File size: 37,569 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
import functools
import itertools
import string
import typing
from collections import OrderedDict
from typing import Set, Tuple, List, Dict, Union, Callable, Optional, TypeVar, cast, Any

if typing.TYPE_CHECKING:
    # for docstrings in pycharm
    import numpy as np  # noqa E401

from . import EinopsError
from ._backends import get_backend
from .parsing import ParsedExpression, _ellipsis, AnonymousAxis

Tensor = TypeVar("Tensor")
ReductionCallable = Callable[[Tensor, Tuple[int, ...]], Tensor]
Reduction = Union[str, ReductionCallable]
Size = typing.Any

_reductions = ("min", "max", "sum", "mean", "prod", "any", "all")

# magic integers are required to stay within
# traceable subset of language
_unknown_axis_length = -999999
_expected_axis_length = -99999


def _product(sequence: List[int]) -> int:
    """minimalistic product that works both with numbers and symbols. Supports empty lists"""
    result = 1
    for element in sequence:
        result *= element
    return result


def _reduce_axes(tensor, reduction_type: Reduction, reduced_axes: List[int], backend):
    if callable(reduction_type):
        # custom callable
        return reduction_type(tensor, tuple(reduced_axes))
    else:
        # one of built-in operations
        assert reduction_type in _reductions
        if reduction_type == "mean":
            if not backend.is_float_type(tensor):
                raise NotImplementedError("reduce_mean is not available for non-floating tensors")
        return backend.reduce(tensor, reduction_type, tuple(reduced_axes))


def _optimize_transformation(init_shapes, reduced_axes, axes_reordering, final_shapes):
    # 'collapses' neighboring axes if those participate in the result pattern in the same order
    # TODO add support for added_axes
    assert len(axes_reordering) + len(reduced_axes) == len(init_shapes)
    # joining consecutive axes that will be reduced
    # possibly we can skip this if all backends can optimize this (not sure)
    reduced_axes = tuple(sorted(reduced_axes))
    for i in range(len(reduced_axes) - 1)[::-1]:
        if reduced_axes[i] + 1 == reduced_axes[i + 1]:
            removed_axis = reduced_axes[i + 1]
            removed_length = init_shapes[removed_axis]
            init_shapes = init_shapes[:removed_axis] + init_shapes[removed_axis + 1 :]
            init_shapes[removed_axis - 1] *= removed_length
            reduced_axes = reduced_axes[: i + 1] + tuple(axis - 1 for axis in reduced_axes[i + 2 :])

    # removing axes that are moved together during reshape
    def build_mapping():
        init_to_final = {}
        for axis in range(len(init_shapes)):
            if axis in reduced_axes:
                init_to_final[axis] = None
            else:
                after_reduction = sum(x is not None for x in init_to_final.values())
                init_to_final[axis] = list(axes_reordering).index(after_reduction)
        return init_to_final

    init_axis_to_final_axis = build_mapping()

    for init_axis in range(len(init_shapes) - 1)[::-1]:
        if init_axis_to_final_axis[init_axis] is None:
            continue
        if init_axis_to_final_axis[init_axis + 1] is None:
            continue
        if init_axis_to_final_axis[init_axis] + 1 == init_axis_to_final_axis[init_axis + 1]:
            removed_axis = init_axis + 1
            removed_length = init_shapes[removed_axis]
            removed_axis_after_reduction = sum(x not in reduced_axes for x in range(removed_axis))

            reduced_axes = tuple(axis if axis < removed_axis else axis - 1 for axis in reduced_axes)
            init_shapes = init_shapes[:removed_axis] + init_shapes[removed_axis + 1 :]
            init_shapes[removed_axis - 1] *= removed_length
            old_reordering = axes_reordering
            axes_reordering = []
            for axis in old_reordering:
                if axis == removed_axis_after_reduction:
                    pass
                elif axis < removed_axis_after_reduction:
                    axes_reordering.append(axis)
                else:
                    axes_reordering.append(axis - 1)
            init_axis_to_final_axis = build_mapping()

    return init_shapes, reduced_axes, axes_reordering, final_shapes


CookedRecipe = Tuple[Optional[List[int]], Optional[List[int]], List[int], Dict[int, int], Optional[List[int]], int]

# Actual type is tuple[tuple[str, int], ...]
# However torch.jit.script does not "understand" the correct type,
# and torch_specific will use list version.
HashableAxesLengths = Tuple[Tuple[str, int], ...]
FakeHashableAxesLengths = List[Tuple[str, int]]


class TransformRecipe:
    """
    Recipe describes actual computation pathway.
    Recipe can be applied to a tensor or variable.
    """

    # structure is non-mutable. In future, this can be non-mutable dataclass (python 3.7+)
    # update: pytorch 2.0 torch.jit.script seems to have problems with dataclasses unless they were explicitly provided

    def __init__(
        self,
        # list of sizes (or just sizes) for elementary axes as they appear in left expression.
        # this is what (after computing unknown parts) will be a shape after first transposition.
        # This does not include any ellipsis dimensions.
        elementary_axes_lengths: List[int],
        # if additional axes are provided, they should be set in prev array
        # This shows mapping from name to position
        axis_name2elementary_axis: Dict[str, int],
        # each dimension in input can help to reconstruct length of one elementary axis
        # or verify one of dimensions. Each element points to element of elementary_axes_lengths.
        input_composition_known_unknown: List[Tuple[List[int], List[int]]],
        # permutation applied to elementary axes, if ellipsis is absent
        axes_permutation: List[int],
        # permutation puts reduced axes in the end, we only need to know the first position.
        first_reduced_axis: int,
        # at which positions which of elementary axes should appear. Axis position -> axis index.
        added_axes: Dict[int, int],
        # ids of axes as they appear in result, again pointers to elementary_axes_lengths,
        # only used to infer result dimensions
        output_composite_axes: List[List[int]],
    ):
        self.elementary_axes_lengths: List[int] = elementary_axes_lengths
        self.axis_name2elementary_axis: Dict[str, int] = axis_name2elementary_axis
        self.input_composition_known_unknown: List[Tuple[List[int], List[int]]] = input_composition_known_unknown
        self.axes_permutation: List[int] = axes_permutation

        self.first_reduced_axis: int = first_reduced_axis
        self.added_axes: Dict[int, int] = added_axes
        self.output_composite_axes: List[List[int]] = output_composite_axes


def _reconstruct_from_shape_uncached(
    self: TransformRecipe, shape: List[int], axes_dims: FakeHashableAxesLengths
) -> CookedRecipe:
    """
    Reconstruct all actual parameters using shape.
    Shape is a tuple that may contain integers, shape symbols (tf, theano) and UnknownSize (tf, previously mxnet)
    known axes can be integers or symbols, but not Nones.
    """
    # magic number
    need_init_reshape = False

    # last axis is allocated for collapsed ellipsis
    axes_lengths: List[int] = list(self.elementary_axes_lengths)
    for axis, dim in axes_dims:
        axes_lengths[self.axis_name2elementary_axis[axis]] = dim

    for input_axis, (known_axes, unknown_axes) in enumerate(self.input_composition_known_unknown):
        length = shape[input_axis]
        if len(known_axes) == 0 and len(unknown_axes) == 1:
            # shortcut for the most common case
            axes_lengths[unknown_axes[0]] = length
            continue

        known_product = 1
        for axis in known_axes:
            known_product *= axes_lengths[axis]

        if len(unknown_axes) == 0:
            if isinstance(length, int) and isinstance(known_product, int) and length != known_product:
                raise EinopsError(f"Shape mismatch, {length} != {known_product}")
        else:
            # assert len(unknown_axes) == 1, 'this is enforced when recipe is created, so commented out'
            if isinstance(length, int) and isinstance(known_product, int) and length % known_product != 0:
                raise EinopsError(f"Shape mismatch, can't divide axis of length {length} in chunks of {known_product}")

            unknown_axis = unknown_axes[0]
            inferred_length: int = length // known_product
            axes_lengths[unknown_axis] = inferred_length

        if len(known_axes) + len(unknown_axes) != 1:
            need_init_reshape = True

    # at this point all axes_lengths are computed (either have values or variables, but not Nones)

    # elementary axes are ordered as they appear in input, then all added axes
    init_shapes: Optional[List[int]] = axes_lengths[: len(self.axes_permutation)] if need_init_reshape else None

    need_final_reshape = False
    final_shapes: List[int] = []
    for grouping in self.output_composite_axes:
        lengths = [axes_lengths[elementary_axis] for elementary_axis in grouping]
        final_shapes.append(_product(lengths))
        if len(lengths) != 1:
            need_final_reshape = True

    added_axes: Dict[int, int] = {
        pos: axes_lengths[pos_in_elementary] for pos, pos_in_elementary in self.added_axes.items()
    }

    # this list can be empty
    reduced_axes = list(range(self.first_reduced_axis, len(self.axes_permutation)))

    n_axes_after_adding_axes = len(added_axes) + len(self.axes_permutation)

    axes_reordering: Optional[List[int]] = self.axes_permutation
    if self.axes_permutation == list(range(len(self.axes_permutation))):
        axes_reordering = None

    _final_shapes = final_shapes if need_final_reshape else None
    return init_shapes, axes_reordering, reduced_axes, added_axes, _final_shapes, n_axes_after_adding_axes


_reconstruct_from_shape = functools.lru_cache(1024)(_reconstruct_from_shape_uncached)


def _apply_recipe(
    backend, recipe: TransformRecipe, tensor: Tensor, reduction_type: Reduction, axes_lengths: HashableAxesLengths
) -> Tensor:
    # this method implements actual work for all backends for 3 operations
    try:
        init_shapes, axes_reordering, reduced_axes, added_axes, final_shapes, n_axes_w_added = _reconstruct_from_shape(
            recipe, backend.shape(tensor), axes_lengths
        )
    except TypeError:
        # shape or one of passed axes lengths is not hashable (i.e. they are symbols)
        _result = _reconstruct_from_shape_uncached(recipe, backend.shape(tensor), axes_lengths)
        (init_shapes, axes_reordering, reduced_axes, added_axes, final_shapes, n_axes_w_added) = _result
    if init_shapes is not None:
        tensor = backend.reshape(tensor, init_shapes)
    if axes_reordering is not None:
        tensor = backend.transpose(tensor, axes_reordering)
    if len(reduced_axes) > 0:
        tensor = _reduce_axes(tensor, reduction_type=reduction_type, reduced_axes=reduced_axes, backend=backend)
    if len(added_axes) > 0:
        tensor = backend.add_axes(tensor, n_axes=n_axes_w_added, pos2len=added_axes)
    if final_shapes is not None:
        tensor = backend.reshape(tensor, final_shapes)
    return tensor


def _apply_recipe_array_api(
    xp, recipe: TransformRecipe, tensor: Tensor, reduction_type: Reduction, axes_lengths: HashableAxesLengths
) -> Tensor:
    # completely-inline implementation
    init_shapes, axes_reordering, reduced_axes, added_axes, final_shapes, n_axes_w_added = _reconstruct_from_shape(
        recipe, tensor.shape, axes_lengths
    )
    if init_shapes is not None:
        tensor = xp.reshape(tensor, init_shapes)
    if axes_reordering is not None:
        tensor = xp.permute_dims(tensor, axes_reordering)
    if len(reduced_axes) > 0:
        if callable(reduction_type):
            # custom callable
            tensor = reduction_type(tensor, tuple(reduced_axes))
        else:
            # one of built-in operations
            assert reduction_type in _reductions
            tensor = getattr(xp, reduction_type)(tensor, axis=tuple(reduced_axes))
    if len(added_axes) > 0:
        # we use broadcasting
        for axis_position, axis_length in added_axes.items():
            tensor = xp.expand_dims(tensor, axis=axis_position)

        final_shape = list(tensor.shape)
        for axis_position, axis_length in added_axes.items():
            final_shape[axis_position] = axis_length

        tensor = xp.broadcast_to(tensor, final_shape)
    if final_shapes is not None:
        tensor = xp.reshape(tensor, final_shapes)
    return tensor


@functools.lru_cache(256)
def _prepare_transformation_recipe(
    pattern: str,
    operation: Reduction,
    axes_names: Tuple[str, ...],
    ndim: int,
) -> TransformRecipe:
    """Perform initial parsing of pattern and provided supplementary info
    axes_lengths is a tuple of tuples (axis_name, axis_length)
    """
    left_str, rght_str = pattern.split("->")
    left = ParsedExpression(left_str)
    rght = ParsedExpression(rght_str)

    # checking that axes are in agreement - new axes appear only in repeat, while disappear only in reduction
    if not left.has_ellipsis and rght.has_ellipsis:
        raise EinopsError("Ellipsis found in right side, but not left side of a pattern {}".format(pattern))
    if left.has_ellipsis and left.has_ellipsis_parenthesized:
        raise EinopsError("Ellipsis inside parenthesis in the left side is not allowed: {}".format(pattern))
    if operation == "rearrange":
        if left.has_non_unitary_anonymous_axes or rght.has_non_unitary_anonymous_axes:
            raise EinopsError("Non-unitary anonymous axes are not supported in rearrange (exception is length 1)")
        difference = set.symmetric_difference(left.identifiers, rght.identifiers)
        if len(difference) > 0:
            raise EinopsError("Identifiers only on one side of expression (should be on both): {}".format(difference))
    elif operation == "repeat":
        difference = set.difference(left.identifiers, rght.identifiers)
        if len(difference) > 0:
            raise EinopsError("Unexpected identifiers on the left side of repeat: {}".format(difference))
        axes_without_size = set.difference(
            {ax for ax in rght.identifiers if not isinstance(ax, AnonymousAxis)},
            {*left.identifiers, *axes_names},
        )
        if len(axes_without_size) > 0:
            raise EinopsError("Specify sizes for new axes in repeat: {}".format(axes_without_size))
    elif operation in _reductions or callable(operation):
        difference = set.difference(rght.identifiers, left.identifiers)
        if len(difference) > 0:
            raise EinopsError("Unexpected identifiers on the right side of reduce {}: {}".format(operation, difference))
    else:
        raise EinopsError("Unknown reduction {}. Expect one of {}.".format(operation, _reductions))

    if left.has_ellipsis:
        n_other_dims = len(left.composition) - 1
        if ndim < n_other_dims:
            raise EinopsError(f"Wrong shape: expected >={n_other_dims} dims. Received {ndim}-dim tensor.")
        ellipsis_ndim = ndim - n_other_dims
        ell_axes = [_ellipsis + str(i) for i in range(ellipsis_ndim)]
        left_composition = []
        for composite_axis in left.composition:
            if composite_axis == _ellipsis:
                for axis in ell_axes:
                    left_composition.append([axis])
            else:
                left_composition.append(composite_axis)

        rght_composition = []
        for composite_axis in rght.composition:
            if composite_axis == _ellipsis:
                for axis in ell_axes:
                    rght_composition.append([axis])
            else:
                group = []
                for axis in composite_axis:
                    if axis == _ellipsis:
                        group.extend(ell_axes)
                    else:
                        group.append(axis)
                rght_composition.append(group)

        left.identifiers.update(ell_axes)
        left.identifiers.remove(_ellipsis)
        if rght.has_ellipsis:
            rght.identifiers.update(ell_axes)
            rght.identifiers.remove(_ellipsis)
    else:
        if ndim != len(left.composition):
            raise EinopsError(f"Wrong shape: expected {len(left.composition)} dims. Received {ndim}-dim tensor.")
        left_composition = left.composition
        rght_composition = rght.composition

    # parsing all dimensions to find out lengths
    axis_name2known_length: Dict[Union[str, AnonymousAxis], int] = OrderedDict()
    for composite_axis in left_composition:
        for axis_name in composite_axis:
            if isinstance(axis_name, AnonymousAxis):
                axis_name2known_length[axis_name] = axis_name.value
            else:
                axis_name2known_length[axis_name] = _unknown_axis_length

    # axis_ids_after_first_reshape = range(len(axis_name2known_length)) at this point

    repeat_axes_names = []
    for axis_name in rght.identifiers:
        if axis_name not in axis_name2known_length:
            if isinstance(axis_name, AnonymousAxis):
                axis_name2known_length[axis_name] = axis_name.value
            else:
                axis_name2known_length[axis_name] = _unknown_axis_length
            repeat_axes_names.append(axis_name)

    axis_name2position = {name: position for position, name in enumerate(axis_name2known_length)}

    # axes provided as kwargs
    for elementary_axis in axes_names:
        if not ParsedExpression.check_axis_name(elementary_axis):
            raise EinopsError("Invalid name for an axis", elementary_axis)
        if elementary_axis not in axis_name2known_length:
            raise EinopsError("Axis {} is not used in transform".format(elementary_axis))
        axis_name2known_length[elementary_axis] = _expected_axis_length

    input_axes_known_unknown = []
    # some shapes are inferred later - all information is prepared for faster inference
    for i, composite_axis in enumerate(left_composition):
        known: Set[str] = {axis for axis in composite_axis if axis_name2known_length[axis] != _unknown_axis_length}
        unknown: Set[str] = {axis for axis in composite_axis if axis_name2known_length[axis] == _unknown_axis_length}
        if len(unknown) > 1:
            raise EinopsError("Could not infer sizes for {}".format(unknown))
        assert len(unknown) + len(known) == len(composite_axis)
        input_axes_known_unknown.append(
            ([axis_name2position[axis] for axis in known], [axis_name2position[axis] for axis in unknown])
        )

    axis_position_after_reduction: Dict[str, int] = {}
    for axis_name in itertools.chain(*left_composition):
        if axis_name in rght.identifiers:
            axis_position_after_reduction[axis_name] = len(axis_position_after_reduction)

    result_axes_grouping: List[List[int]] = [
        [axis_name2position[axis] for axis in composite_axis] for i, composite_axis in enumerate(rght_composition)
    ]

    ordered_axis_left = list(itertools.chain(*left_composition))
    ordered_axis_rght = list(itertools.chain(*rght_composition))
    reduced_axes = [axis for axis in ordered_axis_left if axis not in rght.identifiers]
    order_after_transposition = [axis for axis in ordered_axis_rght if axis in left.identifiers] + reduced_axes
    axes_permutation = [ordered_axis_left.index(axis) for axis in order_after_transposition]
    added_axes = {
        i: axis_name2position[axis_name]
        for i, axis_name in enumerate(ordered_axis_rght)
        if axis_name not in left.identifiers
    }

    first_reduced_axis = len(order_after_transposition) - len(reduced_axes)

    return TransformRecipe(
        elementary_axes_lengths=list(axis_name2known_length.values()),
        axis_name2elementary_axis={axis: axis_name2position[axis] for axis in axes_names},
        input_composition_known_unknown=input_axes_known_unknown,
        axes_permutation=axes_permutation,
        first_reduced_axis=first_reduced_axis,
        added_axes=added_axes,
        output_composite_axes=result_axes_grouping,
    )


def _prepare_recipes_for_all_dims(
    pattern: str, operation: Reduction, axes_names: Tuple[str, ...]
) -> Dict[int, TransformRecipe]:
    """
    Internal function, used in layers.
    Layer makes all recipe creation when it is initialized, thus to keep recipes simple we pre-compute for all dims
    """
    left_str, rght_str = pattern.split("->")
    left = ParsedExpression(left_str)
    dims = [len(left.composition)]
    if left.has_ellipsis:
        dims = [len(left.composition) - 1 + ellipsis_dims for ellipsis_dims in range(8)]
    return {ndim: _prepare_transformation_recipe(pattern, operation, axes_names, ndim=ndim) for ndim in dims}


def reduce(tensor: Union[Tensor, List[Tensor]], pattern: str, reduction: Reduction, **axes_lengths: Size) -> Tensor:
    """
    einops.reduce combines rearrangement and reduction using reader-friendly notation.

    Some examples:

    ```python
    >>> x = np.random.randn(100, 32, 64)

    # perform max-reduction on the first axis
    # Axis t does not appear on RHS - thus we reduced over t
    >>> y = reduce(x, 't b c -> b c', 'max')

    # same as previous, but using verbose names for axes
    >>> y = reduce(x, 'time batch channel -> batch channel', 'max')

    # let's pretend now that x is a batch of images
    # with 4 dims: batch=10, height=20, width=30, channel=40
    >>> x = np.random.randn(10, 20, 30, 40)

    # 2d max-pooling with kernel size = 2 * 2 for image processing
    >>> y1 = reduce(x, 'b c (h1 h2) (w1 w2) -> b c h1 w1', 'max', h2=2, w2=2)

    # same as previous, using anonymous axes,
    # note: only reduced axes can be anonymous
    >>> y1 = reduce(x, 'b c (h1 2) (w1 2) -> b c h1 w1', 'max')

    # adaptive 2d max-pooling to 3 * 4 grid,
    # each element is max of 10x10 tile in the original tensor.
    >>> reduce(x, 'b c (h1 h2) (w1 w2) -> b c h1 w1', 'max', h1=3, w1=4).shape
    (10, 20, 3, 4)

    # Global average pooling
    >>> reduce(x, 'b c h w -> b c', 'mean').shape
    (10, 20)

    # subtracting mean over batch for each channel;
    # similar to x - np.mean(x, axis=(0, 2, 3), keepdims=True)
    >>> y = x - reduce(x, 'b c h w -> 1 c 1 1', 'mean')

    # Subtracting per-image mean for each channel
    >>> y = x - reduce(x, 'b c h w -> b c 1 1', 'mean')

    # same as previous, but using empty compositions
    >>> y = x - reduce(x, 'b c h w -> b c () ()', 'mean')

    ```

    Parameters:
        tensor: tensor: tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch).
            list of tensors is also accepted, those should be of the same type and shape
        pattern: string, reduction pattern
        reduction: one of available reductions ('min', 'max', 'sum', 'mean', 'prod', 'any', 'all').
            Alternatively, a callable f(tensor, reduced_axes) -> tensor can be provided.
            This allows using various reductions like: np.max, np.nanmean, tf.reduce_logsumexp, torch.var, etc.
        axes_lengths: any additional specifications for dimensions

    Returns:
        tensor of the same type as input
    """
    try:
        if isinstance(tensor, list):
            if len(tensor) == 0:
                raise TypeError("Rearrange/Reduce/Repeat can't be applied to an empty list")
            backend = get_backend(tensor[0])
            tensor = backend.stack_on_zeroth_dimension(tensor)
        else:
            backend = get_backend(tensor)

        hashable_axes_lengths = tuple(axes_lengths.items())
        shape = backend.shape(tensor)
        recipe = _prepare_transformation_recipe(pattern, reduction, axes_names=tuple(axes_lengths), ndim=len(shape))
        return _apply_recipe(
            backend, recipe, cast(Tensor, tensor), reduction_type=reduction, axes_lengths=hashable_axes_lengths
        )
    except EinopsError as e:
        message = ' Error while processing {}-reduction pattern "{}".'.format(reduction, pattern)
        if not isinstance(tensor, list):
            message += "\n Input tensor shape: {}. ".format(shape)
        else:
            message += "\n Input is list. "
        message += "Additional info: {}.".format(axes_lengths)
        raise EinopsError(message + "\n {}".format(e))


def rearrange(tensor: Union[Tensor, List[Tensor]], pattern: str, **axes_lengths: Size) -> Tensor:
    """
    einops.rearrange is a reader-friendly smart element reordering for multidimensional tensors.
    This operation includes functionality of transpose (axes permutation), reshape (view), squeeze, unsqueeze,
    stack, concatenate and other operations.

    Examples:

    ```python
    # suppose we have a set of 32 images in "h w c" format (height-width-channel)
    >>> images = [np.random.randn(30, 40, 3) for _ in range(32)]

    # stack along first (batch) axis, output is a single array
    >>> rearrange(images, 'b h w c -> b h w c').shape
    (32, 30, 40, 3)

    # stacked and reordered axes to "b c h w" format
    >>> rearrange(images, 'b h w c -> b c h w').shape
    (32, 3, 30, 40)

    # concatenate images along height (vertical axis), 960 = 32 * 30
    >>> rearrange(images, 'b h w c -> (b h) w c').shape
    (960, 40, 3)

    # concatenated images along horizontal axis, 1280 = 32 * 40
    >>> rearrange(images, 'b h w c -> h (b w) c').shape
    (30, 1280, 3)

    # flattened each image into a vector, 3600 = 30 * 40 * 3
    >>> rearrange(images, 'b h w c -> b (c h w)').shape
    (32, 3600)

    # split each image into 4 smaller (top-left, top-right, bottom-left, bottom-right), 128 = 32 * 2 * 2
    >>> rearrange(images, 'b (h1 h) (w1 w) c -> (b h1 w1) h w c', h1=2, w1=2).shape
    (128, 15, 20, 3)

    # space-to-depth operation
    >>> rearrange(images, 'b (h h1) (w w1) c -> b h w (c h1 w1)', h1=2, w1=2).shape
    (32, 15, 20, 12)

    ```

    When composing axes, C-order enumeration used (consecutive elements have different last axis).
    Find more examples in einops tutorial.

    Parameters:
        tensor: tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch).
                list of tensors is also accepted, those should be of the same type and shape
        pattern: string, rearrangement pattern
        axes_lengths: any additional specifications for dimensions

    Returns:
        tensor of the same type as input. If possible, a view to the original tensor is returned.

    """
    return reduce(tensor, pattern, reduction="rearrange", **axes_lengths)


def repeat(tensor: Union[Tensor, List[Tensor]], pattern: str, **axes_lengths: Size) -> Tensor:
    """
    einops.repeat allows reordering elements and repeating them in arbitrary combinations.
    This operation includes functionality of repeat, tile, and broadcast functions.

    Examples for repeat operation:

    ```python
    # a grayscale image (of shape height x width)
    >>> image = np.random.randn(30, 40)

    # change it to RGB format by repeating in each channel
    >>> repeat(image, 'h w -> h w c', c=3).shape
    (30, 40, 3)

    # repeat image 2 times along height (vertical axis)
    >>> repeat(image, 'h w -> (repeat h) w', repeat=2).shape
    (60, 40)

    # repeat image 2 time along height and 3 times along width
    >>> repeat(image, 'h w -> (h2 h) (w3 w)', h2=2, w3=3).shape
    (60, 120)

    # convert each pixel to a small square 2x2. Upsample image by 2x
    >>> repeat(image, 'h w -> (h h2) (w w2)', h2=2, w2=2).shape
    (60, 80)

    # pixelate image first by downsampling by 2x, then upsampling
    >>> downsampled = reduce(image, '(h h2) (w w2) -> h w', 'mean', h2=2, w2=2)
    >>> repeat(downsampled, 'h w -> (h h2) (w w2)', h2=2, w2=2).shape
    (30, 40)

    ```

    When composing axes, C-order enumeration used (consecutive elements have different last axis).
    Find more examples in einops tutorial.

    Parameters:
        tensor: tensor of any supported library (e.g. numpy.ndarray, tensorflow, pytorch).
            list of tensors is also accepted, those should be of the same type and shape
        pattern: string, rearrangement pattern
        axes_lengths: any additional specifications for dimensions

    Returns:
        Tensor of the same type as input. If possible, a view to the original tensor is returned.

    """
    return reduce(tensor, pattern, reduction="repeat", **axes_lengths)


def parse_shape(x: Tensor, pattern: str) -> dict:
    """
    Parse a tensor shape to dictionary mapping axes names to their lengths.

    ```python
    # Use underscore to skip the dimension in parsing.
    >>> x = np.zeros([2, 3, 5, 7])
    >>> parse_shape(x, 'batch _ h w')
    {'batch': 2, 'h': 5, 'w': 7}

    # `parse_shape` output can be used to specify axes_lengths for other operations:
    >>> y = np.zeros([700])
    >>> rearrange(y, '(b c h w) -> b c h w', **parse_shape(x, 'b _ h w')).shape
    (2, 10, 5, 7)

    ```

    For symbolic frameworks may return symbols, not integers.

    Parameters:
        x: tensor of any supported framework
        pattern: str, space separated names for axes, underscore means skip axis

    Returns:
        dict, maps axes names to their lengths
    """
    exp = ParsedExpression(pattern, allow_underscore=True)
    shape = get_backend(x).shape(x)
    if exp.has_composed_axes():
        raise RuntimeError(f"Can't parse shape with composite axes: {pattern} {shape}")
    if len(shape) != len(exp.composition):
        if exp.has_ellipsis:
            if len(shape) < len(exp.composition) - 1:
                raise RuntimeError(f"Can't parse shape with this number of dimensions: {pattern} {shape}")
        else:
            raise RuntimeError(f"Can't parse shape with different number of dimensions: {pattern} {shape}")
    if exp.has_ellipsis:
        ellipsis_idx = exp.composition.index(_ellipsis)
        composition = (
            exp.composition[:ellipsis_idx]
            + ["_"] * (len(shape) - len(exp.composition) + 1)
            + exp.composition[ellipsis_idx + 1 :]
        )
    else:
        composition = exp.composition
    result = {}
    for axes, axis_length in zip(composition, shape):  # type: ignore
        # axes either [], or [AnonymousAxis] or ['axis_name']
        if len(axes) == 0:
            if axis_length != 1:
                raise RuntimeError(f"Length of axis is not 1: {pattern} {shape}")
        else:
            [axis] = axes
            if isinstance(axis, str):
                if axis != "_":
                    result[axis] = axis_length
            else:
                if axis.value != axis_length:
                    raise RuntimeError(f"Length of anonymous axis does not match: {pattern} {shape}")
    return result


# _enumerate_directions is not exposed in the public API
def _enumerate_directions(x):
    """
    For an n-dimensional tensor, returns tensors to enumerate each axis.
    ```python
    x = np.zeros([2, 3, 4]) # or any other tensor
    i, j, k = _enumerate_directions(x)
    result = i + 2*j + 3*k
    ```

    `result[i, j, k] = i + 2j + 3k`, and also has the same shape as result
    Works very similarly to numpy.ogrid (open indexing grid)
    """
    backend = get_backend(x)
    shape = backend.shape(x)
    result = []
    for axis_id, axis_length in enumerate(shape):
        shape = [1] * len(shape)
        shape[axis_id] = axis_length
        result.append(backend.reshape(backend.arange(0, axis_length), shape))
    return result


# to avoid importing numpy
np_ndarray = Any


def asnumpy(tensor: Tensor) -> np_ndarray:
    """
    Convert a tensor of an imperative framework (i.e. numpy/cupy/torch/jax/etc.) to `numpy.ndarray`

    Parameters:
        tensor: tensor of any known imperative framework

    Returns:
        `numpy.ndarray`, converted to numpy
    """
    return get_backend(tensor).to_numpy(tensor)


def _validate_einsum_axis_name(axis_name):
    if len(axis_name) == 0:
        raise NotImplementedError("Singleton () axes are not yet supported in einsum.")
    if len(axis_name) > 1:
        raise NotImplementedError("Shape rearrangement is not yet supported in einsum.")

    axis_name = axis_name[0]

    if isinstance(axis_name, AnonymousAxis):
        raise NotImplementedError("Anonymous axes are not yet supported in einsum.")
    if len(axis_name) == 0:
        raise RuntimeError("Encountered empty axis name in einsum.")
    if not isinstance(axis_name, str):
        raise RuntimeError("Axis name in einsum must be a string.")


@functools.lru_cache(256)
def _compactify_pattern_for_einsum(pattern: str) -> str:
    if "->" not in pattern:
        # numpy allows this, so make sure users
        # don't accidentally do something like this.
        raise ValueError("Einsum pattern must contain '->'.")
    lefts_str, right_str = pattern.split("->")

    lefts = [ParsedExpression(left, allow_underscore=True, allow_duplicates=True) for left in lefts_str.split(",")]

    right = ParsedExpression(right_str, allow_underscore=True)

    # Start from 'a' and go up to 'Z'
    output_axis_names = string.ascii_letters
    i = 0
    axis_name_mapping = {}

    left_patterns = []
    for left in lefts:
        left_pattern = ""
        for raw_axis_name in left.composition:
            if raw_axis_name == _ellipsis:
                left_pattern += "..."
                continue

            _validate_einsum_axis_name(raw_axis_name)
            axis_name = raw_axis_name[0]
            if axis_name not in axis_name_mapping:
                if i >= len(output_axis_names):
                    raise RuntimeError("Too many axes in einsum.")
                axis_name_mapping[axis_name] = output_axis_names[i]
                i += 1

            left_pattern += axis_name_mapping[axis_name]
        left_patterns.append(left_pattern)

    compact_pattern = ",".join(left_patterns) + "->"

    for raw_axis_name in right.composition:
        if raw_axis_name == _ellipsis:
            compact_pattern += "..."
            continue

        _validate_einsum_axis_name(raw_axis_name)
        axis_name = raw_axis_name[0]

        if axis_name not in axis_name_mapping:
            raise EinopsError(f"Unknown axis {axis_name} on right side of einsum {pattern}.")

        compact_pattern += axis_name_mapping[axis_name]

    return compact_pattern


@typing.overload
def einsum(tensor: Tensor, pattern: str, /) -> Tensor: ...


@typing.overload
def einsum(tensor1: Tensor, tensor2: Tensor, pattern: str, /) -> Tensor: ...


@typing.overload
def einsum(tensor1: Tensor, tensor2: Tensor, tensor3: Tensor, pattern: str, /) -> Tensor: ...


@typing.overload
def einsum(tensor1: Tensor, tensor2: Tensor, tensor3: Tensor, tensor4: Tensor, pattern: str, /) -> Tensor: ...


def einsum(*tensors_and_pattern: Union[Tensor, str]) -> Tensor:
    r"""
    einops.einsum calls einsum operations with einops-style named
    axes indexing, computing tensor products with an arbitrary
    number of tensors. Unlike typical einsum syntax, here you must
    pass tensors first, and then the pattern.

    Also, note that rearrange operations such as `"(batch chan) out"`,
    or singleton axes `()`, are not currently supported.

    Examples:

    For a given pattern such as:
    ```python
    >>> x, y, z = np.random.randn(3, 20, 20, 20)
    >>> output = einsum(x, y, z, "a b c, c b d, a g k -> a b k")

    ```
    the following formula is computed:
    ```tex
    output[a, b, k] =
        \sum_{c, d, g} x[a, b, c] * y[c, b, d] * z[a, g, k]
    ```
    where the summation over `c`, `d`, and `g` is performed
    because those axes names do not appear on the right-hand side.

    Let's see some additional examples:
    ```python
    # Filter a set of images:
    >>> batched_images = np.random.randn(128, 16, 16)
    >>> filters = np.random.randn(16, 16, 30)
    >>> result = einsum(batched_images, filters,
    ...                 "batch h w, h w channel -> batch channel")
    >>> result.shape
    (128, 30)

    # Matrix multiplication, with an unknown input shape:
    >>> batch_shape = (50, 30)
    >>> data = np.random.randn(*batch_shape, 20)
    >>> weights = np.random.randn(10, 20)
    >>> result = einsum(weights, data,
    ...                 "out_dim in_dim, ... in_dim -> ... out_dim")
    >>> result.shape
    (50, 30, 10)

    # Matrix trace on a single tensor:
    >>> matrix = np.random.randn(10, 10)
    >>> result = einsum(matrix, "i i ->")
    >>> result.shape
    ()

    ```

    Parameters:
        tensors_and_pattern:
            tensors: tensors of any supported library (numpy, tensorflow, pytorch, jax).
            pattern: string, einsum pattern, with commas
                separating specifications for each tensor.
                pattern should be provided after all tensors.

    Returns:
        Tensor of the same type as input, after processing with einsum.

    """
    if len(tensors_and_pattern) <= 1:
        raise ValueError(
            "`einops.einsum` takes at minimum two arguments: the tensors (at least one), followed by the pattern."
        )
    pattern = tensors_and_pattern[-1]
    if not isinstance(pattern, str):
        raise ValueError(
            "The last argument passed to `einops.einsum` must be a string, representing the einsum pattern."
        )
    tensors = tensors_and_pattern[:-1]
    pattern = _compactify_pattern_for_einsum(pattern)
    return get_backend(tensors[0]).einsum(pattern, *tensors)