File size: 25,261 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.


from typing import Any, Optional, Tuple

import torch
from torch import nn
import torch.distributed as dist
import torch.nn.functional as F

# Debugging flag to enable some prints. Useful to debug with FSDP.
DEBUG = False


def _next_power_of_2_or_max(n: int, max_n: int) -> int:
    """Return the smallest power of 2 greater than or equal to n, with a limit.

    Useful when used in splitting a tensor into chunks with power-of-2 sizes.
    """
    # special case, just split to 1 element chunks.
    if n == 0:
        return 1
    orig_n = n
    n -= 1
    n |= n >> 1
    n |= n >> 2
    n |= n >> 4
    n |= n >> 8
    n |= n >> 16
    n += 1
    assert n >= orig_n, f"{n} vs. {orig_n}"
    assert bin(n).count("1") == 1, bin(n)  # Catch the case n is too large for this function.
    if n > max_n:
        return max_n
    return n


def _reshape_inputs(input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    """Convert 3D inputs to 2D for this kernel"""
    if len(input.shape) == 3:
        input = input.reshape(-1, input.shape[2])
    if len(target.shape) == 2:
        target = target.reshape(-1)
    return input, target


def get_data(
    shape: Tuple[Tuple[int, int], Tuple[int, int]], dtype: torch.dtype = torch.float16, device: str = "cuda"
) -> Tuple[torch.Tensor, nn.Parameter, torch.Tensor]:
    """Utility function for getting some tensors for testing and benchmarking."""
    (tokens, d1), (d2, vocabs) = shape
    assert d1 == d2
    input = torch.rand(tokens, d1, device=device, dtype=dtype).requires_grad_(True)
    # Before pytorch 1.9, nn.Linear does not support device and dtype init option. So we use to()
    # and an if condition.
    layer = nn.Linear(d2, vocabs, bias=False).to(device)
    assert dtype in [torch.float16, torch.float32]
    if dtype == torch.float16:
        layer = layer.half()
    weight = layer.weight
    target = (torch.rand(tokens, device=device) * vocabs).long()
    return input, weight, target


class BaselineSoftmax(nn.Module):
    """Baseline softmax that does an output linear projection and a softmax.


        We also support LMCL (Large Margin Cosine Loss) from the CosFace paper. See
        more detailed comment in the MEVO class below.

        This is intended to be used with an embedding layer with shared weights.

    Args:
        proj_weight (nn.Parameter):
            The shared weight.
        tile_factor (int):
            Unused. It is here to make kernel init easier with MEVO.
        log_softmax (bool):
            If True, use log_softmax instead of softmax.
        margin (float):
            Used in LMCL (when scale != None). See MEVO comments for
            more details.
        scale (Optional[float]):
            Used in LMCL. If scale is None, LMCL is turned off. See
            MEVO comments for more details.

    """

    def __init__(
        self,
        proj_weight: nn.Parameter,
        tile_factor: int = 0,
        log_softmax: bool = True,
        margin: float = 0.35,
        scale: Optional[float] = None,
    ):
        super().__init__()
        out_dim, in_dim = proj_weight.shape
        assert "cuda" in str(proj_weight.device), "weight should be on GPU"
        self.fc = nn.Linear(in_dim, out_dim, bias=False).to("cuda")
        assert proj_weight.dtype in [torch.float16, torch.float32]
        if proj_weight.dtype == torch.float16:
            self.fc = self.fc.half()
        self.fc.weight = proj_weight
        assert self.fc.weight.dtype in [torch.float16, torch.float32], self.fc.weight.dtype
        self.fp16 = self.fc.weight.dtype == torch.float16
        self.log_softmax = log_softmax
        self.margin = margin
        self.scale = scale

    def lmcl_pre_softmax(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        # normalize feature and fc layer before multiplication
        #   n: number of features (tokens)
        #   k: number of classes (vocab size)
        #   c: hidden dimension (d_model)
        x = F.normalize(input, dim=1)
        w = F.normalize(self.fc.weight, dim=1)
        logits = torch.einsum("nc,kc->nk", x, w)

        # add margin
        row_ind = torch.arange(x.shape[0], dtype=torch.long).to(x.device)
        col_ind = target
        logits[row_ind, col_ind] -= self.margin

        # add scale
        logits *= self.scale

        return logits

    def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:  # type: ignore
        """Forward function that computes softmax output with the input and target."""
        assert isinstance(input, torch.Tensor)
        assert isinstance(target, torch.Tensor)
        input, target = _reshape_inputs(input, target)
        if self.fp16:
            assert input.dtype == torch.float16
        if self.scale is not None:
            x = self.lmcl_pre_softmax(input, target)
        else:
            x = self.fc(input)
        # Note that we do softmax in FP32, which is important for numerical stability.
        if self.log_softmax:
            x = F.log_softmax(x, dim=-1, dtype=torch.float32)
        else:
            x = F.softmax(x, dim=-1, dtype=torch.float32)
        assert x.dtype == torch.float32
        return x


class BaselineSoftmaxNllLoss(BaselineSoftmax):
    """Baseline that does an output projection, a softmax & a NLL loss (cross-entropy).

    See BaselineSoftmax above. Constructor is the same. Only difference is in the
    forward function.

    This class is used for testing and benchmarking.
    """

    def __init__(
        self,
        proj_weight: nn.Parameter,
        tile_factor: int = 0,
        log_softmax: bool = True,
        margin: float = 0.35,
        scale: Optional[float] = None,
    ):
        super().__init__(proj_weight, tile_factor, log_softmax, margin, scale)

    def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:  # type: ignore
        """Forward that directly compute the loss."""
        assert isinstance(input, torch.Tensor)
        assert isinstance(target, torch.Tensor)
        input, target = _reshape_inputs(input, target)
        x = super().forward(input, target)
        return F.nll_loss(x, target, reduction="sum")


def lmcl_matmul(
    i: torch.Tensor, w: torch.Tensor, tgt: torch.Tensor, w_idx: int, margin: float, scale: Optional[float]
) -> torch.Tensor:
    """LMCL variation of matmul with normalization, margin and scale."""
    # normalize and matmul
    logits = torch.matmul(F.normalize(i, dim=1), F.normalize(w, dim=1).T)

    # add margin using a mask since tgt might be out of the the weight split's range.
    mask = torch.arange(w_idx * w.shape[0], (w_idx + 1) * w.shape[0], dtype=torch.long, device=i.device).expand(
        i.shape[0], -1
    )
    logits[mask == tgt.reshape(-1, 1)] -= margin

    # add scale
    logits *= scale

    return logits


class GetMaxFunction(torch.autograd.Function):
    """Custom checkpointed function to get max-per-token from an input and a weight"""

    @staticmethod
    def get_max(
        i: torch.Tensor,
        w: torch.Tensor,
        tgt: torch.Tensor,
        w_idx: int,
        full_precision: bool,
        margin: float,
        scale: Optional[float],
    ) -> torch.Tensor:
        """
        Throughout this code:

          i: input data with shape = (split-of-tokens, d_model)
          w: weight data with shape = (split-of-vocabs, d_model)
          tgt: target prediction data with shape = (split-of-tokens,)
        """
        if scale is not None:
            _m = lmcl_matmul(i, w, tgt, w_idx, margin, scale)
        else:
            _m = torch.matmul(i, w.T)
        if full_precision:
            _m = _m.float()
        _m = _m.max(dim=1)[0]
        return _m

    @staticmethod
    def forward(  # type: ignore
        ctx: Any,
        i: torch.Tensor,
        w: torch.Tensor,
        tgt: torch.Tensor,
        kernel_obj: "MemoryEfficientVocabOutput",
        w_idx: int,
        w_split_size: int,
        split_dim: int,
    ) -> torch.Tensor:
        """Forward function that computes the max, without saving activations."""
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG max fwd")
        ctx.save_for_backward(i, w, tgt)
        ctx.kernel_obj = kernel_obj
        ctx.w_idx = w_idx
        ctx.w_split_size = w_split_size
        ctx.args = {}
        assert split_dim == 0
        # During forward, we use ``no_grad'' to avoid saving the activations.
        # The activations will be recomputed in backward below and freed
        # immediately after use. This saves the overall GPU peak memory of this layer.
        with torch.no_grad():
            return GetMaxFunction.get_max(i, w, tgt, w_idx, kernel_obj.fp_max, kernel_obj.margin, kernel_obj.scale)

    @staticmethod
    def backward(ctx: Any, *args: Any) -> Any:
        """Recompute the forward max and backward grad.

        Accumulate the grad to the right split of the full grad.
        """
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG max bwd")
        assert len(args) == 1
        # Gradients should already exist due to TargetScoreFunction's backward.
        assert ctx.kernel_obj.proj_weight.grad is not None

        # Get saved i and w.
        i, w, tgt = ctx.saved_tensors
        assert i.requires_grad
        assert w.requires_grad
        # We use ``detach()'' to ensure the backward call below does not
        # trigger backward computation that produced i and w here. Otherwise,
        # the backward call below would trigger backward all the way to
        # the batch input.
        i = i.detach().requires_grad_(True)
        w = w.detach().requires_grad_(True)

        # Forward + backward again.
        with torch.enable_grad():
            # This saves the activations.
            maxs = GetMaxFunction.get_max(
                i, w, tgt, ctx.w_idx, ctx.kernel_obj.fp_max, ctx.kernel_obj.margin, ctx.kernel_obj.scale
            )
        # This will use the activations and free them immediately.
        torch.autograd.backward(maxs, *args)

        # Accumulate the computed gradients into the bigger weight tensor's gradient tensor.
        assert w.grad is not None
        with torch.no_grad():
            grads = torch.split(ctx.kernel_obj.proj_weight.grad, ctx.w_split_size)
            grads[ctx.w_idx].add_(w.grad)
        return i.grad, None, None, None, None, None, None


class GetSumFunction(torch.autograd.Function):
    """Custom checkpointed function to get sum-per-token from an input and a weight."""

    @staticmethod
    def get_sum(
        i: torch.Tensor,
        w: torch.Tensor,
        tgt: torch.Tensor,
        maxs: torch.Tensor,
        w_idx: int,
        full_precision: bool,
        margin: float,
        scale: Optional[float],
    ) -> torch.Tensor:
        if scale is not None:
            _s = lmcl_matmul(i, w, tgt, w_idx, margin, scale)
        else:
            _s = torch.matmul(i, w.T)
        if full_precision:
            _s = _s.float()
        _s = (_s - maxs.reshape(-1, 1)).exp().sum(dim=1)
        return _s

    @staticmethod
    def forward(  # type: ignore
        ctx: Any,
        i: torch.Tensor,
        w: torch.Tensor,
        tgt: torch.Tensor,
        maxs: torch.Tensor,
        kernel_obj: "MemoryEfficientVocabOutput",
        w_idx: int,
        w_split_size: int,
        split_dim: int,
    ) -> torch.Tensor:
        """Forward function that computes the sum, without saving activations."""
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG sum fwd")
        ctx.save_for_backward(i, w, tgt, maxs)
        ctx.kernel_obj = kernel_obj
        ctx.w_idx = w_idx
        ctx.w_split_size = w_split_size
        assert split_dim == 0
        with torch.no_grad():
            return GetSumFunction.get_sum(
                i, w, tgt, maxs, w_idx, kernel_obj.fp_sum, kernel_obj.margin, kernel_obj.scale
            )

    @staticmethod
    def backward(ctx: Any, *args: Any) -> Any:
        """Recompute the forward sum and backward grad.

        Accumulate the grad to the right split of the full grad.
        """
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG sum bwd")
        assert len(args) == 1
        # Gradients should already exist due to TargetScoreFunction's backward.
        assert ctx.kernel_obj.proj_weight.grad is not None

        # Get saved i, w, and maxs.
        i, w, tgt, maxs = ctx.saved_tensors
        assert i.requires_grad
        assert w.requires_grad
        assert maxs.requires_grad
        i = i.detach().requires_grad_(True)
        w = w.detach().requires_grad_(True)
        maxs = maxs.detach().requires_grad_(True)

        # Forward + backward again.
        with torch.enable_grad():
            sums = GetSumFunction.get_sum(
                i, w, tgt, maxs, ctx.w_idx, ctx.kernel_obj.fp_sum, ctx.kernel_obj.margin, ctx.kernel_obj.scale
            )
        torch.autograd.backward(sums, *args)

        # Accumulate the grads.
        assert w.grad is not None
        with torch.no_grad():
            grads = torch.split(ctx.kernel_obj.proj_weight.grad, ctx.w_split_size)
            grads[ctx.w_idx].add_(w.grad)
        return i.grad, None, None, maxs.grad, None, None, None, None


class TargetScoreFunction(torch.autograd.Function):
    """Custom checkpointed function to compute the target score."""

    @staticmethod
    def get_target_score(
        i: torch.Tensor,
        w: torch.Tensor,
        target: torch.Tensor,
        full_precision: bool,
        margin: float,
        scale: Optional[float],
    ) -> torch.Tensor:
        tokens, d_model = i.shape
        assert d_model == w.shape[1]
        tw = w.gather(dim=0, index=target.reshape(target.shape[0], 1).expand(target.shape[0], d_model))
        assert tw.shape == (tokens, d_model)
        if scale is not None:
            target_score = F.normalize(i, dim=1) * F.normalize(tw, dim=1)
        else:
            target_score = i * tw
        if full_precision:
            target_score = target_score.float()
        target_score = target_score.sum(dim=1)  # sum into target scores with shape (tokens,)
        if scale is not None:
            target_score -= margin
            target_score *= scale
        return target_score

    @staticmethod
    def forward(  # type: ignore
        ctx: Any, i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, kernel_obj: "MemoryEfficientVocabOutput"
    ) -> torch.Tensor:
        """Forward, without activations."""
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG target fwd")
        ctx.save_for_backward(i, w, target)
        ctx.kernel_obj = kernel_obj
        with torch.no_grad():
            x = TargetScoreFunction.get_target_score(
                i, w, target, kernel_obj.fp_target, kernel_obj.margin, kernel_obj.scale
            )
        return x

    @staticmethod
    def backward(ctx: Any, *args: Any) -> Any:
        """Forward and backward again, assign or accumulate the gradients."""
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG target bwd")
        assert len(args) == 1
        i, w, target = ctx.saved_tensors
        assert i.requires_grad
        assert w.requires_grad
        assert not target.requires_grad
        i = i.detach().requires_grad_(True)
        w = w.detach().requires_grad_(True)
        with torch.enable_grad():
            scores = TargetScoreFunction.get_target_score(
                i, w, target, ctx.kernel_obj.fp_target, ctx.kernel_obj.margin, ctx.kernel_obj.scale
            )
        torch.autograd.backward(scores, *args)
        if ctx.kernel_obj.proj_weight.grad is not None:
            # This means we accumulate full grad between iters. Not memory efficient.
            ctx.kernel_obj.proj_weight.grad.add_(w.grad)
        else:
            ctx.kernel_obj.proj_weight.grad = w.grad
        return i.grad, None, None, None


class BackwardTriggerFn(torch.autograd.Function):
    """A backward trigger function."""

    @staticmethod
    def forward(ctx: Any, w: torch.Tensor, trigger_tensor: torch.Tensor) -> torch.Tensor:  # type: ignore
        """We take a weight tensor and the trigger as inputs and output the weight directly."""
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG trigger fwd")
        ctx.save_for_backward(w, trigger_tensor)
        return w

    @staticmethod
    def backward(ctx: Any, *args: Any) -> Any:
        """We return zero grad for the trigger only."""
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print("DEBUG trigger bwd")
        assert len(args) == 1
        w, trigger = ctx.saved_tensors
        assert w.requires_grad
        assert trigger.requires_grad
        return None, torch.zeros_like(trigger)


class BackwardTrigger(nn.Module):
    """A backward trigger module.

    This module takes a parameter as an input and create a linked parameter
    from a newly created trigger parameter.

    The way to use it in a module's ``__init__'' and ``forward'' functions:

    ```
    def __init__():
      ...
      self.trigger = BackwardTrigger(some_layer.weight)
      ...

    def forward():
      w = self.trigger()
      ... continue to use w ...
    ```

    As a resule, the trigger's backward hook will be called at the end of
    the backward for the module that uses this trigger.
    """

    def __init__(self, linked_param: torch.Tensor):
        super().__init__()
        assert isinstance(linked_param, nn.Parameter)
        self.trigger = nn.Parameter(torch.rand(1, dtype=linked_param.dtype, device=linked_param.device))
        self.trigger._linked_param = linked_param

    def forward(self) -> torch.Tensor:  # type: ignore
        return BackwardTriggerFn.apply(self.trigger._linked_param, self.trigger)


class MemoryEfficientVocabOutput(nn.Module):  # AKA. MEVO
    """Fused fc + softmax + nll_loss in a tiled fashion.

        MEVO uses much less memory but is quite a bit slower.

        MEVO also implements the LMCL (Large Margin Cosine Loss) function introduced by
        highly cited
        `CosFace: Large Margin Cosine Loss for Deep Face Recognition [Wang et al.]`_.

        .. _`CosFace: Large Margin Cosine Loss for Deep Face Recognition [Wang et al.]`: https://arxiv.org/abs/1801.09414

        LMCL can be turned on using the ``margin`` and ``scale`` parameters below. These
        hyperparameters most likely require tuning, depending on the number of classes etc.

        MEVO LMCL can be suitable for face recognition and image retrieval tasks, esp. when
        the number prediction target classes is large. MEVO is slower but can use much
        less GPU memory in that case, which enables training with larger batches. We
        hope this is helpful but we strongly recommend users (AI researchers
        and engineers) to carefully consider their applications of this technology. This
        types of technology should not be used by small group of people exclusively to
        potentially harm the general public.

    Args:
        proj_weight (nn.Parameter):
            Sharing this weight with an embedding layer.
        tile_factor (int):
            Number of splits to use on the input sequence and vocab dimensions.
            Default: 16
        reduction (str):
            Reduction OP (sum or mean).
            Default: sum
        margin (float):
            Hyperparameter of the separation margin between classes. See the
            appendix of the CosFace paper for a formula on how to compute its
            value properly. The default value is unlikely to be suitable in all
            cases.
            Default: 0.35
        scale (Optional[float]):
            Hyperparameter of the feature-vector-scaling for LMCL. When not
            supplied, LMCL is turned off. See the appendix of the CosFace paper for
            a formula on how to compute its value properly.
            Default: None
    """

    def __init__(
        self,
        proj_weight: nn.Parameter,
        tile_factor: int = 16,
        reduction: str = "sum",
        margin: float = 0.35,
        scale: Optional[float] = None,
    ):
        super().__init__()
        self.proj_weight = proj_weight
        # TODO (Min): these two factors doesn't have to be the same. More tuning can be done.
        self.tf_in, self.tf_w = tile_factor, tile_factor
        self.fp_max = True
        self.fp_sum = True  # This is esp. important when tensors are large. Otherwise, you get inf.
        self.fp_target = True
        self.log_softmax = True
        self.reduction = reduction
        assert self.reduction in ["sum", "mean"]
        self.margin = margin
        self.scale = scale
        self.trigger = BackwardTrigger(self.proj_weight)
        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            print(
                f"DEBUG cfg tf_in={self.tf_in} tf_w={self.tf_w} fp_max={self.fp_max} "
                f"fp_sum={self.fp_sum} fp_target={self.fp_target} log_softmax={self.log_softmax} "
                f"reduction={self.reduction} margin={self.margin} scale={self.scale}"
            )

    def get_target_nlprob(
        self, i: torch.Tensor, w: torch.Tensor, target: torch.Tensor, debase_max: torch.Tensor, exp_sums: torch.Tensor
    ) -> torch.Tensor:
        """Get target's negative log probability."""
        target_score = TargetScoreFunction.apply(i, w, target, self)
        prob = (target_score - debase_max).exp() / exp_sums
        if self.log_softmax:
            # lprob
            prob = prob.log()
        # nlprob, then sum over all tokens.
        return -prob.sum()

    def eval_forward(self, input: torch.Tensor) -> torch.Tensor:
        """Eval time forward that doesn't fuse the softmax and NLL Loss kernels."""
        # Margin, scaling and normalization of LMCL does not apply to eval time as far as
        # I can tell. Therefore, we just do a matmul like the standard output layer.
        return torch.matmul(input, self.proj_weight.T)

    def forward(self, input: torch.Tensor, target: Optional[torch.Tensor]) -> torch.Tensor:  # type: ignore
        if not self.training and target is None:
            return self.eval_forward(input)

        if DEBUG and dist.is_initialized() and dist.get_rank() == 0:
            cur_mem = round(torch.cuda.memory_allocated() / 1024 / 1024)
            mem = round(torch.cuda.max_memory_allocated() / 1024 / 1024)
            print("DEBUG cur, peak", cur_mem, mem)
        assert isinstance(input, torch.Tensor)
        assert isinstance(target, torch.Tensor)
        if torch.is_grad_enabled():
            assert input.requires_grad
        input, target = _reshape_inputs(input, target)

        tokens, d_model = input.shape
        (t2,) = target.shape
        vocab, d2 = self.proj_weight.shape
        assert d_model == d2, f"incorrect shape {d_model} vs {d2}"
        assert tokens == t2, f"incorrect shape {tokens} vs {t2}"
        split_dim = 0
        input_split_size = _next_power_of_2_or_max(tokens // self.tf_in, tokens)
        weight_split_size = _next_power_of_2_or_max(vocab // self.tf_w, vocab)
        inputs = torch.split(input, input_split_size, split_dim)
        weight = self.trigger()
        weights = torch.split(weight, weight_split_size, split_dim)

        targets = tuple([torch.Tensor()] * len(inputs))
        if self.scale is not None:
            targets = torch.split(target, input_split_size, split_dim)

        # Get maxs
        maxs = []
        for i, tgt in zip(inputs, targets):
            m = None  # max with (tokens_tile,) shape
            for w_idx, w in enumerate(weights):
                _m = GetMaxFunction.apply(i, w, tgt, self, w_idx, weight_split_size, split_dim)
                if m is None:
                    m = _m
                else:
                    m = torch.max(m, _m)
            assert m is not None
            maxs.append(m)  # (tokens_tile,)
        maxs_tensor = torch.cat(maxs)  # (tokens,)
        assert maxs_tensor.shape == (tokens,)

        # Get sums.
        sums = []
        for i, tgt, debase_max in zip(inputs, targets, maxs):
            s = None  # sum with (tokens_tile,) shape
            for w_idx, w in enumerate(weights):
                _s = GetSumFunction.apply(i, w, tgt, debase_max, self, w_idx, weight_split_size, split_dim)
                if s is None:
                    s = _s
                else:
                    s += _s
            assert s is not None
            sums.append(s)  # (tokens_tile,)
        sums_tensor = torch.cat(sums)  # (tokens,)
        assert sums_tensor.shape == (tokens,)

        # select weights for targets
        result = self.get_target_nlprob(input, self.proj_weight, target, maxs_tensor, sums_tensor)
        if self.reduction == "mean":
            result /= tokens
        return result