:
rank_zero_warn(f"FLOPs not found for TPU {device_name!r} with {dtype}")
return None
return int(_TPU_FLOPS[chip])
def _plugin_to_compute_dtype(plugin: "Precision") -> torch.dtype:
# TODO: integrate this into the precision plugins
from lightning.fabric.plugins import (
BitsandbytesPrecision,
DeepSpeedPrecision,
DoublePrecision,
FSDPPrecision,
HalfPrecision,
MixedPrecision,
Precision,
TransformerEnginePrecision,
XLAPrecision,
)
if not isinstance(plugin, Precision):
raise RuntimeError(f"Expected a precision plugin, got {plugin}")
if isinstance(plugin, BitsandbytesPrecision):
return plugin.dtype
if isinstance(plugin, (HalfPrecision, MixedPrecision)):
return plugin._desired_input_dtype
if isinstance(plugin, DoublePrecision):
return torch.double
if isinstance(plugin, (XLAPrecision, DeepSpeedPrecision)):
return plugin._desired_dtype
if isinstance(plugin, TransformerEnginePrecision):
return torch.int8
if isinstance(plugin, FSDPPrecision):
return plugin.mixed_precision_config.reduce_dtype or torch.float32
if isinstance(plugin, Precision):
return torch.float32
raise NotImplementedError(plugin)
T = TypeVar("T", bound=float)
class _MonotonicWindow(list[T]):
"""Custom fixed size list that only supports right-append and ensures that all values increase monotonically."""
def __init__(self, maxlen: int) -> None:
super().__init__()
self.maxlen = maxlen
@property
def last(self) -> Optional[T]:
if len(self) > 0:
return self[-1]
return None
@override
def append(self, x: T) -> None:
last = self.last
if last is not None and last >= x:
raise ValueError(f"Expected the value to increase, last: {last}, current: {x}")
list.append(self, x)
# truncate excess
if len(self) > self.maxlen:
del self[0]
@override
def __setitem__(self, key: Any, value: Any) -> None:
# assigning is not implemented since we don't use it. it could be by checking all previous values
raise NotImplementedError("__setitem__ is not supported")
|