File size: 61,000 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
r"""gr.ImageEditor() component."""

from __future__ import annotations

import dataclasses
import warnings
from collections.abc import Iterable, Sequence
from io import BytesIO
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
    Optional,
    Union,
    cast,
)

import numpy as np
import PIL.Image
from gradio_client import handle_file
from gradio_client.documentation import document
from typing_extensions import TypedDict

from gradio import image_utils, utils
from gradio.components.base import Component, server
from gradio.data_classes import FileData, GradioModel
from gradio.events import Events
from gradio.i18n import I18nData

if TYPE_CHECKING:
    from gradio.components import Timer

ImageType = Union[np.ndarray, PIL.Image.Image, str]


class EditorValue(TypedDict):
    background: Optional[ImageType]
    layers: list[ImageType]
    composite: Optional[ImageType]


class EditorExampleValue(TypedDict):
    background: Optional[str]
    layers: Optional[list[Union[str, None]]]
    composite: Optional[str]


class EditorData(GradioModel):
    background: Optional[FileData] = None
    layers: list[FileData] = []
    composite: Optional[FileData] = None
    id: Optional[str] = None


class EditorDataBlobs(GradioModel):
    background: Optional[bytes]
    layers: list[Union[bytes, None]]
    composite: Optional[bytes]


class BlobData(TypedDict):
    type: str
    index: Optional[int]
    file: bytes
    id: str


class AcceptBlobs(GradioModel):
    data: BlobData
    files: list[tuple[str, bytes]]


@document()
@dataclasses.dataclass
class Eraser:
    """
    A dataclass for specifying options for the eraser tool in the ImageEditor component. An instance of this class can be passed to the `eraser` parameter of `gr.ImageEditor`.
    Parameters:
        default_size: The default radius, in pixels, of the eraser tool. Defaults to "auto" in which case the radius is automatically determined based on the size of the image (generally 1/50th of smaller dimension).
    """

    default_size: int | Literal["auto"] = "auto"


@document()
@dataclasses.dataclass
class Brush(Eraser):
    """
    A dataclass for specifying options for the brush tool in the ImageEditor component. An instance of this class can be passed to the `brush` parameter of `gr.ImageEditor`.
    Parameters:
        default_size: The default radius, in pixels, of the brush tool. Defaults to "auto" in which case the radius is automatically determined based on the size of the image (generally 1/50th of smaller dimension).
        colors: A list of colors to make available to the user when using the brush. Defaults to a list of 5 colors.
        default_color: The default color of the brush. Defaults to the first color in the `colors` list.
        color_mode: If set to "fixed", user can only select from among the colors in `colors`. If "defaults", the colors in `colors` are provided as a default palette, but the user can also select any color using a color picker.
    """

    colors: list[str | tuple[str, float]] | str | tuple[str, float] | None = None
    default_color: str | tuple[str, float] | None = None
    color_mode: Literal["fixed", "defaults"] = "defaults"

    def __post_init__(self):
        if self.colors is None:
            self.colors = [
                "rgb(204, 50, 50)",
                "rgb(173, 204, 50)",
                "rgb(50, 204, 112)",
                "rgb(50, 112, 204)",
                "rgb(173, 50, 204)",
            ]
        if self.default_color is None:
            self.default_color = (
                self.colors[0] if isinstance(self.colors, list) else self.colors
            )


@document()
@dataclasses.dataclass
class LayerOptions:
    """
    A dataclass for specifying options for the layer tool in the ImageEditor component. An instance of this class can be passed to the `layers` parameter of `gr.ImageEditor`.
    Parameters:
        allow_additional_layers: If True, users can add additional layers to the image. If False, the add layer button will not be shown.
        layers: A list of layers to make available to the user when using the layer tool. One layer must be provided, if the length of the list is 0 then a layer will be generated automatically.
    """

    allow_additional_layers: bool = True
    layers: list[str] | None = None
    disabled: bool = False

    def __post_init__(self):
        if self.layers is None or len(self.layers) == 0:
            self.layers = ["Layer 1"]


@document()
@dataclasses.dataclass
class WebcamOptions:
    """
    A dataclass for specifying options for the webcam tool in the ImageEditor component. An instance of this class can be passed to the `webcam_options` parameter of `gr.ImageEditor`.
    Parameters:
        mirror: If True, the webcam will be mirrored.
        constraints: A dictionary of constraints for the webcam.
    """

    mirror: bool = True
    constraints: dict[str, Any] | None = None

from gradio.events import Dependency

@document()
class ImageEditor(Component):
    """
    Creates an image component that, as an input, can be used to upload and edit images using simple editing tools such
    as brushes, strokes, cropping, and layers. Or, as an output, this component can be used to display images.

    Demos: image_editor
    """

    EVENTS = [
        Events.clear,
        Events.change,
        Events.input,
        Events.select,
        Events.upload,
        Events.apply,
    ]

    data_model = EditorData

    def __init__(
        self,
        value: EditorValue | ImageType | None = None,
        *,
        height: int | str | None = None,
        width: int | str | None = None,
        image_mode: Literal[
            "1", "L", "P", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"
        ] = "RGBA",
        sources: (
            Iterable[Literal["upload", "webcam", "clipboard"]]
            | Literal["upload", "webcam", "clipboard"]
            | None
        ) = (
            "upload",
            "webcam",
            "clipboard",
        ),
        type: Literal["numpy", "pil", "filepath"] = "numpy",
        label: str | I18nData | None = None,
        every: Timer | float | None = None,
        inputs: Component | Sequence[Component] | set[Component] | None = None,
        show_label: bool | None = None,
        show_download_button: bool = True,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        interactive: bool | None = None,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        render: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
        preserved_by_key: list[str] | str | None = "value",
        placeholder: str | None = None,
        mirror_webcam: bool | None = None,
        show_share_button: bool | None = None,
        _selectable: bool = False,
        crop_size: tuple[int | float, int | float] | str | None = None,
        transforms: Iterable[Literal["crop", "resize"]] | None = ("crop", "resize"),
        eraser: Eraser | None | Literal[False] = None,
        brush: Brush | None | Literal[False] = None,
        format: str = "webp",
        layers: bool | LayerOptions = True,
        canvas_size: tuple[int, int] = (800, 800),
        fixed_canvas: bool = False,
        show_fullscreen_button: bool = True,
        webcam_options: WebcamOptions | None = None,
    ):
        """
        Parameters:
            value: Optional initial image(s) to populate the image editor. Should be a dictionary with keys: `background`, `layers`, and `composite`. The values corresponding to `background` and `composite` should be images or None, while `layers` should be a list of images. Images can be of type PIL.Image, np.array, or str filepath/URL. Or, the value can be a callable, in which case the function will be called whenever the app loads to set the initial value of the component.
            height: The height of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. This has no effect on the preprocessed image files or numpy arrays, but will affect the displayed images. Beware of conflicting values with the canvas_size paramter. If the canvas_size is larger than the height, the editing canvas will not fit in the component.
            width: The width of the component, specified in pixels if a number is passed, or in CSS units if a string is passed. This has no effect on the preprocessed image files or numpy arrays, but will affect the displayed images. Beware of conflicting values with the canvas_size paramter. If the canvas_size is larger than the height, the editing canvas will not fit in the component.
            image_mode: "RGB" if color, or "L" if black and white. See https://pillow.readthedocs.io/en/stable/handbook/concepts.html for other supported image modes and their meaning.
            sources: List of sources that can be used to set the background image. "upload" creates a box where user can drop an image file, "webcam" allows user to take snapshot from their webcam, "clipboard" allows users to paste an image from the clipboard.
            type: The format the images are converted to before being passed into the prediction function. "numpy" converts the images to numpy arrays with shape (height, width, 3) and values from 0 to 255, "pil" converts the images to PIL image objects, "filepath" passes images as str filepaths to temporary copies of the images.
            label: the label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.
            every: Continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            inputs: Components that are used as inputs to calculate `value` if `value` is a function (has no effect otherwise). `value` is recalculated any time the inputs change.
            show_label: if True, will display label.
            show_download_button: If True, will display button to download image.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            interactive: if True, will allow users to upload and edit an image; if False, can only be used to display images. If not provided, this is inferred based on whether the component is used as an input or output.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
            key: in a gr.render, Components with the same key across re-renders are treated as the same component, not a new component. Properties set in 'preserved_by_key' are not reset across a re-render.
            preserved_by_key: A list of parameters from this component's constructor. Inside a gr.render() function, if a component is re-rendered with the same key, these (and only these) parameters will be preserved in the UI (if they have been changed by the user or an event listener) instead of re-rendered based on the values provided during constructor.
            placeholder: Custom text for the upload area. Overrides default upload messages when provided. Accepts new lines and `#` to designate a heading.
            show_share_button: If True, will show a share icon in the corner of the component that allows user to share outputs to Hugging Face Spaces Discussions. If False, icon does not appear. If set to None (default behavior), then the icon appears if this Gradio app is launched on Spaces, but not otherwise.
            crop_size: Deprecated. Used to set the `canvas_size` parameter.
            transforms: The transforms tools to make available to users. "crop" allows the user to crop the image.
            eraser: The options for the eraser tool in the image editor. Should be an instance of the `gr.Eraser` class, or None to use the default settings. Can also be False to hide the eraser tool. [See `gr.Eraser` docs](#eraser).
            brush: The options for the brush tool in the image editor. Should be an instance of the `gr.Brush` class, or None to use the default settings. Can also be False to hide the brush tool, which will also hide the eraser tool. [See `gr.Brush` docs](#brush).
            format: Format to save image if it does not already have a valid format (e.g. if the image is being returned to the frontend as a numpy array or PIL Image).  The format should be supported by the PIL library. This parameter has no effect on SVG files.
            layers: The options for the layer tool in the image editor. Can be a boolean     or an instance of the `gr.LayerOptions` class. If True, will allow users to add layers to the image. If False, the layers option will be hidden. If an instance of `gr.LayerOptions`, it will be used to configure the layer tool. [See `gr.LayerOptions` docs](#layer-options).
            canvas_size: The initial size of the canvas in pixels. The first value is the width and the second value is the height. If `fixed_canvas` is `True`, uploaded images will be rescaled to fit the canvas size while preserving the aspect ratio. Otherwise, the canvas size will change to match the size of an uploaded image.
            fixed_canvas: If True, the canvas size will not change based on the size of the background image and the image will be rescaled to fit (while preserving the aspect ratio) and placed in the center of the canvas.
            show_fullscreen_button: If True, will display button to view image in fullscreen mode.
            webcam_options: The options for the webcam tool in the image editor. Can be an instance of the `gr.WebcamOptions` class, or None to use the default settings. [See `gr.WebcamOptions` docs](#webcam-options).
        """
        self._selectable = _selectable

        self.webcam_options = (
            webcam_options if webcam_options is not None else WebcamOptions()
        )

        if mirror_webcam is not None:
            warnings.warn(
                "The `mirror_webcam` parameter is deprecated. Please use the `webcam_options` parameter with a `gr.WebcamOptions` instance instead."
            )
            self.webcam_options.mirror = mirror_webcam

        valid_types = ["numpy", "pil", "filepath"]
        if type not in valid_types:
            raise ValueError(
                f"Invalid value for parameter `type`: {type}. Please choose from one of: {valid_types}"
            )
        self.type = type
        self.height = height
        self.width = width
        self.image_mode = image_mode
        valid_sources = ["upload", "webcam", "clipboard"]
        if isinstance(sources, str):
            sources = [sources]
        if sources is not None:
            for source in sources:
                if source not in valid_sources:
                    raise ValueError(
                        f"`sources` must be a list consisting of elements in {valid_sources}"
                    )
            self.sources = sources
        else:
            self.sources = []

        self.show_download_button = show_download_button

        self.show_share_button = (
            (utils.get_space() is not None)
            if show_share_button is None
            else show_share_button
        )

        if crop_size is not None and canvas_size is None:
            warnings.warn(
                "`crop_size` parameter is deprecated. Please use `canvas_size` instead."
            )
            if isinstance(crop_size, str):
                # convert ratio to tuple
                proportion = [
                    int(crop_size.split(":")[0]),
                    int(crop_size.split(":")[1]),
                ]
                ratio = proportion[0] / proportion[1]
                canvas_size = (
                    (int(800 * ratio), 800) if ratio > 1 else (800, int(800 / ratio))
                )
            else:
                canvas_size = (int(crop_size[0]), int(crop_size[1]))

        self.transforms = transforms
        self.eraser = Eraser() if eraser is None else eraser
        self.brush = Brush() if brush is None else brush
        self.blob_storage: dict[str, EditorDataBlobs] = {}
        self.format = format
        self.layers = (
            LayerOptions()
            if layers is True
            else LayerOptions(disabled=True)
            if layers is False
            else layers
        )
        self.canvas_size = canvas_size
        self.fixed_canvas = fixed_canvas
        self.show_fullscreen_button = show_fullscreen_button
        self.placeholder = placeholder
        super().__init__(
            label=label,
            every=every,
            inputs=inputs,
            show_label=show_label,
            container=container,
            scale=scale,
            min_width=min_width,
            interactive=interactive,
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            key=key,
            preserved_by_key=preserved_by_key,
            value=value,
        )
        self._value_description = f"a dictionary with structure {{'background': image, 'layers': list of images, 'composite': image}} where each image is {'a filepath' if self.type == 'filepath' else 'a numpy array' if self.type == 'numpy' else 'a PIL Image object'}."

    def convert_and_format_image(
        self,
        file: FileData | None | bytes,
    ) -> np.ndarray | PIL.Image.Image | str | None:
        if file is None:
            return None
        im = (
            PIL.Image.open(file.path)
            if isinstance(file, FileData)
            else PIL.Image.open(BytesIO(file))
        )
        if isinstance(file, (bytes, bytearray, memoryview)):
            name = "image"
            suffix = self.format
        elif file.orig_name:
            p = Path(file.orig_name)
            name = p.stem
            suffix = p.suffix.replace(".", "")
            if suffix in ["jpg", "jpeg"]:
                suffix = "jpeg"
        else:
            name = "image"
            suffix = self.format
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            im = im.convert(self.image_mode)
        return image_utils.format_image(
            im,
            cast(Literal["numpy", "pil", "filepath"], self.type),
            self.GRADIO_CACHE,
            format=suffix,
            name=name,
        )

    def preprocess(self, payload: EditorData | None) -> EditorValue | None:
        """
        Parameters:
            payload: An instance of `EditorData` consisting of the background image, layers, and composite image.
        Returns:
            Passes the uploaded images as an instance of EditorValue, which is just a `dict` with keys: 'background', 'layers', and 'composite'. The values corresponding to 'background' and 'composite' are images, while 'layers' is a `list` of images. The images are of type `PIL.Image`, `np.array`, or `str` filepath, depending on the `type` parameter.
        """
        if payload is None:
            return payload

        if payload.id is not None:
            cached = self.blob_storage.get(payload.id)
            _payload = (
                EditorDataBlobs(
                    background=cached.background,
                    layers=cached.layers,
                    composite=cached.composite,
                )
                if cached
                else None
            )
        else:
            _payload = payload

        bg = None
        layers = None
        composite = None

        if _payload is not None:
            bg = self.convert_and_format_image(_payload.background)
            layers = (
                [self.convert_and_format_image(layer) for layer in _payload.layers]
                if _payload.layers
                else None
            )
            composite = self.convert_and_format_image(_payload.composite)

        if payload.id is not None and payload.id in self.blob_storage:
            self.blob_storage.pop(payload.id)

        return {
            "background": bg,
            "layers": [x for x in layers if x is not None] if layers else [],
            "composite": composite,
        }

    def postprocess(self, value: EditorValue | ImageType | None) -> EditorData | None:
        """
        Parameters:
            value: Expects a EditorValue, which is just a dictionary with keys: 'background', 'layers', and 'composite'. The values corresponding to 'background' and 'composite' should be images or None, while `layers` should be a list of images. Images can be of type `PIL.Image`, `np.array`, or `str` filepath/URL. Or, the value can be simply a single image (`ImageType`), in which case it will be used as the background.
        Returns:
            An instance of `EditorData` consisting of the background image, layers, and composite image.
        """
        if value is None:
            return None
        elif isinstance(value, dict):
            pass
        elif isinstance(value, (np.ndarray, PIL.Image.Image, str)):
            value = {"background": value, "layers": [], "composite": value}
        else:
            raise ValueError(
                "The value to `gr.ImageEditor` must be a dictionary of images or a single image."
            )

        layers = (
            [
                FileData(
                    path=image_utils.save_image(
                        cast(Union[np.ndarray, PIL.Image.Image, str], layer),
                        self.GRADIO_CACHE,
                        format=self.format,
                    )
                )
                for layer in value["layers"]
            ]
            if value["layers"]
            else []
        )

        return EditorData(
            background=(
                FileData(
                    path=image_utils.save_image(
                        value["background"], self.GRADIO_CACHE, format=self.format
                    )
                )
                if value["background"] is not None
                else None
            ),
            layers=layers,
            composite=(
                FileData(
                    path=image_utils.save_image(
                        cast(
                            Union[np.ndarray, PIL.Image.Image, str], value["composite"]
                        ),
                        self.GRADIO_CACHE,
                        format=self.format,
                    )
                )
                if value["composite"] is not None
                else None
            ),
        )

    def example_payload(self) -> Any:
        return {
            "background": handle_file(
                "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"
            ),
            "layers": [],
            "composite": None,
        }

    def example_value(self) -> Any:
        return {
            "background": "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png",
            "layers": [],
            "composite": None,
        }

    @server
    def accept_blobs(self, data: AcceptBlobs):
        """
        Accepts a dictionary of image blobs, where the keys are 'background', 'layers', and 'composite', and the values are binary file-like objects.
        """

        type = data.data["type"]
        index = (
            int(data.data["index"])
            if data.data["index"] and data.data["index"] != "null"
            else None
        )
        file = data.files[0][1]
        id = data.data["id"]

        current = self.blob_storage.get(
            id, EditorDataBlobs(background=None, layers=[], composite=None)
        )

        if type == "layer" and index is not None:
            if index >= len(current.layers):
                current.layers.extend([None] * (index + 1 - len(current.layers)))
            current.layers[index] = file
        elif type == "background":
            current.background = file
        elif type == "composite":
            current.composite = file

        self.blob_storage[id] = current
    from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
    from gradio.blocks import Block
    if TYPE_CHECKING:
        from gradio.components import Timer
        from gradio.components.base import Component

    
    def clear(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        show_progress_on: Component | Sequence[Component] | None = None,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | Literal[True] | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            key: A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
        
        """
        ...
    
    def change(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        show_progress_on: Component | Sequence[Component] | None = None,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | Literal[True] | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            key: A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
        
        """
        ...
    
    def input(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        show_progress_on: Component | Sequence[Component] | None = None,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | Literal[True] | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            key: A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
        
        """
        ...
    
    def select(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        show_progress_on: Component | Sequence[Component] | None = None,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | Literal[True] | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            key: A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
        
        """
        ...
    
    def upload(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        show_progress_on: Component | Sequence[Component] | None = None,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | Literal[True] | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            key: A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
        
        """
        ...
    
    def apply(self,
        fn: Callable[..., Any] | None = None,
        inputs: Block | Sequence[Block] | set[Block] | None = None,
        outputs: Block | Sequence[Block] | None = None,
        api_name: str | None | Literal[False] = None,
        scroll_to_output: bool = False,
        show_progress: Literal["full", "minimal", "hidden"] = "full",
        show_progress_on: Component | Sequence[Component] | None = None,
        queue: bool | None = None,
        batch: bool = False,
        max_batch_size: int = 4,
        preprocess: bool = True,
        postprocess: bool = True,
        cancels: dict[str, Any] | list[dict[str, Any]] | None = None,
        every: Timer | float | None = None,
        trigger_mode: Literal["once", "multiple", "always_last"] | None = None,
        js: str | Literal[True] | None = None,
        concurrency_limit: int | None | Literal["default"] = "default",
        concurrency_id: str | None = None,
        show_api: bool = True,
        key: int | str | tuple[int | str, ...] | None = None,
    
        ) -> Dependency:
        """
        Parameters:
            fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
            inputs: list of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
            outputs: list of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
            api_name: defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, will use the functions name as the endpoint route. If set to a string, the endpoint will be exposed in the api docs with the given name.
            scroll_to_output: if True, will scroll to output component on completion
            show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
            show_progress_on: Component or list of components to show the progress animation on. If None, will show the progress animation on all of the output components.
            queue: if True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
            batch: if True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
            max_batch_size: maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
            preprocess: if False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
            postprocess: if False, will not run postprocessing of component data before returning 'fn' output to the browser.
            cancels: a list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
            every: continously calls `value` to recalculate it if `value` is a function (has no effect otherwise). Can provide a Timer whose tick resets `value`, or a float that provides the regular interval for the reset Timer.
            trigger_mode: if "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
            js: optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs' and 'outputs', return should be a list of values for output components.
            concurrency_limit: if set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
            concurrency_id: if set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
            show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
            key: A unique key for this event listener to be used in @gr.render(). If set, this value identifies an event as identical across re-renders when the key is identical.
        
        """
        ...