File size: 19,622 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
import collections.abc as abc
from enum import Enum
import logging
from typing import Any, Dict, List, Optional, Union
import warnings
import torch
from torch.cuda import FloatTensor # type: ignore
from torch.cuda.amp.common import amp_definitely_not_available
from torch.cuda.amp.grad_scaler import GradScaler as TorchGradScaler
import torch.distributed as dist
from torch.optim import Optimizer
from torch.optim.sgd import SGD
from fairscale.internal import torch_version
class _GeneralMultiDeviceReplicator(object):
"""
Lazily serves copies of a tensor to requested devices. Copies are cached per-device.
This class adds the cpu option to the _MultiDeviceReplicator class in PyTorch grad_scaler.py.
https://pytorch.org/docs/stable/_modules/torch/cuda/amp/grad_scaler.html#GradScaler
"""
def __init__(self, master_tensor: torch.Tensor) -> None:
assert master_tensor.is_cuda or master_tensor.device.type == "xla" or master_tensor.device.type == "cpu"
self.master = master_tensor
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
def get(self, device: torch.device) -> torch.Tensor:
retval = self._per_device_tensors.get(device, None)
if retval is None:
retval = self.master.to(device=device, non_blocking=True, copy=True)
self._per_device_tensors[device] = retval
return retval
# Defines default_factory for GradScaler's _per_optimizer_states defaultdict,
# as well as associated "enum" values. Prefers defining these at top level because
# - Lambdas can't be pickled, so we don't want to supply a lambda as the factory.
# - Defining READY, UNSCALED, STEPPED and _refresh_per_optimizer_state within GradScaler
# causes a circular reference, which we'd rather avoid.
class OptState(Enum):
READY = 0
UNSCALED = 1
STEPPED = 2
def _refresh_per_optimizer_state() -> Dict:
return {"stage": OptState.READY, "found_inf_per_device": {}}
class GradScaler(TorchGradScaler):
def _unscale_grads_(
self,
optimizer: Optimizer,
inv_scale: torch.Tensor,
found_inf: torch.Tensor,
allow_fp16: bool,
) -> Dict[torch.device, torch.Tensor]:
return super()._unscale_grads_(optimizer, inv_scale, found_inf, True)
class ShardedGradScaler(TorchGradScaler):
"""
A shard aware Grad Scaler which enables loss scaling with/without cpu_offload. This is a
slight modification of the pytorch grad scaler.
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
"""
def __init__(
self,
init_scale: float = 2.0**16,
growth_factor: float = 2.0,
backoff_factor: float = 0.5,
growth_interval: int = 2000,
enabled: bool = True,
process_group: Any = dist.group.WORLD,
):
super().__init__(
init_scale=init_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
enabled=enabled,
)
if enabled and amp_definitely_not_available():
warnings.warn("torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.")
self._enabled = False
else:
self._enabled = enabled
if self._enabled:
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
self.group = process_group
def scale(self, outputs: Union[torch.Tensor, List[torch.Tensor]]) -> Union[torch.Tensor, abc.Iterable]:
"""
Multiplies ('scales') a tensor or list of tensors by the scale factor.
Returns scaled outputs. If this instance of :class:`GradScaler` is not enabled, outputs are returned
unmodified.
Args:
outputs (Tensor or iterable of Tensors): Outputs to scale.
"""
if not self._enabled:
return outputs
# Short-circuit for the common case.
if isinstance(outputs, torch.Tensor):
assert outputs.is_cuda or outputs.device.type == "xla" or outputs.device.type == "cpu"
if self._scale is None:
self._lazy_init_scale_growth_tracker(outputs.device) # type: ignore
assert self._scale is not None
return outputs * self._scale.to(device=outputs.device, non_blocking=True)
# Invoke the more complex machinery only if we're treating multiple outputs.
stash: List[_GeneralMultiDeviceReplicator] = [] # holds a reference that can be overwritten by apply_scale
def apply_scale(val: Union[torch.Tensor, abc.Iterable]) -> Union[torch.Tensor, abc.Iterable]:
if isinstance(val, torch.Tensor):
assert val.is_cuda or val.device.type == "xla" or val.device.type == "cpu"
if len(stash) == 0:
if self._scale is None:
self._lazy_init_scale_growth_tracker(val.device) # type: ignore
assert self._scale is not None
stash.append(_GeneralMultiDeviceReplicator(self._scale))
return val * stash[0].get(val.device)
elif isinstance(val, abc.Iterable):
iterable = map(apply_scale, val)
if isinstance(val, list) or isinstance(val, tuple):
return type(val)(iterable)
else:
return iterable
else:
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
return apply_scale(outputs)
# This function is required enable cpu based grad scaler. It is inspired from its corresponding CUDA
# implementation which can be found here
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/AmpKernels.cu#L88
def _foreach_non_finite_check_and_unscale_cpu_(
self, grads: List, found_inf: torch.Tensor, inv_scale: torch.Tensor
) -> None:
if len(grads) == 0:
return
assert inv_scale.numel() == 1, "inv_scale must be a 1-element tensor."
assert found_inf.numel() == 1, "found_inf must be a 1-element tensor."
expected_device = grads[0].device
for tensor in grads:
try:
assert tensor.device == expected_device, "grads must be on the same device"
except AssertionError:
logging.error("tensor device is %s and expected device is %s" % (tensor.device, expected_device))
# check for non_overlapping_and_dense doesn't exist in the python world
# as remarked here https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/AmpKernels.cu#L108
# we assume tensor is not MTA(multi tensor apply) safe. iterate through each item regardless of dtype
if torch.isinf(tensor).any().item() is True or torch.isnan(tensor).any().item() is True: # type: ignore
found_inf.data = torch.tensor([1.0])
break
else:
tensor.data *= inv_scale.item()
def _unscale_grads_( # type: ignore
self, optimizer: SGD, inv_scale: torch.Tensor, found_inf: torch.Tensor, allow_fp16: bool = True
) -> Dict[torch.device, torch.Tensor]:
per_device_inv_scale = _GeneralMultiDeviceReplicator(inv_scale)
per_device_found_inf = _GeneralMultiDeviceReplicator(found_inf)
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
# There could be hundreds of grads, so we'd like to iterate through them just once.
# However, we don't know their devices or dtypes in advance.
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
# Google says mypy struggles with defaultdicts type annotations.
per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
with torch.no_grad():
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is None:
continue
if (not allow_fp16) and param.grad.dtype == torch.float16:
raise ValueError("Attempting to unscale FP16 gradients.")
if param.grad.is_sparse:
# is_coalesced() == False means the sparse grad has values with duplicate indices.
# coalesce() deduplicates indices and adds all values that have the same index.
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
# so we should check the coalesced _values().
if param.grad.dtype is torch.float16:
param.grad = param.grad.coalesce()
to_unscale = param.grad._values()
else:
to_unscale = param.grad
# TODO: is there a way to split by device and dtype without appending in the inner loop?
per_device_and_dtype_grads[to_unscale.device][to_unscale.dtype].append(to_unscale)
for device, per_dtype_grads in per_device_and_dtype_grads.items():
for grads in per_dtype_grads.values():
if grads[0].device.type == "cpu":
self._foreach_non_finite_check_and_unscale_cpu_(
grads,
per_device_found_inf.get(device),
per_device_inv_scale.get(device),
)
else:
torch._amp_foreach_non_finite_check_and_unscale_( # type: ignore
grads,
per_device_found_inf.get(device),
per_device_inv_scale.get(device),
)
return per_device_found_inf._per_device_tensors
def unscale_(self, optimizer: SGD) -> None: # type: ignore
if not self._enabled:
return
super()._check_scale_growth_tracker("unscale_") # type: ignore
optimizer_state = self._per_optimizer_states[id(optimizer)]
if optimizer_state["stage"] is OptState.UNSCALED:
raise RuntimeError("unscale_() has already been called on this optimizer since the last update().")
elif optimizer_state["stage"] is OptState.STEPPED:
raise RuntimeError("unscale_() is being called after step().")
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
assert self._scale is not None
inv_scale = self._scale.double().reciprocal().float()
found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device)
optimizer_state["found_inf_per_device"] = self._unscale_grads_(optimizer, inv_scale, found_inf, True)
optimizer_state["stage"] = OptState.UNSCALED
# Synchronize the detected inf across the ranks
optimizer_state = self._per_optimizer_states[id(optimizer)]
last_handle = None
for v in optimizer_state["found_inf_per_device"].values():
if v.device.type == "cpu":
v_on_cuda = v.cuda()
last_handle = dist.all_reduce(v_on_cuda, async_op=True, group=self.group)
v_on_cuda.cpu()
else:
last_handle = dist.all_reduce(v, async_op=True, group=self.group)
# Make sure that the calls are done before moving out.
# The calls are executed in sequence, waiting for the last one is enough
if last_handle is not None:
last_handle.wait()
def step(self, optimizer: SGD, *args, **kwargs) -> Optional[float]: # type: ignore
"""
:meth:`step` carries out the following two operations:
1. Internally invokes ``unscale_(optimizer)`` (unless :meth:`unscale_` was explicitly called for ``optimizer``
earlier in the iteration). As part of the :meth:`unscale_`, gradients are checked for infs/NaNs.
2. If no inf/NaN gradients are found, invokes ``optimizer.step()`` using the unscaled
gradients. Otherwise, ``optimizer.step()`` is skipped to avoid corrupting the params.
``*args`` and ``**kwargs`` are forwarded to ``optimizer.step()``.
Returns the return value of ``optimizer.step(*args, **kwargs)``.
Args:
optimizer (torch.optim.Optimizer): Optimizer that applies the gradients.
args: Any arguments.
kwargs: Any keyword arguments.
.. warning::
Closure use is not currently supported.
Note: This is an exact copy of the step function in grad_scaler.py. If this copy is deleted then the
unittest test_cpu_offload_and_cpu_grads fails. This is because the parent class step function calls
the parent class unscale_ function which does not handle torch.distributed.all_reduce on cpu.
"""
if not self._enabled:
return optimizer.step(*args, **kwargs)
if "closure" in kwargs:
raise RuntimeError("Closure use is not currently supported if GradScaler is enabled.")
self._check_scale_growth_tracker("step") # type: ignore
optimizer_state = self._per_optimizer_states[id(optimizer)]
if optimizer_state["stage"] is OptState.STEPPED:
raise RuntimeError("step() has already been called since the last update().")
retval = None
if hasattr(optimizer, "_step_supports_amp_scaling") and optimizer._step_supports_amp_scaling:
# This optimizer has customized scale-handling logic, so we can call optimizer.step() directly.
# The contract with custom optimizers is that their step() should accept an additional,
# optional grad_scaler kwarg. We append self to the kwargs so the custom optimizer has full information:
# it can query its own state, invoke unscale_ on itself, etc
retval = optimizer.step(*args, **dict(kwargs, grad_scaler=self))
optimizer_state["stage"] = OptState.STEPPED
return retval
if optimizer_state["stage"] is OptState.READY:
self.unscale_(optimizer)
assert len(optimizer_state["found_inf_per_device"]) > 0, "No inf checks were recorded for this optimizer."
retval = self._maybe_opt_step(optimizer, optimizer_state, *args, **kwargs) # type: ignore
optimizer_state["stage"] = OptState.STEPPED
return retval
# This function is required enable cpu based grad scaler. It is inspired from its corresponding CUDA
# implementation which can be found here
# https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/AmpKernels.cu#L219
def _amp_update_scale_cpu_(self, found_inf): # type: ignore
"""
If found_inf is 1.0 (True), then scale is multiplied by backoff_factor and growth_tracker is set to zero.
Otherwise, scale is multiplied by the growth factor when the growth interval is reached.
"""
if found_inf.item() == 1.0:
self._scale *= self._backoff_factor # type: ignore
self._growth_tracker = 0
else:
successful = self._growth_tracker + 1
if successful == self._growth_interval: # type: ignore
self._scale *= self._growth_factor # type: ignore
self._growth_tracker = 0
else:
self._growth_tracker = successful
def update(self, new_scale: Optional[Union[float, FloatTensor]] = None) -> None:
"""
Updates the scale factor.
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
the scale is multiplied by ``growth_factor`` to increase it.
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
used directly, it's used to fill GradScaler's internal scale tensor. So if
``new_scale`` was a tensor, later in-place changes to that tensor will not further
affect the scale GradScaler uses internally.)
Args:
new_scale (float or :class:`torch.cuda.FloatTensor`, optional, default=None): New scale factor.
.. warning::
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
been invoked for all optimizers used this iteration.
"""
if not self._enabled:
return
_scale, _growth_tracker = self._check_scale_growth_tracker("update") # type: ignore
if new_scale is not None:
# Accept a new user-defined scale.
if isinstance(new_scale, float):
self._scale.fill_(new_scale)
else:
reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor with requires_grad=False."
assert isinstance(new_scale, torch.cuda.FloatTensor), reason # type: ignore[attr-defined]
assert new_scale.numel() == 1, reason
assert new_scale.requires_grad is False, reason
self._scale.copy_(new_scale)
else:
# Consume shared inf/nan data collected from optimizers to update the scale.
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
found_infs = [
found_inf.to(device=_scale.device, non_blocking=True)
for state in self._per_optimizer_states.values()
for found_inf in state["found_inf_per_device"].values()
]
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
found_inf_combined = found_infs[0]
if len(found_infs) > 1:
for i in range(1, len(found_infs)):
found_inf_combined += found_infs[i]
if _scale.device.type == "cpu":
self._amp_update_scale_cpu_(found_inf_combined) # type: ignore
else:
if torch_version() >= (1, 9, 0):
torch._amp_update_scale_( # type: ignore
self._scale,
self._growth_tracker,
found_inf_combined,
self._growth_factor, # type: ignore
self._backoff_factor, # type: ignore
self._growth_interval, # type: ignore
)
elif torch_version() >= (1, 8, 0) and torch_version() < (1, 9, 0):
self._scale = torch._amp_update_scale( # type: ignore
self._growth_tracker,
_scale,
found_inf_combined,
self._growth_factor, # type: ignore
self._backoff_factor, # type: ignore
self._growth_interval, # type: ignore
)
# To prepare for next iteration, clear the data collected from optimizers this iteration.
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|