File size: 38,947 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
Metadata-Version: 2.4
Name: lightning
Version: 2.5.2
Summary: The Deep Learning framework to train, deploy, and ship AI products Lightning fast.
Home-page: https://github.com/Lightning-AI/lightning
Download-URL: https://github.com/Lightning-AI/lightning
Author: Lightning AI et al.
Author-email: pytorch@lightning.ai
License: Apache-2.0
Project-URL: Bug Tracker, https://github.com/Lightning-AI/pytorch-lightning/issues
Project-URL: Documentation, https://lightning.ai/lightning-docs
Project-URL: Source Code, https://github.com/Lightning-AI/lightning
Keywords: deep learning,pytorch,AI
Classifier: Environment :: Console
Classifier: Natural Language :: English
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Requires-Python: >=3.9
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: PyYAML<8.0,>=5.4
Requires-Dist: fsspec[http]<2027.0,>=2022.5.0
Requires-Dist: lightning-utilities<2.0,>=0.10.0
Requires-Dist: packaging<27.0,>=20.0
Requires-Dist: torch<4.0,>=2.1.0
Requires-Dist: torchmetrics<3.0,>=0.7.0
Requires-Dist: tqdm<6.0,>=4.57.0
Requires-Dist: typing-extensions<6.0,>=4.4.0
Requires-Dist: pytorch-lightning
Provides-Extra: pytorch-strategies
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "pytorch-strategies"
Provides-Extra: pytorch-test
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "pytorch-test"
Requires-Dist: coverage==7.9.1; extra == "pytorch-test"
Requires-Dist: fastapi; extra == "pytorch-test"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "pytorch-test"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "pytorch-test"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "pytorch-test"
Requires-Dist: pandas<3.0,>2.0; extra == "pytorch-test"
Requires-Dist: psutil<8.0; extra == "pytorch-test"
Requires-Dist: pytest-cov==6.2.1; extra == "pytorch-test"
Requires-Dist: pytest-random-order==1.1.1; extra == "pytorch-test"
Requires-Dist: pytest-rerunfailures==15.1; extra == "pytorch-test"
Requires-Dist: pytest-timeout==2.4.0; extra == "pytorch-test"
Requires-Dist: pytest==8.4.0; extra == "pytorch-test"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "pytorch-test"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "pytorch-test"
Requires-Dist: uvicorn; extra == "pytorch-test"
Provides-Extra: pytorch-extra
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "pytorch-extra"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "pytorch-extra"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "pytorch-extra"
Requires-Dist: matplotlib<4.0,>3.1; extra == "pytorch-extra"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "pytorch-extra"
Requires-Dist: rich<15.0,>=12.3.0; extra == "pytorch-extra"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "pytorch-extra"
Provides-Extra: pytorch-examples
Requires-Dist: ipython[all]<9.0; extra == "pytorch-examples"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "pytorch-examples"
Requires-Dist: requests<3.0; extra == "pytorch-examples"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "pytorch-examples"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "pytorch-examples"
Provides-Extra: fabric-strategies
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "fabric-strategies"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "fabric-strategies"
Provides-Extra: fabric-test
Requires-Dist: click==8.1.8; extra == "fabric-test"
Requires-Dist: coverage==7.9.1; extra == "fabric-test"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "fabric-test"
Requires-Dist: pytest-cov==6.2.1; extra == "fabric-test"
Requires-Dist: pytest-random-order==1.1.1; extra == "fabric-test"
Requires-Dist: pytest-rerunfailures==15.1; extra == "fabric-test"
Requires-Dist: pytest-timeout==2.4.0; extra == "fabric-test"
Requires-Dist: pytest==8.4.0; extra == "fabric-test"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "fabric-test"
Provides-Extra: fabric-examples
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "fabric-examples"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "fabric-examples"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "fabric-examples"
Provides-Extra: fabric-all
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "fabric-all"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "fabric-all"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "fabric-all"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "fabric-all"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "fabric-all"
Provides-Extra: fabric-dev
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "fabric-dev"
Requires-Dist: click==8.1.8; extra == "fabric-dev"
Requires-Dist: coverage==7.9.1; extra == "fabric-dev"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "fabric-dev"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "fabric-dev"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "fabric-dev"
Requires-Dist: pytest-cov==6.2.1; extra == "fabric-dev"
Requires-Dist: pytest-random-order==1.1.1; extra == "fabric-dev"
Requires-Dist: pytest-rerunfailures==15.1; extra == "fabric-dev"
Requires-Dist: pytest-timeout==2.4.0; extra == "fabric-dev"
Requires-Dist: pytest==8.4.0; extra == "fabric-dev"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "fabric-dev"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "fabric-dev"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "fabric-dev"
Provides-Extra: pytorch-all
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "pytorch-all"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "pytorch-all"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "pytorch-all"
Requires-Dist: ipython[all]<9.0; extra == "pytorch-all"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "pytorch-all"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "pytorch-all"
Requires-Dist: matplotlib<4.0,>3.1; extra == "pytorch-all"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "pytorch-all"
Requires-Dist: requests<3.0; extra == "pytorch-all"
Requires-Dist: rich<15.0,>=12.3.0; extra == "pytorch-all"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "pytorch-all"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "pytorch-all"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "pytorch-all"
Provides-Extra: pytorch-dev
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "pytorch-dev"
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "pytorch-dev"
Requires-Dist: coverage==7.9.1; extra == "pytorch-dev"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "pytorch-dev"
Requires-Dist: fastapi; extra == "pytorch-dev"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "pytorch-dev"
Requires-Dist: ipython[all]<9.0; extra == "pytorch-dev"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "pytorch-dev"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "pytorch-dev"
Requires-Dist: matplotlib<4.0,>3.1; extra == "pytorch-dev"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "pytorch-dev"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "pytorch-dev"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "pytorch-dev"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "pytorch-dev"
Requires-Dist: pandas<3.0,>2.0; extra == "pytorch-dev"
Requires-Dist: psutil<8.0; extra == "pytorch-dev"
Requires-Dist: pytest-cov==6.2.1; extra == "pytorch-dev"
Requires-Dist: pytest-random-order==1.1.1; extra == "pytorch-dev"
Requires-Dist: pytest-rerunfailures==15.1; extra == "pytorch-dev"
Requires-Dist: pytest-timeout==2.4.0; extra == "pytorch-dev"
Requires-Dist: pytest==8.4.0; extra == "pytorch-dev"
Requires-Dist: requests<3.0; extra == "pytorch-dev"
Requires-Dist: rich<15.0,>=12.3.0; extra == "pytorch-dev"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "pytorch-dev"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "pytorch-dev"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "pytorch-dev"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "pytorch-dev"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "pytorch-dev"
Requires-Dist: uvicorn; extra == "pytorch-dev"
Provides-Extra: strategies
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "strategies"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "strategies"
Provides-Extra: test
Requires-Dist: click==8.1.8; extra == "test"
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "test"
Requires-Dist: coverage==7.9.1; extra == "test"
Requires-Dist: fastapi; extra == "test"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "test"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "test"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "test"
Requires-Dist: pandas<3.0,>2.0; extra == "test"
Requires-Dist: psutil<8.0; extra == "test"
Requires-Dist: pytest-cov==6.2.1; extra == "test"
Requires-Dist: pytest-random-order==1.1.1; extra == "test"
Requires-Dist: pytest-rerunfailures==15.1; extra == "test"
Requires-Dist: pytest-timeout==2.4.0; extra == "test"
Requires-Dist: pytest==8.4.0; extra == "test"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "test"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "test"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "test"
Requires-Dist: uvicorn; extra == "test"
Provides-Extra: extra
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "extra"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "extra"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "extra"
Requires-Dist: matplotlib<4.0,>3.1; extra == "extra"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "extra"
Requires-Dist: rich<15.0,>=12.3.0; extra == "extra"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "extra"
Provides-Extra: examples
Requires-Dist: ipython[all]<9.0; extra == "examples"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "examples"
Requires-Dist: requests<3.0; extra == "examples"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "examples"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "examples"
Provides-Extra: data
Requires-Dist: litdata<1.0,>=0.2.0rc; extra == "data"
Provides-Extra: all
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "all"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "all"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "all"
Requires-Dist: ipython[all]<9.0; extra == "all"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "all"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "all"
Requires-Dist: matplotlib<4.0,>3.1; extra == "all"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "all"
Requires-Dist: requests<3.0; extra == "all"
Requires-Dist: rich<15.0,>=12.3.0; extra == "all"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "all"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "all"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "all"
Provides-Extra: dev
Requires-Dist: bitsandbytes<1.0,>=0.45.2; platform_system != "Darwin" and extra == "dev"
Requires-Dist: click==8.1.8; extra == "dev"
Requires-Dist: cloudpickle<4.0,>=1.3; extra == "dev"
Requires-Dist: coverage==7.9.1; extra == "dev"
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "dev"
Requires-Dist: fastapi; extra == "dev"
Requires-Dist: hydra-core<2.0,>=1.2.0; extra == "dev"
Requires-Dist: ipython[all]<9.0; extra == "dev"
Requires-Dist: jsonargparse[jsonnet,signatures]<5.0,>=4.39.0; extra == "dev"
Requires-Dist: lightning-utilities<1.0,>=0.8.0; extra == "dev"
Requires-Dist: matplotlib<4.0,>3.1; extra == "dev"
Requires-Dist: numpy<2.0,>=1.17.2; extra == "dev"
Requires-Dist: omegaconf<3.0,>=2.2.3; extra == "dev"
Requires-Dist: onnx<2.0,>=1.12.0; extra == "dev"
Requires-Dist: onnxruntime<2.0,>=1.12.0; extra == "dev"
Requires-Dist: pandas<3.0,>2.0; extra == "dev"
Requires-Dist: psutil<8.0; extra == "dev"
Requires-Dist: pytest-cov==6.2.1; extra == "dev"
Requires-Dist: pytest-random-order==1.1.1; extra == "dev"
Requires-Dist: pytest-rerunfailures==15.1; extra == "dev"
Requires-Dist: pytest-timeout==2.4.0; extra == "dev"
Requires-Dist: pytest==8.4.0; extra == "dev"
Requires-Dist: requests<3.0; extra == "dev"
Requires-Dist: rich<15.0,>=12.3.0; extra == "dev"
Requires-Dist: scikit-learn<2.0,>0.22.1; extra == "dev"
Requires-Dist: tensorboard<3.0,>=2.9.1; extra == "dev"
Requires-Dist: tensorboardX<3.0,>=2.2; extra == "dev"
Requires-Dist: torchmetrics<2.0,>=0.10.0; extra == "dev"
Requires-Dist: torchvision<1.0,>=0.16.0; extra == "dev"
Requires-Dist: uvicorn; extra == "dev"
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: description-content-type
Dynamic: download-url
Dynamic: home-page
Dynamic: keywords
Dynamic: license
Dynamic: license-file
Dynamic: project-url
Dynamic: provides-extra
Dynamic: requires-dist
Dynamic: requires-python
Dynamic: summary

<div align="center">

<img alt="Lightning" src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/ptl_banner.png" width="800px" style="max-width: 100%;">

<br/>
<br/>

**The deep learning framework to pretrain, finetune and deploy AI models.**

**NEW- Deploying models? Check out [LitServe](https://github.com/Lightning-AI/litserve), the PyTorch Lightning for model serving**

______________________________________________________________________

<p align="center">
    <a href="#quick-start" style="margin: 0 10px;">Quick start</a> β€’
  <a href="#examples">Examples</a> β€’
  <a href="#why-pytorch-lightning">PyTorch Lightning</a> β€’
  <a href="#lightning-fabric-expert-control">Fabric</a> β€’
  <a href="https://lightning.ai/">Lightning AI</a> β€’   
  <a href="#community">Community</a> β€’
  <a href="https://pytorch-lightning.readthedocs.io/en/2.5.2">Docs</a>
</p>

<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL -->

[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/pytorch-lightning)](https://pypi.org/project/pytorch-lightning/)
[![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning)
[![Conda](https://img.shields.io/conda/v/conda-forge/lightning?label=conda&color=success)](https://anaconda.org/conda-forge/lightning)
[![codecov](https://codecov.io/gh/Lightning-AI/pytorch-lightning/graph/badge.svg?token=SmzX8mnKlA)](https://codecov.io/gh/Lightning-AI/pytorch-lightning)

[![Discord](https://img.shields.io/discord/1077906959069626439?style=plastic)](https://discord.gg/VptPCZkGNa)
![GitHub commit activity](https://img.shields.io/github/commit-activity/w/lightning-ai/lightning)
[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/Lightning-AI/pytorch-lightning/blob/master/LICENSE)

<!--
[![CodeFactor](https://www.codefactor.io/repository/github/Lightning-AI/lightning/badge)](https://www.codefactor.io/repository/github/Lightning-AI/lightning)
-->

</div>

<div align="center">
  
<p align="center">

&nbsp;
  
<a target="_blank" href="https://lightning.ai/docs/pytorch/latest/starter/introduction.html#define-a-lightningmodule">
  <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/get-started-badge.svg" height="36px" alt="Get started"/>
</a>

</p>

</div>

&nbsp;

# Lightning has 2 core packages

[PyTorch Lightning: Train and deploy PyTorch at scale](#why-pytorch-lightning).
<br/>
[Lightning Fabric: Expert control](#lightning-fabric-expert-control).

Lightning gives you granular control over how much abstraction you want to add over PyTorch.

<div align="center">
    <img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/continuum.png" width="80%">
</div>

&nbsp;

# Quick start
Install Lightning:

```bash
pip install lightning
```

<!--  -->

### PyTorch Lightning example
Define the training workflow. Here's a toy example ([explore real examples](https://lightning.ai/lightning-ai/studios?view=public&section=featured&query=pytorch+lightning)):

```python
# main.py
# ! pip install torchvision
import torch, torch.nn as nn, torch.utils.data as data, torchvision as tv, torch.nn.functional as F
import lightning as L

# --------------------------------
# Step 1: Define a LightningModule
# --------------------------------
# A LightningModule (nn.Module subclass) defines a full *system*
# (ie: an LLM, diffusion model, autoencoder, or simple image classifier).


class LitAutoEncoder(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop. It is independent of forward
        x, _ = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer


# -------------------
# Step 2: Define data
# -------------------
dataset = tv.datasets.MNIST(".", download=True, transform=tv.transforms.ToTensor())
train, val = data.random_split(dataset, [55000, 5000])

# -------------------
# Step 3: Train
# -------------------
autoencoder = LitAutoEncoder()
trainer = L.Trainer()
trainer.fit(autoencoder, data.DataLoader(train), data.DataLoader(val))
```

Run the model on your terminal

```bash
pip install torchvision
python main.py
```

&nbsp;


# Why PyTorch Lightning?

PyTorch Lightning is just organized PyTorch - Lightning disentangles PyTorch code to decouple the science from the engineering.



&nbsp;

----

### Examples
Explore various types of training possible with PyTorch Lightning. Pretrain and finetune ANY kind of model to perform ANY task like classification, segmentation, summarization and more:    

| Task                                                                                                        | Description                                                    | Run |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---|
| [Hello world](#hello-simple-model)                                                                          | Pretrain - Hello world example                                 | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/pytorch-lightning-hello-world"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Image classification](https://lightning.ai/lightning-ai/studios/image-classification-with-pytorch-lightning) | Finetune - ResNet-34 model to classify images of cars          | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/image-classification-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |   
| [Image segmentation](https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning)   | Finetune - ResNet-50 model to segment images                   | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/image-segmentation-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |   
| [Object detection](https://lightning.ai/lightning-ai/studios/object-detection-with-pytorch-lightning)       | Finetune - Faster R-CNN model to detect objects                   | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/object-detection-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |
| [Text classification](https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning) | Finetune - text classifier (BERT model)                        | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/text-classification-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |   
| [Text summarization](https://lightning.ai/lightning-ai/studios/text-summarization-with-pytorch-lightning)   | Finetune - text summarization (Hugging Face transformer model) | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/text-summarization-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |   
| [Audio generation](https://lightning.ai/lightning-ai/studios/finetune-a-personal-ai-music-generator)        | Finetune - audio generator (transformer model)                 | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/finetune-a-personal-ai-music-generator"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> |   
| [LLM finetuning](https://lightning.ai/lightning-ai/studios/finetune-an-llm-with-pytorch-lightning)          | Finetune - LLM (Meta Llama 3.1 8B)                | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/finetune-an-llm-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> | 
| [Image generation](https://lightning.ai/lightning-ai/studios/train-a-diffusion-model-with-pytorch-lightning)          | Pretrain - Image generator (diffusion model)                | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/train-a-diffusion-model-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> | 
| [Recommendation system](https://lightning.ai/lightning-ai/studios/recommendation-system-with-pytorch-lightning)  | Train - recommendation system (factorization and embedding)    | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/recommendation-system-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> | 
| [Time-series forecasting](https://lightning.ai/lightning-ai/studios/time-series-forecasting-with-pytorch-lightning) | Train - Time-series forecasting with LSTM               | <a target="_blank" href="https://lightning.ai/lightning-ai/studios/time-series-forecasting-with-pytorch-lightning"><img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/app-2/studio-badge.svg" alt="Open In Studio"/></a> | 

______________________________________________________________________

## Advanced features

Lightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale.

Here are some examples:

<div align="center">
    <img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/features_2.jpg" max-height="600px">
  </div>

<details>
  <summary>Train on 1000s of GPUs without code changes</summary>

```python
# 8 GPUs
# no code changes needed
trainer = Trainer(accelerator="gpu", devices=8)

# 256 GPUs
trainer = Trainer(accelerator="gpu", devices=8, num_nodes=32)
```

</details>

<details>
  <summary>Train on other accelerators like TPUs without code changes</summary>

```python
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
```

</details>

<details>
  <summary>16-bit precision</summary>

```python
# no code changes needed
trainer = Trainer(precision=16)
```

</details>

<details>
  <summary>Experiment managers</summary>

```python
from lightning import loggers

# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))

# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())

# comet
trainer = Trainer(logger=loggers.CometLogger())

# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())

# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())

# ... and dozens more
```

</details>

<details>

<summary>Early Stopping</summary>

```python
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
```

</details>

<details>
  <summary>Checkpointing</summary>

```python
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
```

</details>

<details>
  <summary>Export to torchscript (JIT) (production use)</summary>

```python
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
```

</details>

<details>
  <summary>Export to ONNX (production use)</summary>

```python
# onnx
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
    autoencoder = LitAutoEncoder()
    input_sample = torch.randn((1, 64))
    autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
    os.path.isfile(tmpfile.name)
```

</details>

______________________________________________________________________

## Advantages over unstructured PyTorch

- Models become hardware agnostic
- Code is clear to read because engineering code is abstracted away
- Easier to reproduce
- Make fewer mistakes because lightning handles the tricky engineering
- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
- Lightning has dozens of integrations with popular machine learning tools.
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).

______________________________________________________________________

<div align="center">
    <a href="https://lightning.ai/docs/pytorch/stable/">Read the PyTorch Lightning docs</a>
</div>

______________________________________________________________________

&nbsp;
&nbsp;

# Lightning Fabric: Expert control

Run on any device at any scale with expert-level control over PyTorch training loop and scaling strategy. You can even write your own Trainer.

Fabric is designed for the most complex models like foundation model scaling, LLMs, diffusion, transformers, reinforcement learning, active learning. Of any size.

<table>
<tr>
<th>What to change</th>
<th>Resulting Fabric Code (copy me!)</th>
</tr>
<tr>
<td>
<sub>

```diff
+ import lightning as L
  import torch; import torchvision as tv

 dataset = tv.datasets.CIFAR10("data", download=True,
                               train=True,
                               transform=tv.transforms.ToTensor())

+ fabric = L.Fabric()
+ fabric.launch()

  model = tv.models.resnet18()
  optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
- device = "cuda" if torch.cuda.is_available() else "cpu"
- model.to(device)
+ model, optimizer = fabric.setup(model, optimizer)

  dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
+ dataloader = fabric.setup_dataloaders(dataloader)

  model.train()
  num_epochs = 10
  for epoch in range(num_epochs):
      for batch in dataloader:
          inputs, labels = batch
-         inputs, labels = inputs.to(device), labels.to(device)
          optimizer.zero_grad()
          outputs = model(inputs)
          loss = torch.nn.functional.cross_entropy(outputs, labels)
-         loss.backward()
+         fabric.backward(loss)
          optimizer.step()
          print(loss.data)
```

</sub>
<td>
<sub>

```Python
import lightning as L
import torch; import torchvision as tv

dataset = tv.datasets.CIFAR10("data", download=True,
                              train=True,
                              transform=tv.transforms.ToTensor())

fabric = L.Fabric()
fabric.launch()

model = tv.models.resnet18()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
model, optimizer = fabric.setup(model, optimizer)

dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
dataloader = fabric.setup_dataloaders(dataloader)

model.train()
num_epochs = 10
for epoch in range(num_epochs):
    for batch in dataloader:
        inputs, labels = batch
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = torch.nn.functional.cross_entropy(outputs, labels)
        fabric.backward(loss)
        optimizer.step()
        print(loss.data)
```

</sub>
</td>
</tr>
</table>

## Key features

<details>
  <summary>Easily switch from running on CPU to GPU (Apple Silicon, CUDA, …), TPU, multi-GPU or even multi-node training</summary>

```python
# Use your available hardware
# no code changes needed
fabric = Fabric()

# Run on GPUs (CUDA or MPS)
fabric = Fabric(accelerator="gpu")

# 8 GPUs
fabric = Fabric(accelerator="gpu", devices=8)

# 256 GPUs, multi-node
fabric = Fabric(accelerator="gpu", devices=8, num_nodes=32)

# Run on TPUs
fabric = Fabric(accelerator="tpu")
```

</details>

<details>
  <summary>Use state-of-the-art distributed training strategies (DDP, FSDP, DeepSpeed) and mixed precision out of the box</summary>

```python
# Use state-of-the-art distributed training techniques
fabric = Fabric(strategy="ddp")
fabric = Fabric(strategy="deepspeed")
fabric = Fabric(strategy="fsdp")

# Switch the precision
fabric = Fabric(precision="16-mixed")
fabric = Fabric(precision="64")
```

</details>

<details>
  <summary>All the device logic boilerplate is handled for you</summary>

```diff
  # no more of this!
- model.to(device)
- batch.to(device)
```

</details>

<details>
  <summary>Build your own custom Trainer using Fabric primitives for training checkpointing, logging, and more</summary>

```python
import lightning as L


class MyCustomTrainer:
    def __init__(self, accelerator="auto", strategy="auto", devices="auto", precision="32-true"):
        self.fabric = L.Fabric(accelerator=accelerator, strategy=strategy, devices=devices, precision=precision)

    def fit(self, model, optimizer, dataloader, max_epochs):
        self.fabric.launch()

        model, optimizer = self.fabric.setup(model, optimizer)
        dataloader = self.fabric.setup_dataloaders(dataloader)
        model.train()

        for epoch in range(max_epochs):
            for batch in dataloader:
                input, target = batch
                optimizer.zero_grad()
                output = model(input)
                loss = loss_fn(output, target)
                self.fabric.backward(loss)
                optimizer.step()
```

You can find a more extensive example in our [examples](examples/fabric/build_your_own_trainer)

</details>

______________________________________________________________________

<div align="center">
    <a href="https://lightning.ai/docs/fabric/stable/">Read the Lightning Fabric docs</a>
</div>

______________________________________________________________________

&nbsp;
&nbsp;

## Examples

###### Self-supervised Learning

- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms)
- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms)
- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms)

###### Convolutional Architectures

- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2)
- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet)

###### Reinforcement Learning

- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss)
- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss)
- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss)

###### GANs

- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan)
- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan)

###### Classic ML

- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression)
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression)

&nbsp;
&nbsp;

## Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions.

###### \*Codecov is > 90%+ but build delays may show less

<details>
  <summary>Current build statuses</summary>

<center>

|       System / PyTorch ver.        | 1.13                                                                                                                                                                                                                            | 2.0                                                                                                                                                                                                                             |                                                                                                               2.1                                                                                                               |
| :--------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|        Linux py3.9 \[GPUs\]        |  |  | [![Build Status](https://dev.azure.com/Lightning-AI/lightning/_apis/build/status%2Fpytorch-lightning%20%28GPUs%29?branchName=refs%2Ftags%2F2.5.2)](https://dev.azure.com/Lightning-AI/lightning/_build/latest?definitionId=24&branchName=master) |
|  Linux (multiple Python versions)  | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                                 | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                                 |                 [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                 |
|   OSX (multiple Python versions)   | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                                 | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                                 |                 [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                 |
| Windows (multiple Python versions) | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                                 | [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                                 |                 [![Test PyTorch](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml/badge.svg)](https://github.com/Lightning-AI/lightning/actions/workflows/ci-tests-pytorch.yml)                 |

</center>
</details>

&nbsp;
&nbsp;

## Community

The lightning community is maintained by

- [10+ core contributors](https://lightning.ai/docs/pytorch/latest/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
- 800+ community contributors.

Want to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://lightning.ai/docs/pytorch/stable/generated/CONTRIBUTING.html)

Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support.

### Asking for help

If you have any questions please:

1. [Read the docs](https://lightning.ai/docs).
1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new)
1. [Join our discord](https://discord.com/invite/tfXFetEZxv).