File size: 10,977 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from typing import Any, Callable
from einops.tests import collect_test_backends
from einops.einops import _compactify_pattern_for_einsum, einsum, EinopsError
import numpy as np
import pytest
import string


class Arguments:
    def __init__(self, *args: Any, **kargs: Any):
        self.args = args
        self.kwargs = kargs

    def __call__(self, function: Callable):
        return function(*self.args, **self.kwargs)


test_layer_cases = [
    (
        Arguments("b c_in h w -> w c_out h b", "c_in c_out", bias_shape=None, c_out=13, c_in=12),
        (2, 12, 3, 4),
        (4, 13, 3, 2),
    ),
    (
        Arguments("b c_in h w -> w c_out h b", "c_in c_out", bias_shape="c_out", c_out=13, c_in=12),
        (2, 12, 3, 4),
        (4, 13, 3, 2),
    ),
    (
        Arguments("b c_in h w -> w c_in h b", "", bias_shape=None, c_in=12),
        (2, 12, 3, 4),
        (4, 12, 3, 2),
    ),
    (
        Arguments("b c_in h w -> b c_out", "c_in h w c_out", bias_shape=None, c_in=12, h=3, w=4, c_out=5),
        (2, 12, 3, 4),
        (2, 5),
    ),
    (
        Arguments("b t head c_in -> b t head c_out", "head c_in c_out", bias_shape=None, head=4, c_in=5, c_out=6),
        (2, 3, 4, 5),
        (2, 3, 4, 6),
    ),
]


# Each of the form:
# (Arguments, true_einsum_pattern, in_shapes, out_shape)
test_functional_cases = [
    (
        # Basic:
        "b c h w, b w -> b h",
        "abcd,ad->ac",
        ((2, 3, 4, 5), (2, 5)),
        (2, 4),
    ),
    (
        # Three tensors:
        "b c h w, b w, b c -> b h",
        "abcd,ad,ab->ac",
        ((2, 3, 40, 5), (2, 5), (2, 3)),
        (2, 40),
    ),
    (
        # Ellipsis, and full names:
        "... one two three, three four five -> ... two five",
        "...abc,cde->...be",
        ((32, 5, 2, 3, 4), (4, 5, 6)),
        (32, 5, 3, 6),
    ),
    (
        # Ellipsis at the end:
        "one two three ..., three four five -> two five ...",
        "abc...,cde->be...",
        ((2, 3, 4, 32, 5), (4, 5, 6)),
        (3, 6, 32, 5),
    ),
    (
        # Ellipsis on multiple tensors:
        "... one two three, ... three four five -> ... two five",
        "...abc,...cde->...be",
        ((32, 5, 2, 3, 4), (32, 5, 4, 5, 6)),
        (32, 5, 3, 6),
    ),
    (
        # One tensor, and underscores:
        "first_tensor second_tensor -> first_tensor",
        "ab->a",
        ((5, 4),),
        (5,),
    ),
    (
        # Trace (repeated index)
        "i i -> ",
        "aa->",
        ((5, 5),),
        (),
    ),
    (
        # Too many spaces in string:
        " one  two  ,  three four->two  four  ",
        "ab,cd->bd",
        ((2, 3), (4, 5)),
        (3, 5),
    ),
    # The following tests were inspired by numpy's einsum tests
    # https://github.com/numpy/numpy/blob/v1.23.0/numpy/core/tests/test_einsum.py
    (
        # Trace with other indices
        "i middle i -> middle",
        "aba->b",
        ((5, 10, 5),),
        (10,),
    ),
    (
        # Ellipsis in the middle:
        "i ... i -> ...",
        "a...a->...",
        ((5, 3, 2, 1, 4, 5),),
        (3, 2, 1, 4),
    ),
    (
        # Product of first and last axes:
        "i ... i -> i ...",
        "a...a->a...",
        ((5, 3, 2, 1, 4, 5),),
        (5, 3, 2, 1, 4),
    ),
    (
        # Triple diagonal
        "one one one -> one",
        "aaa->a",
        ((5, 5, 5),),
        (5,),
    ),
    (
        # Axis swap:
        "i j k -> j i k",
        "abc->bac",
        ((1, 2, 3),),
        (2, 1, 3),
    ),
    (
        # Identity:
        "... -> ...",
        "...->...",
        ((5, 4, 3, 2, 1),),
        (5, 4, 3, 2, 1),
    ),
    (
        # Elementwise product of three tensors
        "..., ..., ... -> ...",
        "...,...,...->...",
        ((3, 2), (3, 2), (3, 2)),
        (3, 2),
    ),
    (
        # Basic summation:
        "index ->",
        "a->",
        ((10,)),
        (()),
    ),
]


def test_layer():
    for backend in collect_test_backends(layers=True, symbolic=False):
        if backend.framework_name in ["tensorflow", "torch", "oneflow", "paddle"]:
            layer_type = backend.layers().EinMix
            for args, in_shape, out_shape in test_layer_cases:
                layer = args(layer_type)
                print("Running", layer.einsum_pattern, "for", backend.framework_name)
                input = np.random.uniform(size=in_shape).astype("float32")
                input_framework = backend.from_numpy(input)
                output_framework = layer(input_framework)
                output = backend.to_numpy(output_framework)
                assert output.shape == out_shape


valid_backends_functional = [
    "tensorflow",
    "torch",
    "jax",
    "numpy",
    "oneflow",
    "cupy",
    "tensorflow.keras",
    "paddle",
    "pytensor",
]


def test_functional():
    # Functional tests:
    backends = filter(lambda x: x.framework_name in valid_backends_functional, collect_test_backends())
    for backend in backends:
        for einops_pattern, true_pattern, in_shapes, out_shape in test_functional_cases:
            print(f"Running '{einops_pattern}' for {backend.framework_name}")

            # Create pattern:
            predicted_pattern = _compactify_pattern_for_einsum(einops_pattern)
            assert predicted_pattern == true_pattern

            # Generate example data:
            rstate = np.random.RandomState(0)
            in_arrays = [rstate.uniform(size=shape).astype("float32") for shape in in_shapes]
            in_arrays_framework = [backend.from_numpy(array) for array in in_arrays]

            # Loop over whether we call it manually with the backend,
            # or whether we use `einops.einsum`.
            for do_manual_call in [True, False]:
                # Actually run einsum:
                if do_manual_call:
                    out_array = backend.einsum(predicted_pattern, *in_arrays_framework)
                else:
                    out_array = einsum(*in_arrays_framework, einops_pattern)

                # Check shape:
                if tuple(out_array.shape) != out_shape:
                    raise ValueError(f"Expected output shape {out_shape} but got {out_array.shape}")

                # Check values:
                true_out_array = np.einsum(true_pattern, *in_arrays)
                predicted_out_array = backend.to_numpy(out_array)
                np.testing.assert_array_almost_equal(predicted_out_array, true_out_array, decimal=5)


def test_functional_symbolic():
    backends = filter(
        lambda x: x.framework_name in valid_backends_functional, collect_test_backends(symbolic=True, layers=False)
    )
    for backend in backends:
        for einops_pattern, true_pattern, in_shapes, out_shape in test_functional_cases:
            print(f"Running '{einops_pattern}' for symbolic {backend.framework_name}")
            # Create pattern:
            predicted_pattern = _compactify_pattern_for_einsum(einops_pattern)
            assert predicted_pattern == true_pattern

            rstate = np.random.RandomState(0)
            in_syms = [backend.create_symbol(in_shape) for in_shape in in_shapes]
            in_data = [rstate.uniform(size=in_shape).astype("float32") for in_shape in in_shapes]

            expected_out_data = np.einsum(true_pattern, *in_data)

            for do_manual_call in [True, False]:
                if do_manual_call:
                    predicted_out_symbol = backend.einsum(predicted_pattern, *in_syms)
                else:
                    predicted_out_symbol = einsum(*in_syms, einops_pattern)

                predicted_out_data = backend.eval_symbol(
                    predicted_out_symbol,
                    list(zip(in_syms, in_data)),
                )
                if predicted_out_data.shape != out_shape:
                    raise ValueError(f"Expected output shape {out_shape} but got {predicted_out_data.shape}")
                np.testing.assert_array_almost_equal(predicted_out_data, expected_out_data, decimal=5)


def test_functional_errors():
    # Specific backend does not matter, as errors are raised
    # during the pattern creation.

    rstate = np.random.RandomState(0)

    def create_tensor(*shape):
        return rstate.uniform(size=shape).astype("float32")

    # raise NotImplementedError("Singleton () axes are not yet supported in einsum.")
    with pytest.raises(NotImplementedError, match="^Singleton"):
        einsum(
            create_tensor(5, 1),
            "i () -> i",
        )

    # raise NotImplementedError("Shape rearrangement is not yet supported in einsum.")
    with pytest.raises(NotImplementedError, match="^Shape rearrangement"):
        einsum(
            create_tensor(5, 1),
            "a b -> (a b)",
        )

    with pytest.raises(NotImplementedError, match="^Shape rearrangement"):
        einsum(
            create_tensor(10, 1),
            "(a b) -> a b",
        )

    # raise RuntimeError("Encountered empty axis name in einsum.")
    # raise RuntimeError("Axis name in einsum must be a string.")
    # ^ Not tested, these are just a failsafe in case an unexpected error occurs.

    # raise NotImplementedError("Anonymous axes are not yet supported in einsum.")
    with pytest.raises(NotImplementedError, match="^Anonymous axes"):
        einsum(
            create_tensor(5, 1),
            "i 2 -> i",
        )

    # ParsedExpression error:
    with pytest.raises(EinopsError, match="^Invalid axis identifier"):
        einsum(
            create_tensor(5, 1),
            "i 2j -> i",
        )

    # raise ValueError("Einsum pattern must contain '->'.")
    with pytest.raises(ValueError, match="^Einsum pattern"):
        einsum(
            create_tensor(5, 3, 2),
            "i j k",
        )

    # raise RuntimeError("Too many axes in einsum.")
    with pytest.raises(RuntimeError, match="^Too many axes"):
        einsum(
            create_tensor(1),
            " ".join(string.ascii_letters) + " extra ->",
        )

    # raise RuntimeError("Unknown axis on right side of einsum.")
    with pytest.raises(RuntimeError, match="^Unknown axis"):
        einsum(
            create_tensor(5, 1),
            "i j -> k",
        )

    # raise ValueError(
    # "The last argument passed to `einops.einsum` must be a string,"
    # " representing the einsum pattern."
    # )
    with pytest.raises(ValueError, match="^The last argument"):
        einsum(
            "i j k -> i",
            create_tensor(5, 4, 3),
        )

    # raise ValueError(
    #     "`einops.einsum` takes at minimum two arguments: the tensors,"
    #     " followed by the pattern."
    # )
    with pytest.raises(ValueError, match="^`einops.einsum` takes"):
        einsum(
            "i j k -> i",
        )
    with pytest.raises(ValueError, match="^`einops.einsum` takes"):
        einsum(
            create_tensor(5, 1),
        )

    # TODO: Include check for giving normal einsum pattern rather than einops.