File size: 25,261 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Optional, Tuple
import torch
from torch import nn
import torch.distributed as dist
import torch.nn.functional as F
# Debugging flag to enable some prints. Useful to debug with FSDP.
DEBUG = False
def _next_power_of_2_or_max(n: int, max_n: int) -> int:
"""Return the smallest power of 2 greater than or equal to n, with a limit.
Useful when used in splitting a tensor into chunks with power-of-2 sizes.
"""
# special case, just split to 1 element chunks.
if n == 0:
return 1
orig_n = n
n -= 1
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n += 1
assert n >= orig_n, f"{n} vs. {orig_n}"
assert bin(n).count("1") == 1, bin(n) # Catch the case n is too large for this function.
if n > max_n:
return max_n
return n
def _reshape_inputs(input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Convert 3D inputs to 2D for this kernel"""
if len(input.shape) == 3:
input = input.reshape(-1, input.shape[2])
if len(target.shape) == 2:
target = target.reshape(-1)
return input, target
def get_data(
shape: Tuple[Tuple[int, int], Tuple[int, int]], dtype: torch.dtype = torch.float16, device: str = "cuda"
) -> Tuple[torch.Tensor, nn.Parameter, torch.Tensor]:
"""Utility function for getting some tensors for testing and benchmarking."""
(tokens, d1), (d2, vocabs) = shape
assert d1 == d2
input = torch.rand(tokens, d1, device=device, dtype=dtype).requires_grad_(True)
# Before pytorch 1.9, nn.Linear does not support device and dtype init option. So we use to()
# and an if condition.
layer = nn.Linear(d2, vocabs, bias=False).to(device)
assert dtype in [torch.float16, torch.float32]
if dtype == torch.float16:
layer = layer.half()
weight = layer.weight
target = (torch.rand(tokens, device=device) * vocabs).long()
return input, weight, target
class BaselineSoftmax(nn.Module):
"""Baseline softmax that does an output linear projection and a softmax.
We also support LMCL (Large Margin Cosine Loss) from the CosFace paper. See
more detailed comment in the MEVO class below.
This is intended to be used with an embedding layer with shared weights.
Args:
proj_weight (nn.Parameter):
The shared weight.
tile_factor (int):
Unused. It is here to make kernel init easier with MEVO.
log_softmax (bool):
If True, use log_softmax instead of softmax.
margin (float):
Used in LMCL (when scale != None). See MEVO comments for
more details.
scale (Optional[float]):
Used in LMCL. If scale is None, LMCL is turned off. See
MEVO comments for more details.
"""
def __init__(
self,
proj_weight: nn.Parameter,
tile_factor: int = 0,
log_softmax: bool = True,
margin: float = 0.35,
scale: Optional[float] = None,
):
super().__init__()
out_dim, in_dim = proj_weight.shape
assert "cuda" in str(proj_weight.device), "weight should be on GPU"
self.fc = nn.Linear(in_dim, out_dim, bias=False).to("cuda")
assert proj_weight.dtype in [torch.float16, torch.float32]
if proj_weight.dtype == torch.float16:
self.fc = self.fc.half()
self.fc.weight = proj_weight
assert self.fc.weight.dtype in [torch.float16, torch.float32], self.fc.weight.dtype
self.fp16 = self.fc.weight.dtype == torch.float16
self.log_softmax = log_softmax
self.margin = margin
self.scale = scale
def lmcl_pre_softmax(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
# normalize feature and fc layer before multiplication
# n: number of features (tokens)
# k: number of classes (vocab size)
# c: hidden dimension (d_model)
x = F.normalize(input, dim=1)
w = F.normalize(self.fc.weight, dim=1)
logits = torch.einsum("nc,kc->nk", x, w)
# add margin
row_ind = torch.arange(x.shape[0], dtype=torch.long).to(x.device)
col_ind = target
logits[row_ind, col_ind] -= self.margin
# add scale
logits *= self.scale
return logits
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: # type: ignore
"""Forward function that computes softmax output with the input and target."""
assert isinstance(input, torch.Tensor)
assert isinstance(target, torch.Tensor)
input, target = _reshape_inputs(input, target)
if self.fp16:
assert input.dtype == torch.float16
if self.scale is not None:
x = self.lmcl_pre_softmax(input, target)
else:
x = self.fc(input)
# Note that we do softmax in FP32, which is important for numerical stability.
if self.log_softmax:
x = F.log_softmax(x, dim=-1, dtype=torch.float32)
else:
x = F.softmax(x, dim=-1, dtype=torch.float32)
assert x.dtype == torch.float32
return x
class BaselineSoftmaxNllLoss(BaselineSoftmax):
"""Baseline that does an output projection, a softmax & a NLL loss (cross-entropy).
See BaselineSoftmax above. Constructor is the same. Only difference is in the
forward function.
This class is used for testing and benchmarking.
"""
def __init__(
self,
proj_weight: nn.Parameter,
tile_factor: int = 0,
log_softmax: bool = True,
margin: float = 0.35,
scale: Optional[float] = None,
):
super().__init__(proj_weight, tile_factor, log_softmax, margin, scale)
def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: # type: ignore
"""Forward that directly compute the loss."""
assert isinstance(input, torch.Tensor)
assert isinstance(target, torch.Tensor)
input, target = _reshape_inputs(input, target)
x = super().forward(input, target)
return F.nll_loss(x, target, reduction="sum")
def lmcl_matmul(
i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, w_idx: int, margin: float, scale: Optional[float]
) -> torch.Tensor:
"""LMCL variation of matmul with normalization, margin and scale."""
# normalize and matmul
logits = torch.matmul(F.normalize(i, dim=1), F.normalize(w, dim=1).T)
# add margin using a mask since tgt might be out of the the weight split's range.
mask = torch.arange(w_idx * w.shape[0], (w_idx + 1) * w.shape[0], dtype=torch.long, device=i.device).expand(
i.shape[0], -1
)
logits[mask == tgt.reshape(-1, 1)] -= margin
# add scale
logits *= scale
return logits
class GetMaxFunction(torch.autograd.Function):
"""Custom checkpointed function to get max-per-token from an input and a weight"""
@staticmethod
def get_max(
i: torch.Tensor,
w: torch.Tensor,
tgt: torch.Tensor,
w_idx: int,
full_precision: bool,
margin: float,
scale: Optional[float],
) -> torch.Tensor:
"""
Throughout this code:
i: input data with shape = (split-of-tokens, d_model)
w: weight data with shape = (split-of-vocabs, d_model)
tgt: target prediction data with shape = (split-of-tokens,)
"""
if scale is not None:
_m = lmcl_matmul(i, w, tgt, w_idx, margin, scale)
else:
_m = torch.matmul(i, w.T)
if full_precision:
_m = _m.float()
_m = _m.max(dim=1)[0]
return _m
@staticmethod
def forward( # type: ignore
ctx: Any,
i: torch.Tensor,
w: torch.Tensor,
tgt: torch.Tensor,
kernel_obj: "MemoryEfficientVocabOutput",
w_idx: int,
w_split_size: int,
split_dim: int,
) -> torch.Tensor:
"""Forward function that computes the max, without saving activations."""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG max fwd")
ctx.save_for_backward(i, w, tgt)
ctx.kernel_obj = kernel_obj
ctx.w_idx = w_idx
ctx.w_split_size = w_split_size
ctx.args = {}
assert split_dim == 0
# During forward, we use ``no_grad'' to avoid saving the activations.
# The activations will be recomputed in backward below and freed
# immediately after use. This saves the overall GPU peak memory of this layer.
with torch.no_grad():
return GetMaxFunction.get_max(i, w, tgt, w_idx, kernel_obj.fp_max, kernel_obj.margin, kernel_obj.scale)
@staticmethod
def backward(ctx: Any, *args: Any) -> Any:
"""Recompute the forward max and backward grad.
Accumulate the grad to the right split of the full grad.
"""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG max bwd")
assert len(args) == 1
# Gradients should already exist due to TargetScoreFunction's backward.
assert ctx.kernel_obj.proj_weight.grad is not None
# Get saved i and w.
i, w, tgt = ctx.saved_tensors
assert i.requires_grad
assert w.requires_grad
# We use ``detach()'' to ensure the backward call below does not
# trigger backward computation that produced i and w here. Otherwise,
# the backward call below would trigger backward all the way to
# the batch input.
i = i.detach().requires_grad_(True)
w = w.detach().requires_grad_(True)
# Forward + backward again.
with torch.enable_grad():
# This saves the activations.
maxs = GetMaxFunction.get_max(
i, w, tgt, ctx.w_idx, ctx.kernel_obj.fp_max, ctx.kernel_obj.margin, ctx.kernel_obj.scale
)
# This will use the activations and free them immediately.
torch.autograd.backward(maxs, *args)
# Accumulate the computed gradients into the bigger weight tensor's gradient tensor.
assert w.grad is not None
with torch.no_grad():
grads = torch.split(ctx.kernel_obj.proj_weight.grad, ctx.w_split_size)
grads[ctx.w_idx].add_(w.grad)
return i.grad, None, None, None, None, None, None
class GetSumFunction(torch.autograd.Function):
"""Custom checkpointed function to get sum-per-token from an input and a weight."""
@staticmethod
def get_sum(
i: torch.Tensor,
w: torch.Tensor,
tgt: torch.Tensor,
maxs: torch.Tensor,
w_idx: int,
full_precision: bool,
margin: float,
scale: Optional[float],
) -> torch.Tensor:
if scale is not None:
_s = lmcl_matmul(i, w, tgt, w_idx, margin, scale)
else:
_s = torch.matmul(i, w.T)
if full_precision:
_s = _s.float()
_s = (_s - maxs.reshape(-1, 1)).exp().sum(dim=1)
return _s
@staticmethod
def forward( # type: ignore
ctx: Any,
i: torch.Tensor,
w: torch.Tensor,
tgt: torch.Tensor,
maxs: torch.Tensor,
kernel_obj: "MemoryEfficientVocabOutput",
w_idx: int,
w_split_size: int,
split_dim: int,
) -> torch.Tensor:
"""Forward function that computes the sum, without saving activations."""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG sum fwd")
ctx.save_for_backward(i, w, tgt, maxs)
ctx.kernel_obj = kernel_obj
ctx.w_idx = w_idx
ctx.w_split_size = w_split_size
assert split_dim == 0
with torch.no_grad():
return GetSumFunction.get_sum(
i, w, tgt, maxs, w_idx, kernel_obj.fp_sum, kernel_obj.margin, kernel_obj.scale
)
@staticmethod
def backward(ctx: Any, *args: Any) -> Any:
"""Recompute the forward sum and backward grad.
Accumulate the grad to the right split of the full grad.
"""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG sum bwd")
assert len(args) == 1
# Gradients should already exist due to TargetScoreFunction's backward.
assert ctx.kernel_obj.proj_weight.grad is not None
# Get saved i, w, and maxs.
i, w, tgt, maxs = ctx.saved_tensors
assert i.requires_grad
assert w.requires_grad
assert maxs.requires_grad
i = i.detach().requires_grad_(True)
w = w.detach().requires_grad_(True)
maxs = maxs.detach().requires_grad_(True)
# Forward + backward again.
with torch.enable_grad():
sums = GetSumFunction.get_sum(
i, w, tgt, maxs, ctx.w_idx, ctx.kernel_obj.fp_sum, ctx.kernel_obj.margin, ctx.kernel_obj.scale
)
torch.autograd.backward(sums, *args)
# Accumulate the grads.
assert w.grad is not None
with torch.no_grad():
grads = torch.split(ctx.kernel_obj.proj_weight.grad, ctx.w_split_size)
grads[ctx.w_idx].add_(w.grad)
return i.grad, None, None, maxs.grad, None, None, None, None
class TargetScoreFunction(torch.autograd.Function):
"""Custom checkpointed function to compute the target score."""
@staticmethod
def get_target_score(
i: torch.Tensor,
w: torch.Tensor,
target: torch.Tensor,
full_precision: bool,
margin: float,
scale: Optional[float],
) -> torch.Tensor:
tokens, d_model = i.shape
assert d_model == w.shape[1]
tw = w.gather(dim=0, index=target.reshape(target.shape[0], 1).expand(target.shape[0], d_model))
assert tw.shape == (tokens, d_model)
if scale is not None:
target_score = F.normalize(i, dim=1) * F.normalize(tw, dim=1)
else:
target_score = i * tw
if full_precision:
target_score = target_score.float()
target_score = target_score.sum(dim=1) # sum into target scores with shape (tokens,)
if scale is not None:
target_score -= margin
target_score *= scale
return target_score
@staticmethod
def forward( # type: ignore
ctx: Any, i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, kernel_obj: "MemoryEfficientVocabOutput"
) -> torch.Tensor:
"""Forward, without activations."""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG target fwd")
ctx.save_for_backward(i, w, target)
ctx.kernel_obj = kernel_obj
with torch.no_grad():
x = TargetScoreFunction.get_target_score(
i, w, target, kernel_obj.fp_target, kernel_obj.margin, kernel_obj.scale
)
return x
@staticmethod
def backward(ctx: Any, *args: Any) -> Any:
"""Forward and backward again, assign or accumulate the gradients."""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG target bwd")
assert len(args) == 1
i, w, target = ctx.saved_tensors
assert i.requires_grad
assert w.requires_grad
assert not target.requires_grad
i = i.detach().requires_grad_(True)
w = w.detach().requires_grad_(True)
with torch.enable_grad():
scores = TargetScoreFunction.get_target_score(
i, w, target, ctx.kernel_obj.fp_target, ctx.kernel_obj.margin, ctx.kernel_obj.scale
)
torch.autograd.backward(scores, *args)
if ctx.kernel_obj.proj_weight.grad is not None:
# This means we accumulate full grad between iters. Not memory efficient.
ctx.kernel_obj.proj_weight.grad.add_(w.grad)
else:
ctx.kernel_obj.proj_weight.grad = w.grad
return i.grad, None, None, None
class BackwardTriggerFn(torch.autograd.Function):
"""A backward trigger function."""
@staticmethod
def forward(ctx: Any, w: torch.Tensor, trigger_tensor: torch.Tensor) -> torch.Tensor: # type: ignore
"""We take a weight tensor and the trigger as inputs and output the weight directly."""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG trigger fwd")
ctx.save_for_backward(w, trigger_tensor)
return w
@staticmethod
def backward(ctx: Any, *args: Any) -> Any:
"""We return zero grad for the trigger only."""
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print("DEBUG trigger bwd")
assert len(args) == 1
w, trigger = ctx.saved_tensors
assert w.requires_grad
assert trigger.requires_grad
return None, torch.zeros_like(trigger)
class BackwardTrigger(nn.Module):
"""A backward trigger module.
This module takes a parameter as an input and create a linked parameter
from a newly created trigger parameter.
The way to use it in a module's ``__init__'' and ``forward'' functions:
```
def __init__():
...
self.trigger = BackwardTrigger(some_layer.weight)
...
def forward():
w = self.trigger()
... continue to use w ...
```
As a resule, the trigger's backward hook will be called at the end of
the backward for the module that uses this trigger.
"""
def __init__(self, linked_param: torch.Tensor):
super().__init__()
assert isinstance(linked_param, nn.Parameter)
self.trigger = nn.Parameter(torch.rand(1, dtype=linked_param.dtype, device=linked_param.device))
self.trigger._linked_param = linked_param
def forward(self) -> torch.Tensor: # type: ignore
return BackwardTriggerFn.apply(self.trigger._linked_param, self.trigger)
class MemoryEfficientVocabOutput(nn.Module): # AKA. MEVO
"""Fused fc + softmax + nll_loss in a tiled fashion.
MEVO uses much less memory but is quite a bit slower.
MEVO also implements the LMCL (Large Margin Cosine Loss) function introduced by
highly cited
`CosFace: Large Margin Cosine Loss for Deep Face Recognition [Wang et al.]`_.
.. _`CosFace: Large Margin Cosine Loss for Deep Face Recognition [Wang et al.]`: https://arxiv.org/abs/1801.09414
LMCL can be turned on using the ``margin`` and ``scale`` parameters below. These
hyperparameters most likely require tuning, depending on the number of classes etc.
MEVO LMCL can be suitable for face recognition and image retrieval tasks, esp. when
the number prediction target classes is large. MEVO is slower but can use much
less GPU memory in that case, which enables training with larger batches. We
hope this is helpful but we strongly recommend users (AI researchers
and engineers) to carefully consider their applications of this technology. This
types of technology should not be used by small group of people exclusively to
potentially harm the general public.
Args:
proj_weight (nn.Parameter):
Sharing this weight with an embedding layer.
tile_factor (int):
Number of splits to use on the input sequence and vocab dimensions.
Default: 16
reduction (str):
Reduction OP (sum or mean).
Default: sum
margin (float):
Hyperparameter of the separation margin between classes. See the
appendix of the CosFace paper for a formula on how to compute its
value properly. The default value is unlikely to be suitable in all
cases.
Default: 0.35
scale (Optional[float]):
Hyperparameter of the feature-vector-scaling for LMCL. When not
supplied, LMCL is turned off. See the appendix of the CosFace paper for
a formula on how to compute its value properly.
Default: None
"""
def __init__(
self,
proj_weight: nn.Parameter,
tile_factor: int = 16,
reduction: str = "sum",
margin: float = 0.35,
scale: Optional[float] = None,
):
super().__init__()
self.proj_weight = proj_weight
# TODO (Min): these two factors doesn't have to be the same. More tuning can be done.
self.tf_in, self.tf_w = tile_factor, tile_factor
self.fp_max = True
self.fp_sum = True # This is esp. important when tensors are large. Otherwise, you get inf.
self.fp_target = True
self.log_softmax = True
self.reduction = reduction
assert self.reduction in ["sum", "mean"]
self.margin = margin
self.scale = scale
self.trigger = BackwardTrigger(self.proj_weight)
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
print(
f"DEBUG cfg tf_in={self.tf_in} tf_w={self.tf_w} fp_max={self.fp_max} "
f"fp_sum={self.fp_sum} fp_target={self.fp_target} log_softmax={self.log_softmax} "
f"reduction={self.reduction} margin={self.margin} scale={self.scale}"
)
def get_target_nlprob(
self, i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, debase_max: torch.Tensor, exp_sums: torch.Tensor
) -> torch.Tensor:
"""Get target's negative log probability."""
target_score = TargetScoreFunction.apply(i, w, target, self)
prob = (target_score - debase_max).exp() / exp_sums
if self.log_softmax:
# lprob
prob = prob.log()
# nlprob, then sum over all tokens.
return -prob.sum()
def eval_forward(self, input: torch.Tensor) -> torch.Tensor:
"""Eval time forward that doesn't fuse the softmax and NLL Loss kernels."""
# Margin, scaling and normalization of LMCL does not apply to eval time as far as
# I can tell. Therefore, we just do a matmul like the standard output layer.
return torch.matmul(input, self.proj_weight.T)
def forward(self, input: torch.Tensor, target: Optional[torch.Tensor]) -> torch.Tensor: # type: ignore
if not self.training and target is None:
return self.eval_forward(input)
if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
cur_mem = round(torch.cuda.memory_allocated() / 1024 / 1024)
mem = round(torch.cuda.max_memory_allocated() / 1024 / 1024)
print("DEBUG cur, peak", cur_mem, mem)
assert isinstance(input, torch.Tensor)
assert isinstance(target, torch.Tensor)
if torch.is_grad_enabled():
assert input.requires_grad
input, target = _reshape_inputs(input, target)
tokens, d_model = input.shape
(t2,) = target.shape
vocab, d2 = self.proj_weight.shape
assert d_model == d2, f"incorrect shape {d_model} vs {d2}"
assert tokens == t2, f"incorrect shape {tokens} vs {t2}"
split_dim = 0
input_split_size = _next_power_of_2_or_max(tokens // self.tf_in, tokens)
weight_split_size = _next_power_of_2_or_max(vocab // self.tf_w, vocab)
inputs = torch.split(input, input_split_size, split_dim)
weight = self.trigger()
weights = torch.split(weight, weight_split_size, split_dim)
targets = tuple([torch.Tensor()] * len(inputs))
if self.scale is not None:
targets = torch.split(target, input_split_size, split_dim)
# Get maxs
maxs = []
for i, tgt in zip(inputs, targets):
m = None # max with (tokens_tile,) shape
for w_idx, w in enumerate(weights):
_m = GetMaxFunction.apply(i, w, tgt, self, w_idx, weight_split_size, split_dim)
if m is None:
m = _m
else:
m = torch.max(m, _m)
assert m is not None
maxs.append(m) # (tokens_tile,)
maxs_tensor = torch.cat(maxs) # (tokens,)
assert maxs_tensor.shape == (tokens,)
# Get sums.
sums = []
for i, tgt, debase_max in zip(inputs, targets, maxs):
s = None # sum with (tokens_tile,) shape
for w_idx, w in enumerate(weights):
_s = GetSumFunction.apply(i, w, tgt, debase_max, self, w_idx, weight_split_size, split_dim)
if s is None:
s = _s
else:
s += _s
assert s is not None
sums.append(s) # (tokens_tile,)
sums_tensor = torch.cat(sums) # (tokens,)
assert sums_tensor.shape == (tokens,)
# select weights for targets
result = self.get_target_nlprob(input, self.proj_weight, target, maxs_tensor, sums_tensor)
if self.reduction == "mean":
result /= tokens
return result
|