File size: 60,934 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
from dataclasses import dataclass
import sympy
import re
from sympy import Basic, Matrix, MatrixBase, Number, Pow, Rational, matrix_symbols, simplify, factor, expand, apart, expand_trig
from antlr4 import InputStream, CommonTokenStream
from antlr4.error.ErrorListener import ErrorListener
from latex2sympy2_extended.symbols import get_symbol
from latex2sympy2_extended.math_normalization import normalize_latex, NormalizationConfig
from latex2sympy2_extended.antlr_parser import PSParser, PSLexer
import sympy.functions.elementary.trigonometric as sympy_trig
import sympy.functions.elementary.hyperbolic as sympy_hyperbolic
import sympy.functions.elementary.miscellaneous as sympy_misc
import sympy.functions.elementary.integers as sympy_integers
from sympy.core.relational import Relational
from sympy.printing.str import StrPrinter
from sympy.matrices import GramSchmidt
from latex2sympy2_extended.sets import FiniteSet
from latex2sympy2_extended.logic import And
from sympy.parsing.sympy_parser import parse_expr

@dataclass(frozen=True)
class ConversionConfig:
    interpret_as_mixed_fractions: bool = True
    interpret_simple_eq_as_assignment: bool = False
    interpret_contains_as_eq: bool = True
    lowercase_symbols: bool = True
    """
    Args:
        interpret_as_mixed_fractions (bool): Whether to interpert 2 \frac{1}{2} as 2/2 or 2 + 1/2
        interpret_simple_eq_as_assignment (bool): Whether to interpret simple equations as assignments k=1 -> 1
        interpret_contains_as_eq (bool): Whether to interpret contains as equality x \\in {1,2,3} -> x = {1,2,3}
        lowercase_symbols (bool): Whether to lowercase all symbols
    """


def flatten_list(l):
    return [item for sublist in l for item in sublist]

def convert_number(number: str):
    # If it's 0,111 it's a float
    if "," in number and number.startswith("0"):
        number = number.replace(",", ".")

    integer = number.translate(str.maketrans("", "", ", ")).lstrip("0")
    if len(integer) == 0:
        integer = "0"
    return Number(integer)

def is_expr_of_only_symbols(expr):
    if hasattr(expr, 'is_Symbol') and expr.is_Symbol:
        return True

    # To allow A/S
    if hasattr(expr, 'is_Pow') and expr.is_Pow and expr.args[1] == -1 and (
        hasattr(expr.args[0], 'is_Symbol') and expr.args[0].is_Symbol
        or hasattr(expr.args[0], 'args') and all(is_expr_of_only_symbols(arg) for arg in expr.args[0].args)
    ):
        return True
    
    if hasattr(expr, 'args') and len(expr.args) > 0:
        return all(is_expr_of_only_symbols(arg) for arg in expr.args)
    return False


comma_number_regex = re.compile(r'^\s*-?\d{1,3}(,\d{3})+(\.\d+)?\s*$')

class _Latex2Sympy:
    def __init__(self, variable_values: dict | None = None, is_real=None, convert_degrees: bool = False, config: ConversionConfig = ConversionConfig()):
        # Instance variables
        self.is_real = is_real
        self.variances = {}  # For substituting
        self.var = {var:val if isinstance(val, Basic) or isinstance(val, MatrixBase) else parse_expr(val) for var, val in variable_values.items()} if variable_values else {}
        self.convert_degrees = convert_degrees
        self.config = config

    def create_parser(self, latex_str):
        """Create parser for latex string"""
        stream = InputStream(latex_str)
        lex = PSLexer(stream)
        lex.removeErrorListeners()
        lex.addErrorListener(self.MathErrorListener(latex_str))
        tokens = CommonTokenStream(lex)
        parser = PSParser(tokens)
        parser.removeErrorListeners()
        parser.addErrorListener(self.MathErrorListener(latex_str))
        return parser
    
    def parse(self, latex_str: str):
        """Main entry point to parse latex string"""
        # setup listener
        parser = self.create_parser(latex_str)

        # process the input
        math = parser.math()

        # if set relation
        if math.set_relation():
            return self.convert_set_relation(math.set_relation())
        
        if math.set_elements():
            # The issue with 333,333 or 3,333 is that it makess sets and numbers with commas ambigous
            # is that 333333 or {333,333}?
            # What we therefore do is that default to numbers with commas
            # We make the regex match directly on latex_str, because otherwise don't know if there is space
            # between the comma and the number, in this case it should be a set
            if comma_number_regex.match(latex_str):
                return convert_number(latex_str)
            return self.convert_set_elements(math.set_elements())
        
        if math.set_elements_relation():
            return self.convert_set_elements_relation(math.set_elements_relation())

        raise Exception('Nothing matched')

    class MathErrorListener(ErrorListener):
        def __init__(self, src):
            super(ErrorListener, self).__init__()
            self.src = src

        def syntaxError(self, recognizer, offendingSymbol, line, column, msg, e):
            fmt = "%s\n%s\n%s"
            marker = "~" * column + "^"

            if msg.startswith("missing"):
                err = fmt % (msg, self.src, marker)
            elif msg.startswith("no viable"):
                err = fmt % ("I expected something else here", self.src, marker)
            elif msg.startswith("mismatched"):
                names = PSParser.literalNames
                expected = [names[i] for i in e.getExpectedTokens() if i < len(names)]
                if len(expected) < 10:
                    expected = " ".join(expected)
                    err = (fmt % ("I expected one of these: " + expected,
                                self.src, marker))
                else:
                    err = (fmt % ("I expected something else here", self.src, marker))
            else:
                err = fmt % ("I don't understand this", self.src, marker)
            raise Exception(err)

    def convert_relation(self, rel):
        if rel.expr():
            return self.convert_expr(rel.expr())
        
        lh = self.convert_relation(rel.relation(0))
        rh = self.convert_relation(rel.relation(1))

        if rel.LT():
            if isinstance(lh, And):
                return And(*lh._unsorted_args, sympy.StrictLessThan(lh._unsorted_args[-1].rhs, rh, evaluate=False))
            elif isinstance(lh, Relational):
                return And(lh, sympy.StrictLessThan(lh.rhs, rh, evaluate=False))
            return sympy.StrictLessThan(lh, rh, evaluate=False)
        elif rel.LTE():
            if isinstance(lh, And):
                return And(*lh._unsorted_args, sympy.LessThan(lh._unsorted_args[-1].rhs, rh, evaluate=False))
            elif isinstance(lh, Relational):
                return And(lh, sympy.LessThan(lh.rhs, rh, evaluate=False))
            return sympy.LessThan(lh, rh, evaluate=False)
        elif rel.GT():
            if isinstance(lh, And):
                return And(*lh._unsorted_args, sympy.StrictGreaterThan(lh._unsorted_args[-1].rhs, rh, evaluate=False))
            elif isinstance(lh, Relational):
                return And(lh, sympy.StrictGreaterThan(lh.rhs, rh, evaluate=False))
            return sympy.StrictGreaterThan(lh, rh, evaluate=False)
        elif rel.GTE():
            if isinstance(lh, And):
                return And(*lh._unsorted_args, sympy.GreaterThan(lh._unsorted_args[-1].rhs, rh, evaluate=False))
            elif isinstance(lh, Relational):
                return And(lh, sympy.GreaterThan(lh.rhs, rh, evaluate=False))
            return sympy.GreaterThan(lh, rh, evaluate=False)
        elif rel.EQUAL():
            if isinstance(lh, And):
                return And(*lh._unsorted_args, sympy.Eq(lh._unsorted_args[-1].rhs, rh, evaluate=False))
            elif isinstance(lh, Relational):
                return And(lh, sympy.Eq(lh.rhs, rh, evaluate=False))
            return sympy.Eq(lh, rh, evaluate=False)
        elif rel.ASSIGNMENT():
            # !Use Global variances
            if self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(lh):
                # set value
                self.variances[lh] = rh
                self.var[str(lh)] = rh
                return rh
            else:
                if isinstance(lh, And):
                    return And(*lh._unsorted_args, sympy.Eq(lh._unsorted_args[-1].rhs, rh, evaluate=False))
                elif isinstance(lh, Relational):
                    return And(lh, sympy.Eq(lh.rhs, rh, evaluate=False))
                return sympy.Eq(lh, rh, evaluate=False)
        elif rel.APPROX():
            if is_expr_of_only_symbols(lh):
                self.variances[lh] = rh
                self.var[str(lh)] = rh
                return rh
            else:
                # We don't want approximation, so we jsut take the non-approximated value
                return lh
        elif rel.IN():
            # !Use Global variances
            if hasattr(rh, 'is_Pow') and rh.is_Pow and hasattr(rh.exp, 'is_Mul'):
                n = rh.exp.args[0]
                m = rh.exp.args[1]
                if n in self.variances:
                    n = self.variances[n]
                if m in self.variances:
                    m = self.variances[m]
                rh = sympy.MatrixSymbol(lh, n, m)
                self.variances[lh] = rh
                self.var[str(lh)] = rh
            elif self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(lh):
                self.variances[lh] = rh
                self.var[str(lh)] = rh
                return rh
            else:
                raise Exception('Unrecognized relation')
            return lh
        elif rel.UNEQUAL():
            if isinstance(lh, And):
                return And(*lh._unsorted_args, sympy.Ne(lh._unsorted_args[-1].rhs, rh, evaluate=False))
            elif isinstance(lh, Relational):
                return And(lh, sympy.Ne(lh.rhs, rh, evaluate=False))
            return sympy.Ne(lh, rh, evaluate=False)


    def convert_set_relation(self, expr):
        if expr.atom_expr_list():
            left = self.convert_atom_expr_list(expr.atom_expr_list())
            right = self.convert_set_relation(expr.set_relation()[0])
            if expr.IN():
                if self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(left):
                    # set value
                    self.variances[left] = right
                    self.var[str(left)] = right
                    return right
                elif self.config.interpret_contains_as_eq:
                    return sympy.Eq(left, right, evaluate=False)
                else:
                    return sympy.Contains(left, right, evaluate=False)
            elif expr.ASSIGNMENT():
                if self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(left):
                    # set value
                    self.variances[left] = right
                    self.var[str(left)] = right
                    return right
                else:
                    return sympy.Eq(left, right, evaluate=False)
            elif expr.NOTIN():
                if self.config.interpret_contains_as_eq:
                    val = (sympy.S.Reals if self.is_real else sympy.S.Complexes) - right
                    if self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(left):
                        self.variances[left] = val
                        self.var[str(left)] = val
                        return val
                    else:
                        return sympy.Not(sympy.Eq(left, right, evaluate=False), evaluate=False)
                else:
                    return sympy.Not(right.contains(left))

        if expr.set_relation():
            left = self.convert_set_relation(expr.set_relation()[0])
            right = self.convert_set_relation(expr.set_relation()[1])
            if expr.SUBSET():
                return left.is_subset(right)
            if expr.SUPSET():
                return right.is_subset(left)
            raise Exception('Unrecognized set relation')
        return self.convert_set_minus(expr.minus_expr())

    def convert_elements_to_set_or_tuple(self, elements):
        """Helper function to convert elements to either a FiniteSet or Tuple based on content"""
        if len(elements) == 1:
            if len(elements[0]) == 1:
                return elements[0][0]
            return FiniteSet(*elements[0])
        elif all(len(elem) == 1 for elem in elements):
            return FiniteSet(*[elem[0] for elem in elements])
        else:
            return FiniteSet(*[
                sympy.Tuple(*l) for l in elements
            ])

    def convert_set_elements_relation(self, expr):
        semicolon_elements_no_relation = self.convert_semicolon_elements_no_relation(expr.semicolon_elements_no_relation())
        set_elements = self.convert_elements_to_set_or_tuple(semicolon_elements_no_relation)

        atom_expressions = self.convert_atom_expr_list(expr.atom_expr_list())
        if expr.IN():
            if self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(atom_expressions):
                # set value
                self.variances[atom_expressions] = set_elements
                self.var[str(atom_expressions)] = set_elements
                return set_elements
            elif self.config.interpret_contains_as_eq:
                return sympy.Eq(atom_expressions, set_elements, evaluate=False)
            else:
                return sympy.Contains(atom_expressions, set_elements, evaluate=False)
        elif expr.ASSIGNMENT():
            if self.config.interpret_simple_eq_as_assignment and is_expr_of_only_symbols(atom_expressions):
                # set value
                self.variances[atom_expressions] = set_elements
                self.var[str(atom_expressions)] = set_elements
                return set_elements
            else:
                return sympy.Eq(atom_expressions, set_elements, evaluate=False)
        return set_elements

    def convert_set_elements(self, expr):
        semicolon_elements = self.convert_semicolon_elements(expr.semicolon_elements())
        return self.convert_elements_to_set_or_tuple(semicolon_elements)


    def convert_set_minus(self, expr):
        if expr.union_expr():
            return self.convert_set_union(expr.union_expr())

        left = self.convert_set_minus(expr.minus_expr()[0])
        right = self.convert_set_minus(expr.minus_expr()[1])
        return sympy.Complement(left, right, evaluate=False)

    def convert_set_union(self, expr):
        if expr.intersection_expr():
            return self.convert_set_intersection(expr.intersection_expr())

        left = self.convert_set_union(expr.union_expr()[0])
        right = self.convert_set_union(expr.union_expr()[1])
        
        # It's hard to know what the user meant, but clearly we cant do intersection with tuple
        if isinstance(left, sympy.Tuple):
            left = FiniteSet(*left)

        if isinstance(right, sympy.Tuple):
            right = FiniteSet(*right)

        return sympy.Union(left, right, evaluate=False)

    def convert_set_intersection(self, expr):
        if expr.set_group():
            return self.convert_set_group(expr.set_group())

        left = self.convert_set_intersection(expr.intersection_expr()[0])
        right = self.convert_set_intersection(expr.intersection_expr()[1])

        if isinstance(left, sympy.Tuple):
            left = FiniteSet(*left)

        if isinstance(right, sympy.Tuple):
            right = FiniteSet(*right)

        return sympy.Intersection(left, right, evaluate=False)


    def convert_set_group(self, expr):
        if expr.set_atom():
            return self.convert_set_atom(expr.set_atom())

        return self.convert_set_minus(expr.minus_expr())

    def convert_set_atom(self, expr):
        if expr.literal_set():
            return self.convert_literal_set(expr.literal_set())
        if expr.interval():
            return self.convert_interval(expr.interval())
        if expr.ordered_tuple():
            return self.convert_ordered_tuple(expr.ordered_tuple())
        if expr.finite_set():
            return self.convert_finite_set(expr.finite_set())
        raise Exception('Unrecognized set atom')

    def convert_interval(self, expr):
        left_open = expr.L_PAREN() is not None or expr.L_GROUP() is not None or expr.L_PAREN_VISUAL() is not None
        right_open = expr.R_PAREN() is not None or expr.R_GROUP() is not None or expr.R_PAREN_VISUAL() is not None

        left = self.convert_expr(expr.expr()[0])
        right = self.convert_expr(expr.expr()[1])

        # It doesn't make sense to have interval which represents an empty set, in this case we treat it as a finite set
        try:
            if (left_open and right_open and right <= left) or (not left_open and not right_open and right < left):
                return sympy.Tuple(left, right)
        except Exception:
            pass

        return sympy.Interval(left, right, left_open=left_open, right_open=right_open)

    def convert_ordered_tuple(self, expr):
        elements = self.convert_semicolon_elements(expr.semicolon_elements())
        # We don't support 1 element tuples
        if len(elements) == 1 and len(elements[0]) == 1:
            return elements[0][0]
        return sympy.Tuple(*flatten_list(elements))

    def convert_finite_set(self, expr):
        content = self.convert_semicolon_elements(expr.semicolon_elements())
        # Sometimes people wrap either \boxed{a,b,c}, which we want to be a set,
        # but also \boxed{1} which we want to be a number
        if expr.BOXED_CMD():
            return self.convert_elements_to_set_or_tuple(content)
        return FiniteSet(*flatten_list(content))

    def convert_semicolon_elements(self, expr):
        result = [self.convert_comma_elements(element) for element in expr.comma_elements()]
        return result

    def convert_semicolon_elements_no_relation(self, expr):
        result = [self.convert_comma_elements_no_relation(element) for element in expr.comma_elements_no_relation()]
        return result

    def convert_comma_elements(self, expr):
        result = flatten_list(self.convert_element(element) for element in expr.element())
        return result

    def convert_comma_elements_no_relation(self, expr):
        result = flatten_list(self.convert_element(element) for element in expr.element_no_relation())
        return result

    def as_unary_minus(self, expr):
        if hasattr(expr, 'is_Rational') and expr.is_Rational:
            return sympy.Rational(-expr.p, expr.q)
        elif hasattr(expr, 'is_Integer') and expr.is_Integer:
            return -expr
        return sympy.Mul(-1, expr, evaluate=False)



    def convert_element(self, element):
        if element.plus_minus_expr():
            pm = element.plus_minus_expr()
            if len(pm.expr()) == 1:
                expr = self.convert_expr(pm.expr()[0])
                return [self.as_unary_minus(expr), expr]
            left = self.convert_expr(pm.expr()[0])
            right = self.convert_expr(pm.expr()[1])
            return [sympy.Add(left, right, evaluate=False), sympy.Add(left, self.as_unary_minus(right), evaluate=False)]
        elif element.set_atom():
            return [self.convert_set_atom(element.set_atom())]
        
        elif hasattr(element, 'relation') and element.relation():
            return [self.convert_relation(element.relation())]

        elif hasattr(element, 'expr') and element.expr():
            return [self.convert_expr(element.expr())]
        else:
            raise Exception('Unrecognized comma element')
    

        # Fallback because for some reason finites set wtih paren parses sometimes first
        # instead of interval
        return elements

    def convert_literal_set(self, expr):
        if expr.SET_NATURALS():
            return sympy.S.Naturals
        elif expr.SET_INTEGERS():
            return sympy.S.Integers
        elif expr.SET_RATIONALS():
            return sympy.S.Rationals
        elif expr.SET_REALS():
            return sympy.S.Reals
        elif expr.SET_COMPLEX():
            return sympy.S.Complexes
        elif expr.SET_EMPTY() or expr.L_BRACE() and expr.R_BRACE():
            return sympy.S.EmptySet
        raise Exception('Unrecognized literal set')


    def convert_expr(self, expr):
        if expr.additive():
            return self.convert_add(expr.additive())


    def convert_elementary_transform(self, matrix, transform):
        if transform.transform_scale():
            transform_scale = transform.transform_scale()
            transform_atom = transform_scale.transform_atom()
            k = None
            num = int(transform_atom.NUMBER().getText()) - 1
            if transform_scale.expr():
                k = self.convert_expr(transform_scale.expr())
            elif transform_scale.group():
                k = self.convert_expr(transform_scale.group().expr())
            elif transform_scale.SUB():
                k = -1
            else:
                k = 1
            if transform_atom.LETTER_NO_E().getText() == 'r':
                matrix = matrix.elementary_row_op(op='n->kn', row=num, k=k)
            elif transform_atom.LETTER_NO_E().getText() == 'c':
                matrix = matrix.elementary_col_op(op='n->kn', col=num, k=k)
            else:
                raise Exception('Row and col don\'s match')

        elif transform.transform_swap():
            first_atom = transform.transform_swap().transform_atom()[0]
            second_atom = transform.transform_swap().transform_atom()[1]
            first_num = int(first_atom.NUMBER().getText()) - 1
            second_num = int(second_atom.NUMBER().getText()) - 1
            if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
                raise Exception('Row and col don\'s match')
            elif first_atom.LETTER_NO_E().getText() == 'r':
                matrix = matrix.elementary_row_op(op='n<->m', row1=first_num, row2=second_num)
            elif first_atom.LETTER_NO_E().getText() == 'c':
                matrix = matrix.elementary_col_op(op='n<->m', col1=first_num, col2=second_num)
            else:
                raise Exception('Row and col don\'s match')

        elif transform.transform_assignment():
            first_atom = transform.transform_assignment().transform_atom()
            second_atom = transform.transform_assignment().transform_scale().transform_atom()
            transform_scale = transform.transform_assignment().transform_scale()
            k = None
            if transform_scale.expr():
                k = self.convert_expr(transform_scale.expr())
            elif transform_scale.group():
                k = self.convert_expr(transform_scale.group().expr())
            elif transform_scale.SUB():
                k = -1
            else:
                k = 1
            first_num = int(first_atom.NUMBER().getText()) - 1
            second_num = int(second_atom.NUMBER().getText()) - 1
            if first_atom.LETTER_NO_E().getText() != second_atom.LETTER_NO_E().getText():
                raise Exception('Row and col don\'s match')
            elif first_atom.LETTER_NO_E().getText() == 'r':
                matrix = matrix.elementary_row_op(op='n->n+km', k=k, row1=first_num, row2=second_num)
            elif first_atom.LETTER_NO_E().getText() == 'c':
                matrix = matrix.elementary_col_op(op='n->n+km', k=k, col1=first_num, col2=second_num)
            else:
                raise Exception('Row and col don\'s match')

        return matrix


    def convert_matrix(self, matrix):
        # build matrix
        row = matrix.matrix_row()
        tmp = []
        rows = 0
        mat = None

        for r in row:
            tmp.append([])
            for expr in r.expr():
                tmp[rows].append(self.convert_expr(expr))
            rows = rows + 1

        mat = sympy.Matrix(tmp)

        if hasattr(matrix, 'MATRIX_XRIGHTARROW') and matrix.MATRIX_XRIGHTARROW():
            transforms_list = matrix.elementary_transforms()
            if len(transforms_list) == 1:
                for transform in transforms_list[0].elementary_transform():
                    mat = self.convert_elementary_transform(mat, transform)
            elif len(transforms_list) == 2:
                # firstly transform top of xrightarrow
                for transform in transforms_list[1].elementary_transform():
                    mat = self.convert_elementary_transform(mat, transform)
                # firstly transform bottom of xrightarrow
                for transform in transforms_list[0].elementary_transform():
                    mat = self.convert_elementary_transform(mat, transform)

        return mat


    def add_flat(self, lh, rh):
        if hasattr(lh, 'is_Add') and lh.is_Add or hasattr(rh, 'is_Add') and rh.is_Add:
            args = []
            if hasattr(lh, 'is_Add') and lh.is_Add:
                args += list(lh.args)
            else:
                args += [lh]
            if hasattr(rh, 'is_Add') and rh.is_Add:
                args = args + list(rh.args)
            else:
                args += [rh]
            return sympy.Add(*args, evaluate=False)
        else:
            return sympy.Add(lh, rh, evaluate=False)


    def mat_add_flat(self, lh, rh):
        if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd or hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
            args = []
            if hasattr(lh, 'is_MatAdd') and lh.is_MatAdd:
                args += list(lh.args)
            else:
                args += [lh]
            if hasattr(rh, 'is_MatAdd') and rh.is_MatAdd:
                args = args + list(rh.args)
            else:
                args += [rh]
            # Previously there doit, but I don't think it's needed
            return sympy.MatAdd(*[arg for arg in args], evaluate=False)
        else:
            return sympy.MatAdd(lh, rh, evaluate=False)


    def mul_flat(self, lh, rh):
        if hasattr(lh, 'is_Mul') and lh.is_Mul or hasattr(rh, 'is_Mul') and rh.is_Mul:
            args = []
            if hasattr(lh, 'is_Mul') and lh.is_Mul:
                args += list(lh.args)
            else:
                args += [lh]
            if hasattr(rh, 'is_Mul') and rh.is_Mul:
                args = args + list(rh.args)
            else:
                args += [rh]
            return sympy.Mul(*args, evaluate=False)
        else:
            return sympy.Mul(lh, rh, evaluate=False)


    def mat_mul_flat(self, lh, rh):
        if hasattr(lh, 'is_MatMul') and lh.is_MatMul or hasattr(rh, 'is_MatMul') and rh.is_MatMul:
            args = []
            if hasattr(lh, 'is_MatMul') and lh.is_MatMul:
                args += list(lh.args)
            else:
                args += [lh]
            if hasattr(rh, 'is_MatMul') and rh.is_MatMul:
                args = args + list(rh.args)
            else:
                args += [rh]
            return sympy.MatMul(*[arg for arg in args], evaluate=False)
        else:
            # We don't have to doit there
            # if hasattr(lh, 'is_Matrix'):
            #     lh = lh.doit()
            # if hasattr(rh, 'is_Matrix'):
            #     rh = rh.doit()
            return sympy.MatMul(lh, rh, evaluate=False)


    def convert_add(self, add):
        if add.ADD():
            lh = self.convert_add(add.additive(0))
            rh = self.convert_add(add.additive(1))

            if (hasattr(lh, 'is_Matrix') and lh.is_Matrix) or (hasattr(rh, 'is_Matrix') and rh.is_Matrix):
                return self.mat_add_flat(lh, rh)
            else:
                return self.add_flat(lh, rh)
        elif add.SUB():
            lh = self.convert_add(add.additive(0))
            rh = self.convert_add(add.additive(1))

            if (hasattr(lh, 'is_Matrix') and lh.is_Matrix) or (hasattr(rh, 'is_Matrix') and rh.is_Matrix):
                return self.mat_add_flat(lh, self.mat_mul_flat(-1, rh))
            else:
                # If we want to force ordering for variables this should be:
                # return Sub(lh, rh, evaluate=False)
                if not (hasattr(rh, 'is_Matrix') and rh.is_Matrix) and (hasattr(rh, 'func') and rh.func.is_Number):
                    rh = -rh
                else:
                    rh = self.mul_flat(-1, rh)
                return self.add_flat(lh, rh)
        else:
            return self.convert_mp(add.mp())


    def convert_mp(self, mp):
        if hasattr(mp, 'mp'):
            mp_left = mp.mp(0)
            mp_right = mp.mp(1)
        else:
            mp_left = mp.mp_nofunc(0)
            mp_right = mp.mp_nofunc(1)

        if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
            lh = self.convert_mp(mp_left)
            rh = self.convert_mp(mp_right)

            if (hasattr(lh, 'is_Matrix') and lh.is_Matrix) or (hasattr(rh, 'is_Matrix') and rh.is_Matrix):
                return self.mat_mul_flat(lh, rh)
            else:
                return self.mul_flat(lh, rh)
        elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
            lh = self.convert_mp(mp_left)
            rh = self.convert_mp(mp_right)
            if (hasattr(lh, 'is_Matrix') and lh.is_Matrix) or (hasattr(rh, 'is_Matrix') and rh.is_Matrix):
                return sympy.MatMul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
            
            # If both are numbers, we convert to sympy.Rational
            elif hasattr(lh, 'is_Integer') and lh.is_Integer and hasattr(rh, 'is_Integer') and rh.is_Integer:
                return sympy.Rational(lh, rh)
            else:
                return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
        elif mp.CMD_MOD():
            lh = self.convert_mp(mp_left)
            rh = self.convert_mp(mp_right)
            if (hasattr(rh, 'is_Matrix') and rh.is_Matrix):
                raise Exception("Cannot perform modulo operation with a matrix as an operand")
            else:
                return sympy.Mod(lh, rh, evaluate=False)
        else:
            if hasattr(mp, 'unary'):
                return self.convert_unary(mp.unary())
            else:
                return self.convert_unary(mp.unary_nofunc())


    def convert_unary(self, unary):
        if hasattr(unary, 'unary'):
            nested_unary = unary.unary()
        else:
            nested_unary = unary.unary_nofunc()
        if hasattr(unary, 'postfix_nofunc'):
            first = unary.postfix()
            tail = unary.postfix_nofunc()
            postfix = [first] + tail
        else:
            postfix = unary.postfix()

        if unary.ADD():
            return self.convert_unary(nested_unary)
        elif unary.SUB():
            tmp_convert_nested_unary = self.convert_unary(nested_unary)
            if (hasattr(tmp_convert_nested_unary, 'is_Matrix') and tmp_convert_nested_unary.is_Matrix):
                return self.mat_mul_flat(-1, tmp_convert_nested_unary)
            else:
                if (hasattr(tmp_convert_nested_unary, 'func') and tmp_convert_nested_unary.func.is_Number):
                    return -tmp_convert_nested_unary
                
                elif hasattr(tmp_convert_nested_unary, 'is_Number') and tmp_convert_nested_unary.is_Number:
                    return -tmp_convert_nested_unary
                else:
                    return self.mul_flat(-1, tmp_convert_nested_unary)
        elif postfix:
            return self.convert_postfix_list(postfix)


    def convert_postfix_list(self, arr, i=0):
        if i >= len(arr):
            raise Exception("Index out of bounds")

        res = self.convert_postfix(arr[i])

        if isinstance(res, sympy.Expr) or isinstance(res, sympy.Matrix):
            if i == len(arr) - 1:
                return res  # nothing to multiply by
            else:
                # multiply by next
                rh = self.convert_postfix_list(arr, i + 1)

                if (hasattr(res, 'is_Matrix') and res.is_Matrix) or (hasattr(rh, 'is_Matrix') and rh.is_Matrix):
                    return self.mat_mul_flat(res, rh)
                # Support for mixed fractions, 2 \frac{1}{2}
                elif hasattr(res, 'is_Integer') and res.is_Integer and hasattr(rh, 'is_Rational') and rh.is_Rational and rh.p > 0 and rh.q > 0:
                    if res < 0:
                        return sympy.Rational(res*rh.q - rh.p, rh.q)
                    else:
                        return sympy.Rational(res*rh.q + rh.p, rh.q)
                else:
                    return self.mul_flat(res, rh)
        elif isinstance(res, list) and len(res) == 1:  # must be derivative
            wrt = res[0]
            if i == len(arr) - 1:
                raise Exception("Expected expression for derivative")
            else:
                expr = self.convert_postfix_list(arr, i + 1)
                return sympy.Derivative(expr, wrt)
        
        return res


    def do_subs(self, expr, at):
        if at.expr():
            at_expr = self.convert_expr(at.expr())
            syms = at_expr.atoms(sympy.Symbol)
            if len(syms) == 0:
                return expr
            elif len(syms) > 0:
                sym = next(iter(syms))
                return expr.subs(sym, at_expr)
        elif at.equality():
            lh = self.convert_expr(at.equality().expr(0))
            rh = self.convert_expr(at.equality().expr(1))
            return expr.subs(lh, rh)


    def convert_postfix(self, postfix):
        if hasattr(postfix, 'exp'):
            exp_nested = postfix.exp()
        else:
            exp_nested = postfix.exp_nofunc()

        exp = self.convert_exp(exp_nested)
        for op in postfix.postfix_op():
            if op.BANG():
                if isinstance(exp, list):
                    raise Exception("Cannot apply postfix to derivative")
                exp = sympy.factorial(exp, evaluate=False)
            elif op.eval_at():
                ev = op.eval_at()
                at_b = None
                at_a = None
                if ev.eval_at_sup():
                    at_b = self.do_subs(exp, ev.eval_at_sup())
                if ev.eval_at_sub():
                    at_a = self.do_subs(exp, ev.eval_at_sub())
                if at_b is not None and at_a is not None:
                    exp = self.add_flat(at_b, self.mul_flat(at_a, -1))
                elif at_b is not None:
                    exp = at_b
                elif at_a is not None:
                    exp = at_a
            elif op.transpose():
                try:
                    exp = exp.T
                except Exception:
                    try:
                        exp = sympy.transpose(exp)
                    except Exception:
                        pass
                    pass
            elif op.degree() and self.convert_degrees:
                try:
                    exp = sympy.Mul(exp, sympy.pi/180)
                except Exception:
                    pass

        return exp


    def convert_exp(self, exp):
        if hasattr(exp, 'exp'):
            exp_nested = exp.exp()
        else:
            exp_nested = exp.exp_nofunc()

        if exp_nested:
            base = self.convert_exp(exp_nested)
            if isinstance(base, list):
                raise Exception("Cannot raise derivative to power")
            if exp.atom():
                exponent = self.convert_atom(exp.atom())
            else:
                # It's expr
                exponent = self.convert_expr(exp.expr())

            return sympy.Pow(base, exponent, evaluate=False)
        else:
            if hasattr(exp, 'comp'):
                return self.convert_comp(exp.comp())
            else:
                return self.convert_comp(exp.comp_nofunc())


    def convert_comp(self, comp):
        if comp.group():
            return self.convert_expr(comp.group().expr())
        elif comp.formatting_group():
            return self.convert_expr(comp.formatting_group().expr())
        elif comp.norm_group():
            return self.convert_expr(comp.norm_group().expr()).norm()
        elif comp.abs_group():
            return sympy.Abs(self.convert_expr(comp.abs_group().expr()), evaluate=False)
        elif comp.floor_group():
            return self.handle_floor(self.convert_expr(comp.floor_group().expr()))
        elif comp.ceil_group():
            return self.handle_ceil(self.convert_expr(comp.ceil_group().expr()))
        elif comp.atom():
            return self.convert_atom(comp.atom())
        elif comp.frac():
            return self.convert_frac(comp.frac())
        elif comp.binom():
            return self.convert_binom(comp.binom())
        elif comp.matrix():
            return self.convert_matrix(comp.matrix())
        elif comp.det():
            # !Use Global variances
            return self.convert_matrix(comp.det()).subs(self.variances).det()
        elif comp.func():
            return self.convert_func(comp.func())


    def convert_atom_expr(self, atom_expr):
        # find the atom's text
        atom_text = ''
        if atom_expr.LETTER_NO_E():
            atom_text = atom_expr.LETTER_NO_E().getText()
            if atom_text == "I":
                return sympy.I
        elif atom_expr.GREEK_CMD():
            atom_text = atom_expr.GREEK_CMD().getText()
        elif atom_expr.OTHER_SYMBOL_CMD():
            atom_text = atom_expr.OTHER_SYMBOL_CMD().getText()
        elif atom_expr.ACCENT():
            atom_text = atom_expr.ACCENT().getText()
            # Remove the command by striping first { and last }
            text_start = atom_text.index('{')
            accent_name = atom_text[1:text_start]
            accent_text = atom_text[text_start + 1:-1].replace(" ", "")
            # exception: check if bar or overline which are treated both as bar
            if accent_name in ["bar", "overline"]:
                accent_name = "bar"
            elif accent_name in ["vec", "overrightarrow"]:
                accent_name = "vec"
            elif accent_name in ["tilde", "widetilde"]:
                accent_name = "tilde"
            elif "text" in accent_name or "mbox" in accent_name:
                # We ignore text accents so that $C$ == $\\text{C}$
                accent_name = ""
                # Remove the parentheses
                accent_text = accent_text.replace("(", "").replace(")", "")
            elif "math" in accent_name:
                accent_name = "math"
            
            if accent_name:
                atom_text = f"{accent_name}{{{accent_text}}}"
            else:
                atom_text = accent_text

        # find atom's subscript, if any
        subscript_text = ''
        if atom_expr.subexpr():
            subexpr = atom_expr.subexpr()
            subscript = None
            if subexpr.expr():  # subscript is expr
                subscript = subexpr.expr().getText().strip()
            elif subexpr.atom():  # subscript is atom
                subscript = subexpr.atom().getText().strip()
            elif subexpr.args():  # subscript is args
                subscript = subexpr.args().getText().strip()
            subscript_inner_text = StrPrinter().doprint(subscript)
            if len(subscript_inner_text) > 1:
                subscript_text = '_{' + subscript_inner_text + '}'
            else:
                subscript_text = '_' + subscript_inner_text

        # construct the symbol using the text and optional subscript
        atom_symbol = get_symbol(atom_text.strip() + subscript_text, self.is_real, self.config.lowercase_symbols)
        # for matrix symbol
        matrix_symbol = None
        if atom_text + subscript_text in self.var:
            try:
                rh = self.var[atom_text + subscript_text]
                shape = sympy.shape(rh)
                matrix_symbol = sympy.MatrixSymbol(atom_text + subscript_text, shape[0], shape[1])
                self.variances[matrix_symbol] = self.variances[atom_symbol]
            except Exception:
                pass

        # find the atom's superscript, and return as a Pow if found
        if atom_expr.supexpr():
            supexpr = atom_expr.supexpr()
            func_pow = None
            if supexpr.expr():
                func_pow = self.convert_expr(supexpr.expr())
            else:
                func_pow = self.convert_atom(supexpr.atom())
            return sympy.Pow(atom_symbol, func_pow, evaluate=False)

        return atom_symbol if not matrix_symbol else matrix_symbol

    def convert_atom_expr_list(self, atom_expr_list):
        converted_atoms = [self.convert_atom_expr(atom_expr) for atom_expr in atom_expr_list.atom_expr()]
        if len(converted_atoms) == 1:
            return converted_atoms[0]
        return sympy.Tuple(*converted_atoms)

    def create_symbol(self, text, enforce_case=False):
        if self.config.lowercase_symbols and not enforce_case:
            return sympy.Symbol(text.lower(), real=self.is_real)
        else:
            return sympy.Symbol(text, real=self.is_real)

    def convert_atom(self, atom):
        if atom.atom_expr():
            return self.convert_atom_expr(atom.atom_expr())
        elif atom.SYMBOL():
            s = atom.SYMBOL().getText().replace("\\$", "").replace("\\%", "")
            if s == "\\infty":
                return sympy.oo
            else:
                raise Exception("Unrecognized symbol")
        elif atom.number_subexpr():
            # We just ignore the subexpr right now
            s = atom.number_subexpr().NUMBER().getText()
            number = self.parse_number(s)
            return number
        elif atom.E_NOTATION():
            s = atom.E_NOTATION().getText()
            return self.parse_number(s)
        elif atom.E_NOTATION_E():
            return self.create_symbol('E')
        elif atom.DIFFERENTIAL():
            diff_var = self.get_differential_var(atom.DIFFERENTIAL())
            return sympy.Symbol('d' + diff_var.name, real=self.is_real)
        elif atom.VARIABLE():
            text = atom.VARIABLE().getText()
            is_percent = text.endswith("\\%")
            trim_amount = 3 if is_percent else 1
            atom_text = text[10:]
            atom_text = atom_text[0:len(atom_text) - trim_amount]

            # Hynek: I don't think we want this to happen
            # replace the variable for already known variable values
            # if atom_text in self.var:
            #     symbol = self.var[atom_text]
            # else:
            symbol = self.create_symbol(atom_text)

            if is_percent:
                return convert_to_pct(symbol)

            # return the symbol
            return symbol

        elif atom.PERCENT_NUMBER():
            text = atom.PERCENT_NUMBER().getText().replace("\\%", "").replace("%", "").replace(",", "")
            number = self.parse_number(text)
            percent = sympy.Mul(number, Rational(1, 100), evaluate=False)
            return percent
    def parse_number(self, text):
        text = text.replace(",", "")
        # If it's made only of digits, remove the starting 0
        if text.isdigit():
            while len(text) > 1 and text[0] == '0':
                text = text[1:]
        return sympy.Number(text)


    def rule2text(self, ctx):
        stream = ctx.start.getInputStream()
        # starting index of starting token
        startIdx = ctx.start.start
        # stopping index of stopping token
        stopIdx = ctx.stop.stop

        return stream.getText(startIdx, stopIdx)


    def convert_frac(self, frac):
        diff_op = False
        partial_op = False
        lower_itv = frac.lower.getSourceInterval()
        lower_itv_len = lower_itv[1] - lower_itv[0] + 1
        wrt = None
        if (frac.lower.start == frac.lower.stop and
                frac.lower.start.type == PSLexer.DIFFERENTIAL):
            wrt = self.get_differential_var_str(frac.lower.start.text)
            diff_op = True
        elif (lower_itv_len == 2 and
            frac.lower.start.type == PSLexer.SYMBOL and
            frac.lower.start.text == '\\partial' and
            (frac.lower.stop.type == PSLexer.LETTER_NO_E or frac.lower.stop.type == PSLexer.SYMBOL)):
            partial_op = True
            wrt = frac.lower.stop.text
            if frac.lower.stop.type == PSLexer.SYMBOL:
                wrt = wrt[1:]

        if diff_op or partial_op:
            wrt = self.create_symbol(wrt, enforce_case=True)
            if (diff_op and frac.upper.start == frac.upper.stop and
                frac.upper.start.type == PSLexer.LETTER_NO_E and
                    frac.upper.start.text == 'd'):
                return [wrt]
            elif (partial_op and frac.upper.start == frac.upper.stop and
                frac.upper.start.type == PSLexer.SYMBOL and
                frac.upper.start.text == '\\partial'):
                return [wrt]
            upper_text = self.rule2text(frac.upper)

            expr_top = None
            if diff_op and upper_text.startswith('d'):
                expr_top = self.parse(upper_text[1:])
            elif partial_op and frac.upper.start.text == '\\partial':
                expr_top = self.parse(upper_text[len('\\partial'):])
            if expr_top:
                return sympy.Derivative(expr_top, wrt)

        expr_top = self.convert_expr(frac.upper)
        expr_bot = self.convert_expr(frac.lower)
        if hasattr(expr_top, 'is_Matrix') and expr_top.is_Matrix or hasattr(expr_bot, 'is_Matrix') and expr_bot.is_Matrix:
            return sympy.MatMul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)
        
        elif hasattr(expr_top, 'is_Integer') and expr_top.is_Integer and hasattr(expr_bot, 'is_Integer') and expr_bot.is_Integer:
            return sympy.Rational(expr_top, expr_bot)
        else:
            return sympy.Mul(expr_top, sympy.Pow(expr_bot, -1, evaluate=False), evaluate=False)


    def convert_binom(self, binom):
        expr_top = self.convert_expr(binom.upper)
        expr_bot = self.convert_expr(binom.lower)
        return sympy.binomial(expr_top, expr_bot)


    def convert_func(self, func):
        if func.func_normal_single_arg():
            if func.func_single_arg():  # function called with parenthesis
                arg = self.convert_func_arg(func.func_single_arg())
            else:
                arg = self.convert_func_arg(func.func_single_arg_noparens())

            name = func.func_normal_single_arg().start.text[1:]


            # get pow
            func_pow = None
            if func.supexpr():
                if func.supexpr().expr():
                    func_pow = self.convert_expr(func.supexpr().expr())
                else:
                    func_pow = self.convert_atom(func.supexpr().atom())

            # change arc<trig> -> a<trig>
            if name in ["arcsin", "arccos", "arctan", "arccsc", "arcsec",
                        "arccot"]:
                name = "a" + name[3:]
                expr = getattr(sympy_trig, name)(arg, evaluate=False)
            elif name in ["arsinh", "arcosh", "artanh"]:
                name = "a" + name[2:]
                expr = getattr(sympy_hyperbolic, name)(arg, evaluate=False)
            elif name in ["arcsinh", "arccosh", "arctanh"]:
                name = "a" + name[3:]
                expr = getattr(sympy_hyperbolic, name)(arg, evaluate=False)
            elif name == "operatorname":
                operatorname = func.func_normal_single_arg().func_operator_name.getText()

                if operatorname in ["arsinh", "arcosh", "artanh"]:
                    operatorname = "a" + operatorname[2:]
                    expr = getattr(sympy_hyperbolic, operatorname)(arg, evaluate=False)
                elif operatorname in ["arcsinh", "arccosh", "arctanh"]:
                    operatorname = "a" + operatorname[3:]
                    expr = getattr(sympy_hyperbolic, operatorname)(arg, evaluate=False)
                elif operatorname == "floor":
                    expr = self.handle_floor(arg)
                elif operatorname == "ceil":
                    expr = self.handle_ceil(arg)
                elif operatorname == 'eye':
                    expr = sympy.eye(arg)
                elif operatorname == 'rank':
                    expr = sympy.Integer(arg.rank())
                elif operatorname in ['trace', 'tr']:
                    expr = arg.trace()
                elif operatorname == 'rref':
                    expr = arg.rref()[0]
                elif operatorname == 'nullspace':
                    expr = arg.nullspace()
                elif operatorname == 'norm':
                    expr = arg.norm()
                elif operatorname == 'cols':
                    expr = [arg.col(i) for i in range(arg.cols)]
                elif operatorname == 'rows':
                    expr = [arg.row(i) for i in range(arg.rows)]
                elif operatorname in ['eig', 'eigen', 'diagonalize']:
                    expr = arg.diagonalize()
                elif operatorname in ['eigenvals', 'eigenvalues']:
                    expr = arg.eigenvals()
                elif operatorname in ['eigenvects', 'eigenvectors']:
                    expr = arg.eigenvects()
                elif operatorname in ['svd', 'SVD']:
                    expr = arg.singular_value_decomposition()
                else:
                    expr = sympy.Function(operatorname)(arg, evaluate=False)
            elif name in ["log", "ln"]:
                base = 10
                if func.subexpr():
                    if func.subexpr().atom():
                        base = self.convert_atom(func.subexpr().atom())
                    else:
                        base = self.convert_expr(func.subexpr().expr())
                elif name == "log":
                    base = 10
                else:
                    # it's ln
                    base = sympy.E
                expr = sympy.log(arg, base, evaluate=False)
            elif name in ["exp", "exponentialE"]:
                expr = sympy.exp(arg, evaluate=False)
            elif name == "floor":
                expr = self.handle_floor(arg)
            elif name == "ceil":
                expr = self.handle_ceil(arg)
            elif name == 'det':
                expr = arg.det()
            
            elif name in ["sin", "cos", "tan", "csc", "sec", "cot"]:
                if func_pow == -1:
                    name = "a" + name
                    func_pow = None
                expr = getattr(sympy_trig, name)(arg, evaluate=False)
            
            elif name in ["sinh", "cosh", "tanh"]:
                if func_pow == -1:
                    name = "a" + name
                    func_pow = None
                expr = getattr(sympy_hyperbolic, name)(arg, evaluate=False)
            
            else:
                expr = sympy.Function(name)(arg, evaluate=False)

            if func_pow:
                expr = sympy.Pow(expr, func_pow, evaluate=False)

            return expr

        elif func.func_normal_multi_arg():
            if func.func_multi_arg():  # function called with parenthesis
                args = func.func_multi_arg().getText().split(",")
            else:
                args = func.func_multi_arg_noparens().split(",")

            args = list(map(lambda arg: self.parse(arg), args))
            name = func.func_normal_multi_arg().start.text[1:]

            if name == "operatorname":
                operatorname = func.func_normal_multi_arg().func_operator_name.getText()
                if operatorname in ["gcd", "lcm"]:
                    expr = self.handle_gcd_lcm(operatorname, args)
                elif operatorname == 'zeros':
                    expr = sympy.zeros(*args)
                elif operatorname == 'ones':
                    expr = sympy.ones(*args)
                elif operatorname == 'diag':
                    expr = sympy.diag(*args)
                elif operatorname == 'hstack':
                    expr = sympy.Matrix.hstack(*args)
                elif operatorname == 'vstack':
                    expr = sympy.Matrix.vstack(*args)
                elif operatorname in ['orth', 'ortho', 'orthogonal', 'orthogonalize']:
                    if len(args) == 1:
                        arg = args[0]
                        expr = GramSchmidt([arg.col(i) for i in range(arg.cols)], True)
                    else:
                        expr = GramSchmidt(args, True)
                else:
                    expr = sympy.Function(operatorname)(*args, evaluate=False)
            elif name in ["gcd", "lcm"]:
                expr = self.handle_gcd_lcm(name, args)
            elif name in ["max", "min"]:
                name = name[0].upper() + name[1:]
                expr = getattr(sympy_misc, name)(*args, evaluate=False)
            else:
                expr = sympy.Function(name)(*args, evaluate=False)

            func_pow = None
            should_pow = True
            if func.supexpr():
                if func.supexpr().expr():
                    func_pow = self.convert_expr(func.supexpr().expr())
                else:
                    func_pow = self.convert_atom(func.supexpr().atom())

            if func_pow and should_pow:
                expr = sympy.Pow(expr, func_pow, evaluate=False)

            return expr

        elif func.atom_expr_no_supexpr():
            # define a function
            f = sympy.Function(func.atom_expr_no_supexpr().getText())
            # args
            args = func.func_common_args().getText().split(",")
            if args[-1] == '':
                args = args[:-1]
            args = [self.parse(arg) for arg in args]
            # supexpr
            if func.supexpr():
                if func.supexpr().expr():
                    expr = self.convert_expr(func.supexpr().expr())
                else:
                    expr = self.convert_atom(func.supexpr().atom())
                return sympy.Pow(f(*args), expr, evaluate=False)
            else:
                return f(*args)
        elif func.FUNC_INT():
            return self.handle_integral(func)
        elif func.FUNC_SQRT():
            expr = self.convert_expr(func.base)
            if func.root:
                r = self.convert_expr(func.root)
                return sympy.Pow(expr, 1 / r, evaluate=False)
            else:
                return sympy.Pow(expr, sympy.S.Half, evaluate=False)
        elif func.FUNC_SUM():
            return self.handle_sum_or_prod(func, "summation")
        elif func.FUNC_PROD():
            return self.handle_sum_or_prod(func, "product")
        elif func.FUNC_LIM():
            return self.handle_limit(func)
        elif func.EXP_E():
            return self.handle_exp(func)


    def convert_func_arg(self, arg):
        if hasattr(arg, 'expr'):
            return self.convert_expr(arg.expr())
        else:
            return self.convert_mp(arg.mp_nofunc())


    def handle_integral(self, func):
        if func.additive():
            integrand = self.convert_add(func.additive())
        elif func.frac():
            integrand = self.convert_frac(func.frac())
        else:
            integrand = 1

        int_var = None
        if func.DIFFERENTIAL():
            int_var = self.get_differential_var(func.DIFFERENTIAL())
        else:
            for sym in integrand.atoms(sympy.Symbol):
                s = str(sym)
                if len(s) > 1 and s[0] == 'd':
                    if s[1] == '\\':
                        int_var = self.create_symbol(s[2:], enforce_case=True)
                    else:
                        int_var = self.create_symbol(s[1:], enforce_case=True)
                    int_sym = sym
            if int_var:
                integrand = integrand.subs(int_sym, 1)
            else:
                # Assume dx by default
                int_var = self.create_symbol('x', enforce_case=True)

        if func.subexpr():
            if func.subexpr().atom():
                lower = self.convert_atom(func.subexpr().atom())
            else:
                lower = self.convert_expr(func.subexpr().expr())
            if func.supexpr().atom():
                upper = self.convert_atom(func.supexpr().atom())
            else:
                upper = self.convert_expr(func.supexpr().expr())
            return sympy.Integral(integrand, (int_var, lower, upper))
        else:
            return sympy.Integral(integrand, int_var)


    def handle_sum_or_prod(self, func, name):
        val = self.convert_mp(func.mp())
        iter_var = self.convert_expr(func.subeq().equality().expr(0))
        start = self.convert_expr(func.subeq().equality().expr(1))
        if func.supexpr().expr():  # ^{expr}
            end = self.convert_expr(func.supexpr().expr())
        else:  # ^atom
            end = self.convert_atom(func.supexpr().atom())

        if name == "summation":
            return sympy.Sum(val, (iter_var, start, end))
        elif name == "product":
            return sympy.Product(val, (iter_var, start, end))


    def handle_limit(self, func):
        sub = func.limit_sub()
        if sub.LETTER_NO_E():
            sub_var = self.create_symbol(sub.LETTER_NO_E().getText(), enforce_case=True)
        elif sub.GREEK_CMD():
            sub_var = get_symbol(sub.GREEK_CMD().getText().strip(), self.is_real)
        elif sub.OTHER_SYMBOL_CMD():
            sub_var = get_symbol(sub.OTHER_SYMBOL_CMD().getText().strip(), self.is_real)
        else:
            sub_var = self.create_symbol('x', enforce_case=True)
        if sub.SUB():
            direction = "-"
        else:
            direction = "+"
        approaching = self.convert_expr(sub.expr())
        content = self.convert_mp(func.mp())

        return sympy.Limit(content, sub_var, approaching, direction)


    def handle_exp(self, func):
        if func.supexpr():
            if func.supexpr().expr():  # ^{expr}
                exp_arg = self.convert_expr(func.supexpr().expr())
            else:  # ^atom
                exp_arg = self.convert_atom(func.supexpr().atom())
        else:
            exp_arg = 1
        return sympy.exp(exp_arg)


    def handle_gcd_lcm(self, f, args):
        """
        Return the result of gcd() or lcm(), as UnevaluatedExpr

        f: str - name of function ("gcd" or "lcm")
        args: List[Expr] - list of function arguments
        """

        args = tuple(map(sympy.nsimplify, args))

        # gcd() and lcm() don't support evaluate=False
        return sympy.UnevaluatedExpr(getattr(sympy, f)(args))


    def handle_floor(self, expr):
        """
        Apply floor() then return the floored expression.

        expr: Expr - sympy expression as an argument to floor()
        """
        return sympy_integers.floor(expr, evaluate=False)


    def handle_ceil(self, expr):
        """
        Apply ceil() then return the ceil-ed expression.

        expr: Expr - sympy expression as an argument to ceil()
        """
        return sympy_integers.ceiling(expr, evaluate=False)



    def get_differential_var(self, d):
        text = self.get_differential_var_str(d.getText())
        return self.create_symbol(text, enforce_case=True)


    def get_differential_var_str(self, text):
        for i in range(1, len(text)):
            c = text[i]
            if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
                idx = i
                break
        text = text[idx:]
        if text[0] == "\\":
            text = text[1:]
        return text

# # Set image value
# latex2latex('i=I')
# latex2latex('j=I')
# # set Identity(i)
# for i in range(1, 10):
#     lh = sympy.Symbol(r'\bm{I}_' + str(i), real=False)
#     lh_m = sympy.MatrixSymbol(r'\bm{I}_' + str(i), i, i)
#     rh = sympy.Identity(i).as_mutable()
#     variances[lh] = rh
#     variances[lh_m] = rh
#     var[str(lh)] = rh

# Common regex

def convert_to_pct(number: Number):
    return sympy.Mul(number, sympy.Rational(1, 100), evaluate=False)

def latex2sympy(latex_str: str, variable_values: dict | None = None, is_real=None, convert_degrees: bool = False, normalization_config: NormalizationConfig | None = NormalizationConfig(), conversion_config: ConversionConfig = ConversionConfig()):
    converter = _Latex2Sympy(variable_values, is_real, convert_degrees, config=conversion_config)
    if normalization_config is not None:
        latex_str = normalize_latex(latex_str, normalization_config)
    return converter.parse(latex_str)


if __name__ == "__main__":
    # print(normalize_latex("20 \\%", NormalizationConfig(basic_latex=True, units=True, malformed_operators=False, nits=True, boxed=False, equations=True)))
    print(latex2sympy(r"\boxed{\text{C,  E}}"))
    print(latex2sympy(r"0.111"))