File size: 31,382 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# Copyright 2020 Petuum, Inc. All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of Petuum, Inc. nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import functools
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type
import numpy as np
import torch
from torch.autograd import Variable
import torch.distributed as dist
from torch.optim import SGD, Optimizer
if TYPE_CHECKING: # pragma: no cover
from torch.optim.optimizer import _params_t
else:
_params_t = Any
class AdaScale(Optimizer):
"""
Implements the AdaScale_ algorithm for scaling the learning rate for
distributed and large batch size training. Can be used in combination with
``torch.nn.parallel.DistributedDataParallel`` and ``torch.optim.SGD``.
.. _AdaScale: https://proceedings.icml.cc/static/paper_files/icml/2020/4682-Supplemental.pdf
This class subclasses `Optimizer` so that `torch.optim.lr_scheduler` can
work with it. In other words, AdaScale is intended to be a complete wrapper of an
torch Optimizer.
Note that, AdaScale does *not* help increase per-GPU batch size.
There are several ways to integrate AdaScale with your training loop.
We show two examples below.
Example 1: using PyTorch's `lr_scheduler` classes.
.. code-block:: python
optim = AdaScale(SGD(model.parameters(), lr=0.001))
model = DistributedDataParallel(model)
scheduler = LambdaLR(optim, lr_lambda=...)
last_epoch = 0
done = False
step = 0
while not done:
for batch in dataset:
optim.zero_grad()
logits = model()
loss = criterion(logits, ...)
loss.backward()
step += optim.gain()
optim.step()
epoch = step // len(dataset)
if epoch > last_epoch:
scheduler.step()
last_epoch = epoch
if epoch >= MAX_EPOCHS:
done = True
Example 2: using a custom `update_lr()` function that update the learning
rate based on the current step count per epoch.
.. code-block:: python
optim = AdaScale(SGD(model.parameters(), lr=0.001))
model = DistributedDataParallel(model)
step = 0
while step < max_steps:
for batch in ...:
optim.zero_grad()
logits = model()
loss = criterion()
loss.backward()
step += optim.gain()
optim.step()
update_lr(step)
Args:
optimizer (torch.optim.Optimizer):
Optimizer to apply AdaScale to.
world_size (int):
Number of world_size for distributed training.
If None, defaults to ``dist.get_world_size()``.
scale (float):
Scaling factor of the batch size from scale equals 1, e.g. using a 10x
larger batch size (summed across all ranks with gradient accumulation)
means a scale of 10.
If None, defaults to ``world_size * num_gradients_to_accumulate``.
smoothing (float):
Smoothing factor for moving average.
If None, it defaults to ``max(1 - (world_size * num_gradients_to_accumulate)/1000, 0)``.
Note, for very high scale training, higher smoothing value might be needed,
esp at the begining of the training. Therefore, if your scale is close to or larger
than 1000, try experimenting with smoothing value > 0 if the final accuracy is poor.
num_gradients_to_accumulate (int):
Number of passes that we accumulate gradients locally
between each optimizer step. This can be changed during
training as long as the train loop changes gradient accumulation
accordingly.
The loss in each pass can be either scaled or unscaled. See `is_scaled_loss` below.
Default to 1, which does not accumulate gradients.
is_scaled_loss (bool):
If True, assume that the loss is scaled by `num_gradients_to_accumulate`.
If False, the loss is not scaled.
Default: True.
debias_ewma (bool):
(experimental) Use debias exponential moving average
for smoothing and mu and sigma variables. False will
use the method in the paper's Appendix B.3.
Default: True, which is what have been validated so far.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
world_size: Optional[int] = None,
scale: Optional[float] = None,
smoothing: float = None,
num_gradients_to_accumulate: int = 1,
is_scaled_loss: bool = True,
debias_ewma: bool = True,
):
# Init hook_handles list, otherwise, a partial init'ed object may fail in ``__del__``.
self._hook_handles: List[Any] = []
# Init other fields.
self._optimizer = optimizer
self._local_grad_sqr: Optional[torch.Tensor] = None
self._world_size: int = (
world_size if world_size is not None else dist.get_world_size() if dist.is_initialized() else 1
)
self._num_backward_calls = 0
self._last_final_backward_call = 0
self._num_grads_to_accum = num_gradients_to_accumulate
self._debias_ewma = debias_ewma
self._is_scaled_loss = is_scaled_loss
# Proxy the param_groups so that `torch.optim.lr_scheduler` can work.
self.param_groups = self._optimizer.param_groups
self.set_num_gradients_to_accumulate(num_gradients_to_accumulate, update_smoothing=True)
# The previous function call sets smoothing to its default value.
# Override that here if smoothing was passed as an argument.
if smoothing is not None:
self._smoothing = smoothing
if self._world_size * self._num_grads_to_accum <= 1:
# gain will be NaN since we will be dividing by zero in paper's B.3 where (S-1) == 0.
raise RuntimeError("AdaScale does not support a single worker without grad accumulation.")
# Per-param-group sqr & var states (sigma^2 & mu^2 in the paper).
self._optimizer.state.setdefault(
"adascale",
{
"grad_sqr_avg": np.ones(len(optimizer.param_groups)),
"grad_var_avg": np.zeros(len(optimizer.param_groups)),
},
)
self._scale = 1.0 # Assign to inform mypy about the typing of this variable.
self.set_scale(self._world_size * self._num_grads_to_accum if scale is None else scale)
# Safer to register hooks after all init actions are done.
self._hook()
def _hook(self) -> None:
"""Internal function to register the gradient hooks.
Note, don't assume every parameter will generate a gradient (i.e. triggering the hook)
in every backward pass, which is the reason that we have ``find_unused_params`` flag
in the DDP class in ``torch.nn.parallel``.
"""
assert self._hook_handles == [], "Must run unhook first"
for idx, param_group in enumerate(self._optimizer.param_groups):
for param in param_group["params"]:
h = param.register_hook(functools.partial(self._backward_hook, idx))
self._hook_handles.append(h)
def __del__(self) -> None:
"""Unhook in case caller forgets to call unhook.
This however may not "work" since there would be circular reference
between the hook objects and this objects. In that case, neither will
get GC'ed. Calling unhook explicitly if you really want to delete
AdaScale from memory.
"""
self.unhook()
def unhook(self) -> None:
"""Unregister hook handles.
This is public because caller may need to call this to ensure all GPU
memory are released. Otherwise, the hook may prevent parameters from being
released from the GPU memory pool.
Internally, we use this to support ``add_param_group()`` API.
"""
for h in self._hook_handles:
h.remove()
self._hook_handles = []
@property
def _state(self) -> Dict[str, np.ndarray]:
"""
Return the states of AdaScale.
"""
return self._optimizer.state["adascale"]
@property
def scale(self) -> float:
"""
The scaling factor of the current batch size, relative to the baseline
batch size, which could be a DDP training. For example, if the
baseline batch size is 32 on 2 GPUs, but using a scaled-up batch size
of 80 on 4 GPUs, then then the scaling factor is 80 * 4 / 32 / 2 = 5.
This is exposed API mainly for logging purpose. Note, this is different
from ``self.gain()``.
Returns:
(float):
The current scaling factor.
"""
return self._scale
@property
def smoothing(self) -> float:
"""
The smoothing constant used in exponentially-weighted moving average
tracking the gradient norm mean and variance within AdaScale.
This is exposed API since the value is computed and caller may
want to obtain this value and log it.
Returns:
(float):
The current smoothing value.
"""
return self._smoothing
def set_scale(self, scale: float, update_estimate: bool = True) -> None:
"""
Set the scaling factor of the current batch size. It is up to the
application to invoke this function to make sure that AdaScale's
scaling factor matches the actual batch size used during training.
Args:
scale (float):
New scaling factor to be applied to AdaScale.
update_estimate (bool):
Whether to update the scale-depenent estimate of gradient
variance; this is highly recommended. (default: True)
"""
assert self._local_grad_sqr is None, "Don't change scale in backward phase"
assert scale >= 1, "Scale must be at least 1"
if update_estimate and hasattr(self, "_scale"):
assert self._scale >= 1, "bug: old scale isn't valid"
# Rescale grad_var_avg to account for the change in scale
if self._debias_ewma and "grad_var_avg_biased" in self._state:
self._state["grad_var_avg_biased"] *= self._scale / scale
elif "grad_var_avg_total" in self._state: # _debias_ewma==False
self._state["grad_var_avg_total"] *= self._scale / scale
self._state["grad_var_avg"] *= self._scale / scale
self._scale = scale
def _grad_sqr_avg(self, pg_idx: Optional[int] = None) -> float:
"""
Current estimate of the squared l2-norm of the true gradient
(sigma squared in the AdaScale paper).
Args:
pg_idx (Optional[int]):
Optional index for a parameter group.
Returns:
(float):
Estimate of squared l2-norm.
"""
if pg_idx is not None:
return self._state["grad_sqr_avg"][pg_idx]
else:
return float(np.sum(self._state["grad_sqr_avg"]))
def _grad_var_avg(self, pg_idx: Optional[int] = None) -> float:
"""
Current estimate of the trace of the covariance of the true gradient
(mu squared in the AdaScale paper).
Args:
pg_idx (Optional[int]):
Optional index for a parameter group.
Returns:
(float):
Estimate of trace of the covariance.
"""
if pg_idx is not None:
return self._state["grad_var_avg"][pg_idx]
else:
return float(np.sum(self._state["grad_var_avg"]))
def gain(self, pg_idx: Optional[int] = None) -> float:
"""
Current estimate of the AdaScale gain ratio (r_t in the paper).
Args:
pg_idx (int):
Optional index of a parameter group.
Default None: returns "averaged" gain for all groups.
Returns:
(float):
Estimate of gain ratio.
"""
var = self._grad_var_avg(pg_idx)
sqr = self._grad_sqr_avg(pg_idx)
gain = (var + sqr) / (var / self.scale + sqr)
return gain
def _update_avg(self, name: str, value: np.ndarray, factor: float) -> None:
if self._debias_ewma:
# This function computes and stores the moving average of a vector
# using a smoothing factor.
biased = self._state.get(name + "_biased", np.zeros(value.shape[0]))
unbias = self._state.get(name + "_unbias", np.zeros(value.shape[0]))
biased = factor * biased + (1.0 - factor) * value
unbias = factor * unbias + (1.0 - factor)
self._state[name + "_biased"] = biased
self._state[name + "_unbias"] = unbias
self._state[name] = biased / unbias
else:
# Moving average procedure described in Appendix B.3
# For iterations t < 1 / (1 - smoothing) define grad_var_avg
# and grad_sqr_avg as mean of the past samples. After that
# start using running average.
#
# Note: we only keep a single _count for all parameter groups.
# Ideally, it should be a vector and in case a PG is added
# after some iterations are done. But, then the if condition
# below will need to be a np.where. I leave this corner
# case to a future exercise.
count = self._state.get(name + "_count", np.zeros(1))
count[0] += 1
self._state[name + "_count"] = count
if count < 1 / (1 - self._smoothing):
total = self._state.get(name + "_total", None)
if total is None:
total = value
else:
total += value
self._state[name + "_total"] = total
self._state[name] = total / count
else:
self._state[name] = factor * self._state[name] + (1.0 - factor) * value
def _gather_flat_grad(self) -> torch.Tensor:
"""
Helper function for gathering all gradients into a single vector.
Duplicated from torch.optim.lbfgs.
"""
def _to_flat_view(p: torch.Tensor) -> torch.Tensor:
"""
Local helper function for _gather_flat_grad.
Returns a flattened view of the input tensor.
"""
if p.grad is None:
return p.new(p.numel()).zero_() # type: ignore
elif p.grad.is_sparse: # type: ignore
return p.grad.to_dense().view(-1)
else:
return p.grad.view(-1)
views = [_to_flat_view(p) for param_group in self._optimizer.param_groups for p in param_group["params"]]
return torch.cat(views, 0)
def _compute_intra_grad_corr_mean(self) -> torch.Tensor:
"""
Helper function for computing average intra correlation among gradients on different GPUs.
This should be called under `model.no_sync()` context.
"""
assert self._world_size > 1, "Only for distributed training"
flat_grad = self._gather_flat_grad()
corr_mean = torch.tensor(0.0).cuda()
if dist.get_rank() == 0:
size = flat_grad.numel()
gathered_tensors = [torch.zeros(size, device=0) for _ in range(self._world_size)]
dist.gather(flat_grad, gather_list=gathered_tensors, dst=0)
# the following requires torch 1.10+
corr = torch.stack(gathered_tensors).corrcoef() # type: ignore
# pick out the upper triangular part of the correlation matrix
corr = corr[torch.triu(torch.ones_like(corr), diagonal=1) == 1]
corr_mean = corr.mean()
else:
dist.gather(flat_grad, gather_list=None, dst=0)
dist.broadcast(corr_mean, src=0)
return corr_mean
def _backward_hook(self, pg_idx: int, grad: torch.Tensor) -> None:
# This method should be invoked once for each parameter during the
# backward pass, before gradients are synchronized between world_size.
# Store the local gradient square sums in a vector.
# This vector is also used for error checking. Whenever it is not None,
# it means that we are in backward pass.
if self._local_grad_sqr is None:
self._local_grad_sqr = torch.zeros(
len(self._optimizer.param_groups),
device=grad.device,
requires_grad=False,
)
self._local_grad_sqr[pg_idx] += grad.pow(2).sum()
# Now, ensure we queue a callback at the end of the callback queue.
# This will fire after all gradient callbacks are done (esp. those
# queued by DDP.
self._final_callback_queued = False
Variable._execution_engine.queue_callback(self._queue_callback)
def _queue_callback(self) -> None:
# This method should be invoked after the entire backward pass. We want
# to make sure self._final_callback is invoked once, only after all
# gradients have been synchronized between each worker. However, the
# synchronization code in DistributedDataParallel is also done in a
# callback, which might not yet be executed. Therefore, we enqueue
# self._final_callback from this method, which should ensure it is
# invoked after the gradient synchronization callback.
if self._final_callback_queued:
return
self._final_callback_queued = True
Variable._execution_engine.queue_callback(self._final_callback)
def _final_callback(self) -> None:
# This method should be invoked once for each backward pass, after
# gradients have been synchronized between each worker, unless we
# are in gradient accumulation mode, where grads are not all_reduced
# between the GPUs.
self._final_callback_queued = False
assert isinstance(self._local_grad_sqr, torch.Tensor)
# Keep track of number of backward calls for gradient accumulation.
# TODO (min): this may not work with activation checkpointing when
# multiple backward calls happen in a big backward.
self._num_backward_calls += 1
# TODO (min, mike): We need to have a way to check that training loop & DDP
# is doing the right thing where the gradient is reduced
# in this backward pass.
# Longer term, we may compute the gain and then inform
# the training loop when it is a good time to step().
assert (
self._num_backward_calls - self._last_final_backward_call
) <= self._num_grads_to_accum, (
f"bug: {self._num_backward_calls} - {self._last_final_backward_call} should <= {self._num_grads_to_accum}"
)
if (self._num_backward_calls - self._last_final_backward_call) % self._num_grads_to_accum != 0:
assert self._local_grad_sqr is not None, "We should still be in backward phase"
return
# Since self._local_grad_sqr is FP32, sum shouldn't overflow.
# This vector has length of # of param_groups, so it is small, but we
# use async to hide the all_reduce latency, esp when # of nodes is large.
work = None
if self._world_size > 1:
work = dist.all_reduce(self._local_grad_sqr, async_op=True) # SUM
# Compute the sums of squares for reduced gradients.
# Divide by _num_grads_to_accum since the gradients are accumulated.
total_grad_sqr = np.array(
[sum(param.grad.pow(2).sum().item() for param in group["params"]) for group in self._optimizer.param_groups]
)
# Wait for all_reduce to be done and move it to cpu & np.
if work:
work.wait()
local_grad_sqr = self._local_grad_sqr.cpu().numpy()
if self._num_grads_to_accum > 1:
# Handle scaling for for gradient accumulation
if self._is_scaled_loss:
# If loss is scaled down, we need to scale the local gradients back by a factor of _num_grads_to_accum squared;
# total_grad_sqr is already scaled by _num_grads_to_accum squared.
local_grad_sqr *= self._num_grads_to_accum**2
else:
# If loss is not scaled, local gradients are correct, but we need to scale the total_grad_sqr down to account for gradient accumulation.
total_grad_sqr /= self._num_grads_to_accum**2
# See appendix B.3 of the paper.
# Modified to handle cases where scale != world_size
#
# local_grad_sqr is \sum_{i=1}^{c N} \norm{g_t_i}^2
# where N is world size and c is num_grads_to_accum
# total_grad_sqr is \norm{\bar{g}_t}^2
S = self._scale
cN = self._world_size * self._num_grads_to_accum
grad_var = local_grad_sqr * (S / cN) / (cN - 1) - total_grad_sqr * S / (cN - 1)
grad_sqr = total_grad_sqr - grad_var / S
grad_var = np.maximum(grad_var, 1e-6)
grad_sqr = np.maximum(grad_sqr, 0.0)
self._update_avg("grad_sqr_avg", grad_sqr, self.smoothing)
self._update_avg("grad_var_avg", grad_var, self.smoothing)
self._last_final_backward_call = self._num_backward_calls
# Indicating backward is done.
self._local_grad_sqr = None
def step(self, *args: Any, **kwargs: Any) -> Optional[float]:
"""
Run one optimizer step using Adascale. Essentially just invokes
``optimizer.step(*args, **kwargs)`` with a scaled learning rate.
.. note::
It is possible that this function becames a performance
bottleneck if you have frequent updates. To avoid that,
making bigger steps and reducing update frequency is generally
better for performance.
Args:
args (Any):
Positional arguments passed to ``optimizer.step``.
kwargs (Any):
Keyword arguments passed to ``optimizer.step``.
Returns:
(Tensor):
The loss tensor if a closure if used to re-evaluate the model.
"""
assert self._local_grad_sqr is None, "Don't step without finishing backward phase"
# Set original LR and set new LR.
original_lr = []
for idx, param_group in enumerate(self._optimizer.param_groups):
original_lr.append(param_group["lr"])
param_group["lr"] *= self.gain(pg_idx=idx)
# Step it.
res = self._optimizer.step(*args, **kwargs)
# Restore the original LR.
for lr, param_group in zip(original_lr, self._optimizer.param_groups):
param_group["lr"] = lr
return res
def add_param_group(self, pg: Dict) -> None:
"""Support adding parameter groups
We need to re-size some of the state and re-register the backward hooks.
"""
assert self._local_grad_sqr is None, "Can't add parameter group during backward"
self._optimizer.add_param_group(pg)
# Update the hooks.
self.unhook()
self._hook()
# Extend the states.
for name in self._state.keys():
assert name.startswith("grad_sqr_avg") or name.startswith("grad_var_avg"), name
if name.endswith("_count"):
# This is the "_count" variable, should be a 1D int.
assert self._state[name].shape == (1,), self._state[name].shape
continue
# must be a np array, extend it with the right value and check the shape.
val = 1 if name == "grad_sqr_avg" else 0
self._state[name] = np.append(self._state[name], val) # type: ignore
assert self._state[name].shape == (len(self._optimizer.param_groups),)
def zero_grad(self) -> None:
"""Proxy function to optimizer, because some training loops need this."""
assert self._local_grad_sqr is None, "Don't zero_grad in backward"
return self._optimizer.zero_grad()
def state_dict(self) -> Dict:
"""Proxy function to optimizer, checkpointing needs this.
.. note::
Do NOT checkpoint in the middle of gradient accumulation since
associated AdaScale internal states are not saved in the checkpoint.
"""
assert self._local_grad_sqr is None, "Don't checkpoint in backward"
return self._optimizer.state_dict()
def load_state_dict(self, data: Dict) -> None:
"""Proxy function to optimizer, checkpointing needs this.
.. note::
Do NOT checkpoint in the middle of gradient accumulation since
associated AdaScale internal states are not saved in the checkpoint.
"""
assert self._local_grad_sqr is None, "Don't load checkpoint in backward"
return self._optimizer.load_state_dict(data)
def set_num_gradients_to_accumulate(
self,
num_gradients_to_accumulate: int,
update_smoothing: bool = True,
) -> None:
"""Set the number of gradients to accumulate to a new value.
This is experimental. This could be called while training so that
we can gradually increasing the steps between updates. Almost always,
`set_scale` needs to be called to update the scale as well.
TODO (min): need a way of determine how much to increase the step size?
TODO (min): have both `set_scale` and `set_num_gradients_to_accumulate`
is hard to use and easy to make mistake. I think it is better
to specific a specify a `base_scale`. But more discussion is
needed here.
Args:
num_gradients_to_accumulate (int):
Number of gradients to accumulate (calls to backward) between
each optimizer step
update_smoothing (bool):
Whether to update smoothing factor or not. Default: True.
"""
assert self._local_grad_sqr is None, "Don't change num_grad_to_accum in backward"
assert num_gradients_to_accumulate >= 1, f"Invalid value {num_gradients_to_accumulate}"
self._num_grads_to_accum = num_gradients_to_accumulate
if update_smoothing:
# Set smoothing based on effective world_size rather than scale here,
# since world_size determines the number of samples being averaged over
# at every update.
#
# When effective world size is large enough, smoothing is probably
# not needed, so the smoothing factor is 0.
self._smoothing = max(1 - self._world_size * self._num_grads_to_accum / 1000, 0)
def scale_grad_by_num_grads_to_accum(self) -> None:
"""Scale the gradient down by the number of gradients to accumulate.
This should be called after the gradient accumulation is done and the unscaled loss is used.
"""
assert self._local_grad_sqr is None, "Only call this after backward"
assert self._num_grads_to_accum > 1, "Must be accumulating gradients"
assert not self._is_scaled_loss, "Must use unscaled loss"
for group in self._optimizer.param_groups:
for param in group["params"]:
param.grad.div_(self._num_grads_to_accum)
def __getattr__(self, name: str) -> Any:
"""Forward missing attributes to wrapped optimizer."""
try:
return super().__getattr__(name) # defer to Optimizer logic
except AttributeError:
return getattr(self._optimizer, name) # fallback to wrapped optim
class AdaScaleWrapper(AdaScale):
"""
A thin wrapper for AdaScale so that the constructor resembles a
standard optimizer. This allows it to work with other Optimizer
Wrappers, like `OSS`.
.. warn::
OSS(AdaScaleWrapper) (i.e. OSS wrapping AdaScale) resulting in each
rank's AdaScale operates on different set of parameters. They
will get different gain values and it is unclear how to adjust
effective step size in that case. We have not validated effectiveness
or benefit in this case.
OTOH, AdaScale(OSS) (i.e. AdaScale wrapping OSS) is recommended
and is numerically identical to AdaScale without OSS. Since
AdaScale doesn't incur per-parameter state, the memory benefit
of OSS is still the same.
Args:
params (list of tensors):
parameters to be optimized
optim (class subtyping torch.optim.Optimizer):
a optimizer class to be wrapped.
additional_optim_args (argument dict):
keyward arguments to the `optim` class above.
The rest params are in-sync with the `AdaScale` class above.
"""
def __init__(
self,
params: _params_t,
world_size: Optional[int] = None,
scale: Optional[float] = None,
smoothing: float = None,
num_gradients_to_accumulate: int = 1,
debias_ewma: bool = True,
optim_cls: Type[Optimizer] = SGD,
**additional_optim_args: Any,
):
optim_obj = optim_cls(params, **additional_optim_args)
super().__init__(optim_obj, world_size, scale, smoothing, num_gradients_to_accumulate, debias_ewma)
|