File size: 1,963 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import AbstractContextManager
from typing import Any, Literal

import torch
from lightning_utilities.core.apply_func import apply_to_collection
from torch import Tensor
from torch.nn import Module
from typing_extensions import override

from lightning.fabric.plugins.precision.precision import Precision
from lightning.fabric.plugins.precision.utils import _convert_fp_tensor, _DtypeContextManager


class DoublePrecision(Precision):
    """Plugin for training with double (``torch.float64``) precision."""

    precision: Literal["64-true"] = "64-true"

    @override
    def convert_module(self, module: Module) -> Module:
        return module.double()

    @override
    def tensor_init_context(self) -> AbstractContextManager:
        return _DtypeContextManager(torch.double)

    @override
    def module_init_context(self) -> AbstractContextManager:
        return self.tensor_init_context()

    @override
    def forward_context(self) -> AbstractContextManager:
        return self.tensor_init_context()

    @override
    def convert_input(self, data: Any) -> Any:
        return apply_to_collection(data, function=_convert_fp_tensor, dtype=Tensor, dst_type=torch.double)

    @override
    def convert_output(self, data: Any) -> Any:
        return apply_to_collection(data, function=_convert_fp_tensor, dtype=Tensor, dst_type=torch.get_default_dtype())