File size: 5,002 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import queue
import time
from typing import TYPE_CHECKING, Any, Callable, Optional, Union

import torch.multiprocessing as mp
from typing_extensions import override

from lightning.fabric.accelerators.xla import _XLA_AVAILABLE
from lightning.fabric.strategies.launchers.launcher import _Launcher
from lightning.fabric.strategies.launchers.multiprocessing import _GlobalStateSnapshot
from lightning.fabric.utilities.apply_func import move_data_to_device

if TYPE_CHECKING:
    from lightning.fabric.strategies import XLAFSDPStrategy, XLAStrategy


class _XLALauncher(_Launcher):
    r"""Launches processes that run a given function in parallel on XLA supported hardware, and joins them all at the
    end.

    The main process in which this launcher is invoked creates N so-called worker processes (using the
    `torch_xla` :func:`xmp.spawn`) that run the given function.
    Worker processes have a rank that ranges from 0 to N - 1.

    Note:
        - This launcher requires all objects to be pickleable.
        - It is important that the entry point to the program/script is guarded by ``if __name__ == "__main__"``.

    Args:
        strategy: A reference to the strategy that is used together with this launcher

    """

    def __init__(self, strategy: Union["XLAStrategy", "XLAFSDPStrategy"]) -> None:
        if not _XLA_AVAILABLE:
            raise ModuleNotFoundError(str(_XLA_AVAILABLE))
        self._strategy = strategy
        self._start_method = "fork"

    @property
    @override
    def is_interactive_compatible(self) -> bool:
        return True

    @override
    def launch(self, function: Callable, *args: Any, **kwargs: Any) -> Any:
        """Launches processes that run the given function in parallel.

        The function is allowed to have a return value. However, when all processes join, only the return value
        of worker process 0 gets returned from this `launch` method in the main process.

        Arguments:
            function: The entry point for all launched processes.
            *args: Optional positional arguments to be passed to the given function.
            **kwargs: Optional keyword arguments to be passed to the given function.

        """
        return_queue: Union[queue.Queue, mp.SimpleQueue]
        return_queue = mp.Manager().Queue()

        import torch_xla.distributed.xla_multiprocessing as xmp

        spawn_kwargs = {}
        nprocs = self._strategy.num_processes
        if nprocs == 1:
            # avoid warning: "Unsupported nprocs". If it's 1, it will call the launched function directly.
            # otherwise it will use all devices
            spawn_kwargs["nprocs"] = nprocs

        xmp.spawn(
            self._wrapping_function,
            args=(function, args, kwargs, return_queue),
            start_method=self._start_method,
            **spawn_kwargs,
        )
        return return_queue.get()

    def _wrapping_function(
        self,
        # XLA's multiprocessing returns the global index, not the local index as torch's multiprocessing
        # https://github.com/pytorch/xla/blob/v1.13.0/torch_xla/distributed/xla_multiprocessing.py#L321
        process_idx: int,
        function: Callable,
        args: Any,
        kwargs: Any,
        return_queue: Union[mp.SimpleQueue, queue.Queue],
        global_states: Optional[_GlobalStateSnapshot] = None,
    ) -> None:
        import torch_xla.core.xla_model as xm

        if len(xm.get_xla_supported_devices()) > 1:
            # `get_xla_supported_devices` in the spawned process returns the logical devices (2 for v2/v3 and 1 for v4)
            # so when there's more than one (multithreading), objects need to be deep-copied
            import copy

            function, args, kwargs = copy.deepcopy((function, args, kwargs))

        results = function(*args, **kwargs)

        if self._strategy.local_rank == 0:
            return_queue.put(move_data_to_device(results, "cpu"))

        _rank_teardown(self._strategy.local_rank)


def _rank_teardown(rank: int) -> None:
    import torch_xla.core.xla_model as xm

    # Make all processes wait for each other before joining
    # https://github.com/pytorch/xla/issues/1801#issuecomment-602799542
    xm.rendezvous("end-process")
    # Ensure that the rank 0 process is the one exiting last
    # https://github.com/pytorch/xla/issues/2190#issuecomment-641665358
    if rank == 0:
        time.sleep(1)