File size: 8,587 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from __future__ import annotations

import base64
import warnings
from io import BytesIO
from pathlib import Path
from typing import Literal, cast
from urllib.parse import quote

import httpx
import numpy as np
import PIL.Image
from gradio_client.utils import get_mimetype, is_http_url_like
from PIL import ImageOps

from gradio import processing_utils
from gradio.data_classes import ImageData
from gradio.exceptions import Error

PIL.Image.init()  # fixes https://github.com/gradio-app/gradio/issues/2843 (remove when requiring Pillow 9.4+)


def format_image(
    im: PIL.Image.Image | None,
    type: Literal["numpy", "pil", "filepath"],
    cache_dir: str,
    name: str = "image",
    format: str = "webp",
) -> np.ndarray | PIL.Image.Image | str | None:
    """Helper method to format an image based on self.type"""
    if im is None:
        return im
    if type == "pil":
        return im
    elif type == "numpy":
        return np.array(im)
    elif type == "filepath":
        try:
            path = processing_utils.save_pil_to_cache(
                im, cache_dir=cache_dir, name=name, format=format
            )
        # Catch error if format is not supported by PIL
        except (KeyError, ValueError):
            path = processing_utils.save_pil_to_cache(
                im,
                cache_dir=cache_dir,
                name=name,
                format="png",  # type: ignore
            )
        return path
    else:
        raise ValueError(
            "Unknown type: "
            + str(type)
            + ". Please choose from: 'numpy', 'pil', 'filepath'."
        )


def save_image(
    y: np.ndarray | PIL.Image.Image | str | Path, cache_dir: str, format: str = "webp"
):
    if isinstance(y, np.ndarray):
        path = processing_utils.save_img_array_to_cache(
            y, cache_dir=cache_dir, format=format
        )
    elif isinstance(y, PIL.Image.Image):
        try:
            path = processing_utils.save_pil_to_cache(
                y, cache_dir=cache_dir, format=format
            )
        # Catch error if format is not supported by PIL
        except (KeyError, ValueError):
            path = processing_utils.save_pil_to_cache(
                y, cache_dir=cache_dir, format="png"
            )
    elif isinstance(y, Path):
        path = str(y)
    elif isinstance(y, str):
        path = y
    else:
        raise ValueError(
            "Cannot process this value as an Image, it is of type: " + str(type(y))
        )

    return path


def crop_scale(img: PIL.Image.Image, final_width: int, final_height: int):
    original_width, original_height = img.size
    target_aspect_ratio = final_width / final_height

    if original_width / original_height > target_aspect_ratio:
        crop_height = original_height
        crop_width = crop_height * target_aspect_ratio
    else:
        crop_width = original_width
        crop_height = crop_width / target_aspect_ratio

    left = (original_width - crop_width) / 2
    top = (original_height - crop_height) / 2

    img_cropped = img.crop(
        (int(left), int(top), int(left + crop_width), int(top + crop_height))
    )

    img_resized = img_cropped.resize((final_width, final_height))

    return img_resized


def decode_base64_to_image(encoding: str) -> PIL.Image.Image:
    image_encoded = processing_utils.extract_base64_data(encoding)
    img = PIL.Image.open(BytesIO(base64.b64decode(image_encoded)))
    try:
        if hasattr(ImageOps, "exif_transpose"):
            img = ImageOps.exif_transpose(img)
    except Exception:
        print(
            "Failed to transpose image %s based on EXIF data.",
            img,
        )
    return cast(PIL.Image.Image, img)


def decode_base64_to_image_array(encoding: str) -> np.ndarray:
    img = decode_base64_to_image(encoding)
    return np.asarray(img)


def decode_base64_to_file(encoding: str, cache_dir: str, format: str = "webp") -> str:
    img = decode_base64_to_image(encoding)
    return save_image(img, cache_dir, format)


def encode_image_array_to_base64(image_array: np.ndarray) -> str:
    with BytesIO() as output_bytes:
        pil_image = PIL.Image.fromarray(
            processing_utils._convert(image_array, np.uint8, force_copy=False)
        )
        pil_image.save(output_bytes, "JPEG")
        bytes_data = output_bytes.getvalue()
    base64_str = str(base64.b64encode(bytes_data), "utf-8")
    return "data:image/jpeg;base64," + base64_str


def encode_image_to_base64(image: PIL.Image.Image) -> str:
    with BytesIO() as output_bytes:
        image.save(output_bytes, "JPEG")
        bytes_data = output_bytes.getvalue()
    base64_str = str(base64.b64encode(bytes_data), "utf-8")
    return "data:image/jpeg;base64," + base64_str


def encode_image_file_to_base64(image_file: str | Path) -> str:
    mime_type = get_mimetype(str(image_file))
    with open(image_file, "rb") as f:
        bytes_data = f.read()
    base64_str = str(base64.b64encode(bytes_data), "utf-8")
    return f"data:{mime_type};base64," + base64_str


def extract_svg_content(image_file: str | Path) -> str:
    """
    Provided a path or URL to an SVG file, return the SVG content as a string.
    Parameters:
        image_file: Local file path or URL to an SVG file
    Returns:
        str: The SVG content as a string
    """
    image_file = str(image_file)
    if is_http_url_like(image_file):
        response = httpx.get(image_file)
        response.raise_for_status()  # Raise an error for bad status codes
        return response.text
    else:
        with open(image_file) as file:
            svg_content = file.read()
        return svg_content


def preprocess_image(
    payload: ImageData | None,
    cache_dir: str,
    format: str,
    image_mode: Literal[
        "1", "L", "P", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"
    ]
    | None,
    type: Literal["numpy", "pil", "filepath"],
) -> np.ndarray | PIL.Image.Image | str | None:
    if payload is None:
        return payload
    if payload.url and payload.url.startswith("data:"):
        if type == "pil":
            return decode_base64_to_image(payload.url)
        elif type == "numpy":
            return decode_base64_to_image_array(payload.url)
        elif type == "filepath":
            return decode_base64_to_file(payload.url, cache_dir, format)
    if payload.path is None:
        raise ValueError("Image path is None.")
    file_path = Path(payload.path)
    if payload.orig_name:
        p = Path(payload.orig_name)
        name = p.stem
        suffix = p.suffix.replace(".", "")
        if suffix in ["jpg", "jpeg"]:
            suffix = "jpeg"
    else:
        name = "image"
        suffix = "webp"

    if suffix.lower() == "svg":
        if type == "filepath":
            return str(file_path)
        raise Error("SVG files are not supported as input images for this app.")

    im = PIL.Image.open(file_path)
    if type == "filepath" and (image_mode in [None, im.mode]):
        return str(file_path)

    exif = im.getexif()
    # 274 is the code for image rotation and 1 means "correct orientation"
    if exif.get(274, 1) != 1 and hasattr(ImageOps, "exif_transpose"):
        try:
            im = ImageOps.exif_transpose(im)
        except Exception:
            warnings.warn(f"Failed to transpose image {file_path} based on EXIF data.")
    if suffix.lower() != "gif" and im is not None:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            if image_mode is not None:
                im = im.convert(image_mode)
    return format_image(
        im,
        type=cast(Literal["numpy", "pil", "filepath"], type),
        cache_dir=cache_dir,
        name=name,
        format=suffix,
    )


def postprocess_image(
    value: np.ndarray | PIL.Image.Image | str | Path | None,
    cache_dir: str,
    format: str,
) -> ImageData | None:
    """
    Parameters:
        value: Expects a `numpy.array`, `PIL.Image`, or `str` or `pathlib.Path` filepath to an image which is displayed.
    Returns:
        Returns the image as a `FileData` object.
    """
    if value is None:
        return None
    if isinstance(value, str) and value.lower().endswith(".svg"):
        svg_content = extract_svg_content(value)
        return ImageData(
            orig_name=Path(value).name,
            url=f"data:image/svg+xml,{quote(svg_content)}",
        )

    saved = save_image(value, cache_dir=cache_dir, format=format)
    orig_name = Path(saved).name if Path(saved).exists() else None
    return ImageData(path=saved, orig_name=orig_name)