File size: 5,813 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import glob
import os.path
from importlib.util import module_from_spec, spec_from_file_location
from pathlib import Path
from types import ModuleType
from typing import Any
from setuptools import find_namespace_packages
_PROJECT_ROOT = "."
_SOURCE_ROOT = os.path.join(_PROJECT_ROOT, "src")
_PACKAGE_ROOT = os.path.join(_SOURCE_ROOT, "lightning")
_PATH_REQUIREMENTS = os.path.join(_PROJECT_ROOT, "requirements")
_FREEZE_REQUIREMENTS = os.environ.get("FREEZE_REQUIREMENTS", "0").lower() in ("1", "true")
def _load_py_module(name: str, location: str) -> ModuleType:
spec = spec_from_file_location(name, location)
assert spec, f"Failed to load module {name} from {location}"
py = module_from_spec(spec)
assert spec.loader, f"ModuleSpec.loader is None for {name} from {location}"
spec.loader.exec_module(py)
return py
_ASSISTANT = _load_py_module(name="assistant", location=os.path.join(_PROJECT_ROOT, ".actions", "assistant.py"))
def _prepare_extras() -> dict[str, Any]:
# https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras
# Define package extras. These are only installed if you specify them.
# From remote, use like `pip install "lightning[dev, docs]"`
# From local copy of repo, use like `pip install ".[dev, docs]"`
req_files = [Path(p) for p in glob.glob(os.path.join(_PATH_REQUIREMENTS, "*", "*.txt"))]
common_args = {"unfreeze": "none" if _FREEZE_REQUIREMENTS else "major"}
# per-project extras
extras = {
f"{p.parent.name}-{p.stem}": _ASSISTANT.load_requirements(file_name=p.name, path_dir=p.parent, **common_args)
for p in req_files
if p.name not in ("docs.txt", "base.txt") and not p.parent.name.startswith("_")
}
# project specific extras groups
extras["fabric-all"] = extras["fabric-strategies"] + extras["fabric-examples"]
extras["fabric-dev"] = extras["fabric-all"] + extras["fabric-test"]
extras["pytorch-all"] = extras["pytorch-extra"] + extras["pytorch-strategies"] + extras["pytorch-examples"]
extras["pytorch-dev"] = extras["pytorch-all"] + extras["pytorch-test"]
# merge per-project extras of the same category
for extra in list(extras):
name = "-".join(extra.split("-")[1:])
extras[name] = extras.get(name, []) + extras[extra]
# drop quasi base the req. file has the same name sub-package
for k in list(extras.keys()):
kk = k.split("-")
if not (len(kk) == 2 and kk[0] == kk[1]):
continue
extras[kk[0]] = list(extras[k])
del extras[k]
extras = {name: sorted(set(reqs)) for name, reqs in extras.items()}
print("The extras are: ", extras)
return extras
def _setup_args() -> dict[str, Any]:
about = _load_py_module("about", os.path.join(_PACKAGE_ROOT, "__about__.py"))
version = _load_py_module("version", os.path.join(_PACKAGE_ROOT, "__version__.py"))
long_description = _ASSISTANT.load_readme_description(
_PROJECT_ROOT, homepage=about.__homepage__, version=version.version
)
# TODO: consider invaliding some additional arguments from packages, for example if include data or safe to zip
install_requires = _ASSISTANT.load_requirements(
_PATH_REQUIREMENTS, unfreeze="none" if _FREEZE_REQUIREMENTS else "major"
)
# toto: remove when we realize that this is making confusion as cross pkg import is not fully compatible
install_requires += ["pytorch-lightning"]
return {
"name": "lightning",
"version": version.version,
"description": about.__docs__,
"author": about.__author__,
"author_email": about.__author_email__,
"url": about.__homepage__,
"download_url": "https://github.com/Lightning-AI/lightning",
"license": about.__license__,
"packages": find_namespace_packages(where="src", include=["lightning", "lightning.*"]),
"package_dir": {"": "src"},
"long_description": long_description,
"long_description_content_type": "text/markdown",
"include_package_data": True,
"zip_safe": False,
"keywords": ["deep learning", "pytorch", "AI"],
"python_requires": ">=3.9",
"entry_points": {
"console_scripts": [
"fabric = lightning.fabric.cli:_main",
],
},
"setup_requires": [],
"install_requires": install_requires,
"extras_require": _prepare_extras(),
"project_urls": {
"Bug Tracker": "https://github.com/Lightning-AI/pytorch-lightning/issues",
"Documentation": "https://lightning.ai/lightning-docs",
"Source Code": "https://github.com/Lightning-AI/lightning",
},
"classifiers": [
"Environment :: Console",
"Natural Language :: English",
# How mature is this project? Common values are
# 3 - Alpha, 4 - Beta, 5 - Production/Stable
"Development Status :: 4 - Beta",
# Indicate who your project is intended for
"Intended Audience :: Developers",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Information Analysis",
# Pick your license as you wish
"License :: OSI Approved :: Apache Software License",
"Operating System :: OS Independent",
# Specify the Python versions you support here.
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
], # todo: consider aggregation/union of tags from particular packages
}
|