File size: 38,947 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
Metadata-Version: 2.4
Name: lightning
Version: 2.5.2
Summary: The Deep Learning framework to train, deploy, and ship AI products Lightning fast.
Home-page: https://github.com/Lightning-AI/lightning
Download-URL: https://github.com/Lightning-AI/lightning
Author: Lightning AI et al.
Author-email: pytorch@lightning.ai
License: Apache-2.0
Project-URL: Bug Tracker, https://github.com/Lightning-AI/pytorch-lightning/issues
Project-URL: Documentation, https://lightning.ai/lightning-docs
Project-URL: Source Code, https://github.com/Lightning-AI/lightning
Keywords: deep learning,pytorch,AI
Classifier: Environment :: Console
Classifier: Natural Language :: English
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.9
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: PyYAML<8.0,>=5.4
Requires-Dist: fsspec[http]<2027.0,>=2022.5.0
Requires-Dist: lightning-utilities<2.0,>=0.10.0
Requires-Dist: packaging<27.0,>=20.0
Requires-Dist: torch<4.0,>=2.1.0
Requires-Dist: torchmetrics<3.0,>=0.7.0
Requires-Dist: tqdm<6.0,>=4.57.0
Requires-Dist: typing-extensions<6.0,>=4.4.0
Requires-Dist: pytorch-lightning
Provides-Extra: pytorch-strategies
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "pytorch-strategies"
Provides-Extra: pytorch-test
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "pytorch-test"
Requires-Dist: coverage==7.9.1; extra == "pytorch-test"
Requires-Dist: fastapi; extra == "pytorch-test"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "pytorch-test"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "pytorch-test"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "pytorch-test"
Requires-Dist: pandas<3.0,>2.0; extra == "pytorch-test"
Requires-Dist: psutil<8.0; extra == "pytorch-test"
Requires-Dist: pytest-cov==6.2.1; extra == "pytorch-test"
Requires-Dist: pytest-random-order==1.1.1; extra == "pytorch-test"
Requires-Dist: pytest-rerunfailures==15.1; extra == "pytorch-test"
Requires-Dist: pytest-timeout==2.4.0; extra == "pytorch-test"
Requires-Dist: pytest==8.4.0; extra == "pytorch-test"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "pytorch-test"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "pytorch-test"
Requires-Dist: uvicorn; extra == "pytorch-test"
Provides-Extra: pytorch-extra
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "pytorch-extra"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "pytorch-extra"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "pytorch-extra"
Requires-Dist: matplotlib<4.0,>3.1; extra == "pytorch-extra"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "pytorch-extra"
Requires-Dist: rich<15.0,>=12.3.0; extra == "pytorch-extra"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "pytorch-extra"
Provides-Extra: pytorch-examples
Requires-Dist: ipython[all]<9.0; extra == "pytorch-examples"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "pytorch-examples"
Requires-Dist: requests<3.0; extra == "pytorch-examples"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "pytorch-examples"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "pytorch-examples"
Provides-Extra: fabric-strategies
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "fabric-strategies"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "fabric-strategies"
Provides-Extra: fabric-test
Requires-Dist: click==8.1.8; extra == "fabric-test"
Requires-Dist: coverage==7.9.1; extra == "fabric-test"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "fabric-test"
Requires-Dist: pytest-cov==6.2.1; extra == "fabric-test"
Requires-Dist: pytest-random-order==1.1.1; extra == "fabric-test"
Requires-Dist: pytest-rerunfailures==15.1; extra == "fabric-test"
Requires-Dist: pytest-timeout==2.4.0; extra == "fabric-test"
Requires-Dist: pytest==8.4.0; extra == "fabric-test"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "fabric-test"
Provides-Extra: fabric-examples
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "fabric-examples"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "fabric-examples"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "fabric-examples"
Provides-Extra: fabric-all
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "fabric-all"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "fabric-all"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "fabric-all"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "fabric-all"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "fabric-all"
Provides-Extra: fabric-dev
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "fabric-dev"
Requires-Dist: click==8.1.8; extra == "fabric-dev"
Requires-Dist: coverage==7.9.1; extra == "fabric-dev"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "fabric-dev"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "fabric-dev"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "fabric-dev"
Requires-Dist: pytest-cov==6.2.1; extra == "fabric-dev"
Requires-Dist: pytest-random-order==1.1.1; extra == "fabric-dev"
Requires-Dist: pytest-rerunfailures==15.1; extra == "fabric-dev"
Requires-Dist: pytest-timeout==2.4.0; extra == "fabric-dev"
Requires-Dist: pytest==8.4.0; extra == "fabric-dev"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "fabric-dev"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "fabric-dev"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "fabric-dev"
Provides-Extra: pytorch-all
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "pytorch-all"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "pytorch-all"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "pytorch-all"
Requires-Dist: ipython[all]<9.0; extra == "pytorch-all"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "pytorch-all"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "pytorch-all"
Requires-Dist: matplotlib<4.0,>3.1; extra == "pytorch-all"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "pytorch-all"
Requires-Dist: requests<3.0; extra == "pytorch-all"
Requires-Dist: rich<15.0,>=12.3.0; extra == "pytorch-all"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "pytorch-all"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "pytorch-all"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "pytorch-all"
Provides-Extra: pytorch-dev
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "pytorch-dev"
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "pytorch-dev"
Requires-Dist: coverage==7.9.1; extra == "pytorch-dev"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "pytorch-dev"
Requires-Dist: fastapi; extra == "pytorch-dev"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "pytorch-dev"
Requires-Dist: ipython[all]<9.0; extra == "pytorch-dev"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "pytorch-dev"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "pytorch-dev"
Requires-Dist: matplotlib<4.0,>3.1; extra == "pytorch-dev"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "pytorch-dev"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "pytorch-dev"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "pytorch-dev"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "pytorch-dev"
Requires-Dist: pandas<3.0,>2.0; extra == "pytorch-dev"
Requires-Dist: psutil<8.0; extra == "pytorch-dev"
Requires-Dist: pytest-cov==6.2.1; extra == "pytorch-dev"
Requires-Dist: pytest-random-order==1.1.1; extra == "pytorch-dev"
Requires-Dist: pytest-rerunfailures==15.1; extra == "pytorch-dev"
Requires-Dist: pytest-timeout==2.4.0; extra == "pytorch-dev"
Requires-Dist: pytest==8.4.0; extra == "pytorch-dev"
Requires-Dist: requests<3.0; extra == "pytorch-dev"
Requires-Dist: rich<15.0,>=12.3.0; extra == "pytorch-dev"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "pytorch-dev"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "pytorch-dev"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "pytorch-dev"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "pytorch-dev"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "pytorch-dev"
Requires-Dist: uvicorn; extra == "pytorch-dev"
Provides-Extra: strategies
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "strategies"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "strategies"
Provides-Extra: test
Requires-Dist: click==8.1.8; extra == "test"
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "test"
Requires-Dist: coverage==7.9.1; extra == "test"
Requires-Dist: fastapi; extra == "test"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "test"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "test"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "test"
Requires-Dist: pandas<3.0,>2.0; extra == "test"
Requires-Dist: psutil<8.0; extra == "test"
Requires-Dist: pytest-cov==6.2.1; extra == "test"
Requires-Dist: pytest-random-order==1.1.1; extra == "test"
Requires-Dist: pytest-rerunfailures==15.1; extra == "test"
Requires-Dist: pytest-timeout==2.4.0; extra == "test"
Requires-Dist: pytest==8.4.0; extra == "test"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "test"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "test"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "test"
Requires-Dist: uvicorn; extra == "test"
Provides-Extra: extra
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "extra"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "extra"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "extra"
Requires-Dist: matplotlib<4.0,>3.1; extra == "extra"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "extra"
Requires-Dist: rich<15.0,>=12.3.0; extra == "extra"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "extra"
Provides-Extra: examples
Requires-Dist: ipython[all]<9.0; extra == "examples"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "examples"
Requires-Dist: requests<3.0; extra == "examples"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "examples"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "examples"
Provides-Extra: data
Requires-Dist: litdata<1.0,>=0.2.0rc; extra == "data"
Provides-Extra: all
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "all"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "all"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "all"
Requires-Dist: ipython[all]<9.0; extra == "all"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "all"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "all"
Requires-Dist: matplotlib<4.0,>3.1; extra == "all"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "all"
Requires-Dist: requests<3.0; extra == "all"
Requires-Dist: rich<15.0,>=12.3.0; extra == "all"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "all"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "all"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "all"
Provides-Extra: dev
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "dev"
Requires-Dist: click==8.1.8; extra == "dev"
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "dev"
Requires-Dist: coverage==7.9.1; extra == "dev"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "dev"
Requires-Dist: fastapi; extra == "dev"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "dev"
Requires-Dist: ipython[all]<9.0; extra == "dev"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "dev"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "dev"
Requires-Dist: matplotlib<4.0,>3.1; extra == "dev"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "dev"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "dev"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "dev"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "dev"
Requires-Dist: pandas<3.0,>2.0; extra == "dev"
Requires-Dist: psutil<8.0; extra == "dev"
Requires-Dist: pytest-cov==6.2.1; extra == "dev"
Requires-Dist: pytest-random-order==1.1.1; extra == "dev"
Requires-Dist: pytest-rerunfailures==15.1; extra == "dev"
Requires-Dist: pytest-timeout==2.4.0; extra == "dev"
Requires-Dist: pytest==8.4.0; extra == "dev"
Requires-Dist: requests<3.0; extra == "dev"
Requires-Dist: rich<15.0,>=12.3.0; extra == "dev"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "dev"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "dev"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "dev"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "dev"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "dev"
Requires-Dist: uvicorn; extra == "dev"
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: description-content-type
Dynamic: download-url
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: license-file
Dynamic: project-url
Dynamic: provides-extra
Dynamic: requires-dist
Dynamic: requires-python
Dynamic: summary
<div align="center">
<img alt="Lightning" src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/ptl_banner.png" width="800px" style="max-width: 100%;">
<br/>
<br/>
**The deep learning framework to pretrain, finetune and deploy AI models.**
**NEW- Deploying models? Check out [LitServe](https://github.com/Lightning-AI/litserve), the PyTorch Lightning for model serving**
______________________________________________________________________
<p align="center">
<a href="#quick-start" style="margin: 0 10px;">Quick start</a> β’
<a href="#examples">Examples</a> β’
<a href="#why-pytorch-lightning">PyTorch Lightning</a> β’
<a href="#lightning-fabric-expert-control">Fabric</a> β’
<a href="https://lightning.ai/">Lightning AI</a> β’
<a href="#community">Community</a> β’
<a href="https://pytorch-lightning.readthedocs.io/en/2.5.2">Docs</a>
</p>
<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL -->
[](https://pypi.org/project/pytorch-lightning/)
[](https://badge.fury.io/py/pytorch-lightning)
[](https://pepy.tech/project/pytorch-lightning)
[](https://anaconda.org/conda-forge/lightning)
[](https://codecov.io/gh/Lightning-AI/pytorch-lightning)
[](https://discord.gg/VptPCZkGNa)

[](https://github.com/Lightning-AI/pytorch-lightning/blob/master/LICENSE)
<!--
[](https://www.codefactor.io/repository/github/Lightning-AI/lightning)
-->
</div>
<div align="center">
<p align="center">
<a target="_blank" href="https://lightning.ai/docs/pytorch/latest/starter/introduction.html#define-a-lightningmodule">
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/get-started-badge.svg" height="36px" alt="Get started"/>
</a>
</p>
</div>
# Lightning has 2 core packages
[PyTorch Lightning: Train and deploy PyTorch at scale](#why-pytorch-lightning).
<br/>
[Lightning Fabric: Expert control](#lightning-fabric-expert-control).
Lightning gives you granular control over how much abstraction you want to add over PyTorch.
<div align="center">
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/continuum.png" width="80%">
</div>
# Quick start
Install Lightning:
```bash
pip install lightning
```
<!-- -->
### PyTorch Lightning example
Define the training workflow. Here's a toy example ([explore real examples](https://lightning.ai/lightning-ai/studios?view=public§ion=featured&query=pytorch+lightning)):
```python
# main.py
# ! pip install torchvision
import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
import lightning as L
# --------------------------------
# Step 1: Define a LightningModule
# --------------------------------
# A LightningModule (nn.Module subclass) defines a full *system*
# (ie: an LLM, diffusion model, autoencoder, or simple image classifier).
class LitAutoEncoder(L.LightningModule):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))
def forward(self, x):
# in lightning, forward defines the prediction/inference actions
embedding = self.encoder(x)
return embedding
def training_step(self, batch, batch_idx):
# training_step defines the train loop. It is independent of forward
x, _ = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
# -------------------
# Step 2: Define data
# -------------------
dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
train, val = data.random_split(dataset, [55000, 5000])
# -------------------
# Step 3: Train
# -------------------
autoencoder = LitAutoEncoder()
trainer = L.Trainer()
trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))
```
Run the model on your terminal
```bash
pip install torchvision
python main.py
```
# Why PyTorch Lightning?
PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.
----
### Examples
Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:
| Task | Description | Run |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|
| [Hello world](#hello-simple-model) | Pretrain - Hello world example | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/pytorch-lightning-hello-world"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Image classification](https://lightning.ai/lightning-ai/studios/image-classification-with-pytorch-lightning) | Finetune - ResNet-34 model to classify images of cars | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/image-classification-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Image segmentation](https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning) | Finetune - ResNet-50 model to segment images | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Object detection](https://lightning.ai/lightning-ai/studios/object-detection-with-pytorch-lightning) | Finetune - Faster R-CNN model to detect objects | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/object-detection-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Text classification](https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning) | Finetune - text classifier (BERT model) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Text summarization](https://lightning.ai/lightning-ai/studios/text-summarization-with-pytorch-lightning) | Finetune - text summarization (Hugging Face transformer model) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/text-summarization-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Audio generation](https://lightning.ai/lightning-ai/studios/finetune-a-personal-ai-music-generator) | Finetune - audio generator (transformer model) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/finetune-a-personal-ai-music-generator"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [LLM finetuning](https://lightning.ai/lightning-ai/studios/finetune-an-llm-with-pytorch-lightning) | Finetune - LLM (Meta Llama 3.1 8B) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/finetune-an-llm-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Image generation](https://lightning.ai/lightning-ai/studios/train-a-diffusion-model-with-pytorch-lightning) | Pretrain - Image generator (diffusion model) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/train-a-diffusion-model-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Recommendation system](https://lightning.ai/lightning-ai/studios/recommendation-system-with-pytorch-lightning) | Train - recommendation system (factorization and embedding) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/recommendation-system-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Time-series forecasting](https://lightning.ai/lightning-ai/studios/time-series-forecasting-with-pytorch-lightning) | Train - Time-series forecasting with LSTM | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/time-series-forecasting-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
______________________________________________________________________
## Advanced features
Lightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale.
Here are some examples:
<div align="center">
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/features_2.jpg" max-height="600px">
</div>
<details>
<summary>Train on 1000s of GPUs without code changes</summary>
```python
# 8 GPUs
# no code changes needed
trainer = Trainer(accelerator="gpu", devices=8)
# 256 GPUs
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
```
</details>
<details>
<summary>Train on other accelerators like TPUs without code changes</summary>
```python
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
```
</details>
<details>
<summary>16-bit precision</summary>
```python
# no code changes needed
trainer = Trainer(precision=16)
```
</details>
<details>
<summary>Experiment managers</summary>
```python
from lightning import loggers
# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))
# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())
# comet
trainer = Trainer(logger=loggers.CometLogger())
# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())
# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())
# ... and dozens more
```
</details>
<details>
<summary>Early Stopping</summary>
```python
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
```
</details>
<details>
<summary>Checkpointing</summary>
```python
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
```
</details>
<details>
<summary>Export to torchscript (JIT) (production use)</summary>
```python
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
```
</details>
<details>
<summary>Export to ONNX (production use)</summary>
```python
# onnx
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
autoencoder = LitAutoEncoder()
input_sample = torch.randn((1, 64))
autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
os.path.isfile(tmpfile.name)
```
</details>
______________________________________________________________________
## Advantages over unstructured PyTorch
- Models become hardware agnostic
- Code is clear to read because engineering code is abstracted away
- Easier to reproduce
- Make fewer mistakes because lightning handles the tricky engineering
- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
- Lightning has dozens of integrations with popular machine learning tools.
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).
______________________________________________________________________
<div align="center">
<a href="https://lightning.ai/docs/pytorch/stable/">Read the PyTorch Lightning docs</a>
</div>
______________________________________________________________________
# Lightning Fabric: Expert control
Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.
Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.
<table>
<tr>
<th>What to change</th>
<th>Resulting Fabric Code (copy me!)</th>
</tr>
<tr>
<td>
<sub>
```diff
+ import lightning as L
import torch; import torchvision as tv
dataset = tv.datasets.CIFAR10("data", download=True,
train=True,
transform=tv.transforms.ToTensor())
+ fabric = L.Fabric()
+ fabric.launch()
model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
- device = "cuda" if torch.cuda.is_available() else "cpu"
- model.to(device)
+ model, optimizer = fabric.setup(model, optimizer)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
+ dataloader = fabric.setup_dataloaders(dataloader)
model.train()
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataloader:
inputs, labels = batch
- inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, labels)
- loss.backward()
+ fabric.backward(loss)
optimizer.step()
print(loss.data)
```
</sub>
<td>
<sub>
```Python
import lightning as L
import torch; import torchvision as tv
dataset = tv.datasets.CIFAR10("data", download=True,
train=True,
transform=tv.transforms.ToTensor())
fabric = L.Fabric()
fabric.launch()
model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
model, optimizer = fabric.setup(model, optimizer)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
dataloader = fabric.setup_dataloaders(dataloader)
model.train()
num_epochs = 10
for epoch in range(num_epochs):
for batch in dataloader:
inputs, labels = batch
optimizer.zero_grad()
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, labels)
fabric.backward(loss)
optimizer.step()
print(loss.data)
```
</sub>
</td>
</tr>
</table>
## Key features
<details>
<summary>Easily switch from running on CPU to GPU (Apple Silicon, CUDA, β¦), TPU, multi-GPU or even multi-node training</summary>
```python
# Use your available hardware
# no code changes needed
fabric = Fabric()
# Run on GPUs (CUDA or MPS)
fabric = Fabric(accelerator="gpu")
# 8 GPUs
fabric = Fabric(accelerator="gpu", devices=8)
# 256 GPUs, multi-node
fabric = Fabric(accelerator="gpu", devices=8, num_nodes=32)
# Run on TPUs
fabric = Fabric(accelerator="tpu")
```
</details>
<details>
<summary>Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box</summary>
```python
# Use state-of-the-art distributed training techniques
fabric = Fabric(strategy="ddp")
fabric = Fabric(strategy="deepspeed")
fabric = Fabric(strategy="fsdp")
# Switch the precision
fabric = Fabric(precision="16-mixed")
fabric = Fabric(precision="64")
```
</details>
<details>
<summary>All the device logic boilerplate is handled for you</summary>
```diff
# no more of this!
- model.to(device)
- batch.to(device)
```
</details>
<details>
<summary>Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more</summary>
```python
import lightning as L
class MyCustomTrainer:
def __init__(self, accelerator="auto", strategy="auto", devices="auto", precision="32-true"):
self.fabric = L.Fabric(accelerator=accelerator, strategy=strategy, devices=devices, precision=precision)
def fit(self, model, optimizer, dataloader, max_epochs):
self.fabric.launch()
model, optimizer = self.fabric.setup(model, optimizer)
dataloader = self.fabric.setup_dataloaders(dataloader)
model.train()
for epoch in range(max_epochs):
for batch in dataloader:
input, target = batch
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
self.fabric.backward(loss)
optimizer.step()
```
You can find a more extensive example in our [examples](examples/fabric/build_your_own_trainer)
</details>
______________________________________________________________________
<div align="center">
<a href="https://lightning.ai/docs/fabric/stable/">Read the Lightning Fabric docs</a>
</div>
______________________________________________________________________
## Examples
###### Self-supervised Learning
- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms)
- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms)
- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms)
###### Convolutional Architectures
- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2)
- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet)
###### Reinforcement Learning
- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss)
- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss)
- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss)
###### GANs
- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan)
- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan)
###### Classic ML
- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)
## Continuous Integration
Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.
###### \*Codecov is > 90%+ but build delays may show less
<details>
<summary>Current build statuses</summary>
<center>
| System / PyTorch ver. | 1.13 | 2.0 | 2.1 |
| :--------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| Linux py3.9 \[GPUs\] | | | [](https://dev.azure.com/Lightning-AI/lightning/_build/latest?definitionId=24&branchName=master) |
| Linux (multiple Python versions) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
| OSX (multiple Python versions) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
| Windows (multiple Python versions) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) | [](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml) |
</center>
</details>
## Community
The lightning community is maintained by
- [10+ core contributors](https://lightning.ai/docs/pytorch/latest/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
- 800+ community contributors.
Want to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://lightning.ai/docs/pytorch/stable/generated/CONTRIBUTING.html)
Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.
### Asking for help
If you have any questions please:
1. [Read the docs](https://lightning.ai/docs).
1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new)
1. [Join our discord](https://discord.com/invite/tfXFetEZxv).
|