File size: 26,426 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import sys
import torch
from collections import OrderedDict
from deepspeed.utils import z3_leaf_module, set_z3_leaf_module
from deepspeed.runtime.utils import see_memory_usage
from deepspeed.runtime.zero.utils import apply_to_tensors_only, is_zero_param
from deepspeed.runtime.zero.offload_config import OffloadDeviceEnum
from deepspeed.runtime.zero.partition_parameters import _init_external_params
from deepspeed.runtime.zero.partition_parameters import *
from deepspeed.runtime.zero.partitioned_param_coordinator import PartitionedParameterCoordinator, InflightParamRegistry, iter_params
from deepspeed.accelerator import get_accelerator
from deepspeed import utils

FWD_MODULE_STACK = list()


#for each tensor in outputs run the forward_function and register backward_function as hook
def _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function, outputs):
    if type(outputs) is tuple:
        touched_outputs = []
        for output in outputs:
            touched_output = _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function,
                                                                         output)
            touched_outputs.append(touched_output)
        return tuple(touched_outputs)
    elif type(outputs) is torch.Tensor:
        forward_function(outputs)
        if outputs.requires_grad:
            outputs.register_hook(backward_function)
        return outputs
    else:
        return outputs


class ZeROOrderedDict(OrderedDict):

    def __init__(self, parent_module, *args, **kwargs):
        """A replacement for ``collections.OrderedDict`` to detect external ZeRO params.

        Args:
            parent_module (``collections.OrderedDict``): the collection to replace
        """

        super().__init__(*args, **kwargs)
        self._parent_module = parent_module
        self._in_forward = False

    def __reduce__(self):
        r0, _, *r2 = super().__reduce__()
        return (r0, (self._parent_module, )) + tuple(r2)

    def __getitem__(self, key):
        param = super().__getitem__(key)

        # Params can be registered as None (e.g., bias)
        if param is None:
            return param

        # TODO: only weaken this check during compilation
        if hasattr(param, "ds_status") and param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if self._parent_module._parameters._in_forward:
                register_external_parameter(FWD_MODULE_STACK[-1], param)
                param.all_gather()
                print_rank_0(f'Registering external parameter from getter {key} ds_id = {param.ds_id}', force=False)

        return param


def _inject_parameters(module, cls):
    for module in module.modules():
        module._original_parameters = module._parameters

        if cls == ZeROOrderedDict:
            new_param = cls(parent_module=module)
        else:
            new_param = cls()

        for key, param in module._parameters.items():
            new_param[key] = param

        module._parameters = new_param


class DeepSpeedZeRoOffload(object):

    def __init__(
        self,
        module,
        timers,
        ds_config,
        overlap_comm=True,
        prefetch_bucket_size=50000000,
        max_reuse_distance=1000000000,
        max_live_parameters=1000000000,
        param_persistence_threshold=100000,
        model_persistence_threshold=sys.maxsize,
        dp_process_group=None,
        offload_param_config=None,
        mpu=None,
        zero_param_parallel_group=None,
        zero_quantized_weights=False,
        zero_quantized_nontrainable_weights=False,
        zero_module_granularity_threshold=0,
        log_trace_cache_warnings=False,
    ):

        see_memory_usage("DeepSpeedZeRoOffload initialize [begin]", force=True)

        print_rank_0(f"initialized {__class__.__name__} with args: {locals()}", force=False)

        self.module = module
        self.timers = timers
        self.dtype = list(module.parameters())[0].dtype
        self.dp_process_group = dp_process_group
        self.offload_device = None
        self.offload_param_pin_memory = False
        self.zero_param_parallel_group = zero_param_parallel_group
        self.zero_quantized_weights = zero_quantized_weights
        self.zero_quantized_nontrainable_weights = zero_quantized_nontrainable_weights
        self.log_trace_cache_warnings = log_trace_cache_warnings

        if offload_param_config is not None and offload_param_config.device != OffloadDeviceEnum.none:
            self.offload_device = offload_param_config.device
            self.offload_param_pin_memory = offload_param_config.pin_memory

        self._convert_to_zero_parameters(ds_config, module, mpu)

        for m in module.modules():
            _init_external_params(m)

        _inject_parameters(module, ZeROOrderedDict)

        self.param_numel_persistence_threshold = int(param_persistence_threshold)
        self.model_persistence_threshold = int(model_persistence_threshold)
        self.persistent_parameters = self.mark_persistent_parameters(self.param_numel_persistence_threshold,
                                                                     self.model_persistence_threshold)

        self._prefetch_bucket_sz = int(prefetch_bucket_size)
        self._max_reuse_distance_in_numel = int(max_reuse_distance)
        self._max_available_parameters_in_numel = int(max_live_parameters)
        self.__allgather_stream = None if get_accelerator().is_synchronized_device() else get_accelerator().Stream(
        ) if overlap_comm else get_accelerator().default_stream()

        if not hasattr(module, "ds_inflight_param_registry"):
            module.ds_inflight_param_registry = InflightParamRegistry()
        self.__inflight_param_registry = module.ds_inflight_param_registry

        self.fast_sharding_for_leaf_module = False

        if zero_module_granularity_threshold > 0:
            self.min_granularity_value = sys.maxsize
            self.min_granularity_layer = None
            self.granularity_info = set()
            self.z3_leaf_layers = []
            self._set_z3_leaf_modules_by_threshold(module, zero_module_granularity_threshold)
            self.fast_sharding_for_leaf_module = True

        self.param_coordinator = PartitionedParameterCoordinator(
            prefetch_bucket_sz=self._prefetch_bucket_sz,
            max_reuse_distance_in_numel=self._max_reuse_distance_in_numel,
            max_available_parameters_in_numel=self._max_available_parameters_in_numel,
            allgather_stream=self.__allgather_stream,
            inflight_param_registry=self.__inflight_param_registry,
            prefetch_nvme=self.offload_device == OffloadDeviceEnum.nvme,
            timers=self.timers,
            zero_quantized_weights=self.zero_quantized_weights,
            zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights,
            fast_sharding_for_leaf_module=self.fast_sharding_for_leaf_module,
            log_trace_cache_warnings=self.log_trace_cache_warnings,
        )

        self.forward_hooks = []
        self.backward_hooks = []

        self.setup_zero_stage3_hooks()
        print_rank_0(
            f'Created module hooks: forward = {len(self.forward_hooks)}, backward = {len(self.backward_hooks)}',
            force=False)

        see_memory_usage("DeepSpeedZeRoOffload initialize [end]", force=True)

    @instrument_w_nvtx
    def partition_all_parameters(self):
        """Partitioning Parameters that were not partitioned usually if parameters
        of modules whose input parameters do not require grad computation do not
        trigger post call and will therefore will remain unpartitioned"""
        self.get_param_coordinator().release_and_reset_all(self.module)
        for param in iter_params(self.module, recurse=True):
            if param.ds_status != ZeroParamStatus.NOT_AVAILABLE:
                raise RuntimeError(f"{param.ds_summary()} expected to be released")

    def get_param_coordinator(self):
        return self.param_coordinator

    def empty_partition_cache(self):
        self.partition_all_parameters()

    def _convert_to_zero_parameters(self, ds_config, module, mpu):
        non_zero_params = [p for p in module.parameters() if not is_zero_param(p)]
        if non_zero_params:
            zero_params = [p for p in module.parameters() if is_zero_param(p)]
            if zero_params:
                zero_params[0].convert_to_zero_parameters(param_list=non_zero_params)
            else:
                group = None
                # parallel_state_sp doesn't have get_data_parallel_group
                if mpu and hasattr(mpu, "get_data_parallel_group"):
                    group = mpu.get_data_parallel_group()

                Init(module=module,
                     data_parallel_group=group,
                     dtype=self.dtype,
                     config_dict_or_path=ds_config,
                     remote_device=self.offload_device,
                     pin_memory=self.offload_param_pin_memory,
                     mpu=mpu,
                     zero_param_parallel_group=self.zero_param_parallel_group,
                     zero_quantized_weights=self.zero_quantized_weights,
                     zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights)

    def destroy(self):
        self._remove_module_hooks()

    def _remove_module_hooks(self):
        num_forward_hooks = len(self.forward_hooks)
        num_backward_hooks = len(self.backward_hooks)

        for hook in self.forward_hooks:
            hook.remove()

        for hook in self.backward_hooks:
            hook.remove()

        self.fwd_pre_hook.remove()

        print_rank_0(f'Deleted module hooks: forward = {num_forward_hooks}, backward = {num_backward_hooks}',
                     force=False)

    def setup_zero_stage3_hooks(self):
        self.hierarchy = 0

        #reset step if in inference mode
        @instrument_w_nvtx
        def _start_of_forward_hook(module, *args):

            self.get_param_coordinator().reset_step()

        self.fwd_pre_hook = self.module.register_forward_pre_hook(_start_of_forward_hook)

        #likely one of them should be enough but just to be safe
        self._register_deepspeed_module(self.module)

        # Add top module to stack trace
        global FWD_MODULE_STACK
        FWD_MODULE_STACK.append(self.module)

    def mark_persistent_parameters(self, param_threshold, model_threshold):
        persistent_params = []
        total_persistent_parameters = 0
        params_count = 0
        for name, param in self.module.named_parameters(recurse=True):
            if param.ds_numel + total_persistent_parameters > model_threshold:
                continue

            if param.ds_numel <= param_threshold:
                params_count += 1
                param.ds_persist = True
                persistent_params.append(param)
                total_persistent_parameters += param.ds_numel

        print_rank_0(
            f"Parameter Offload - Persistent parameters statistics: param_count = {params_count}, numel = {total_persistent_parameters}",
            force=True)

        return persistent_params

    def _register_deepspeed_module(self, module, count=[0]):
        my_count = count[0]
        module.ds_id = my_count

        #print(f"{module.__class__} : {module.ds_id}")

        if z3_leaf_module(module):
            for param in module.parameters():
                param.ds_z3_leaf_module = module
        else:
            for child in module.children():
                count[0] = count[0] + 1
                self._register_deepspeed_module(child, count=count)

        @torch.compiler.disable
        def _pre_forward_module_hook(module, *args):
            self.pre_sub_module_forward_function(module)

        @instrument_w_nvtx
        def _post_forward_module_hook(module, input, output):

            global FWD_MODULE_STACK
            FWD_MODULE_STACK.pop()
            if output is None:
                output = []
            elif not isinstance(output, (list, tuple)):
                if torch.is_tensor(output):
                    output = [output]
                else:
                    #print(f'got UNKNOWN type {type(output)}')
                    outputs = []
                    output = output if isinstance(output, dict) else vars(output)
                    for name, val in output.items():
                        if not name.startswith('__') and torch.is_tensor(val):
                            outputs.append(val)
                    output = outputs

            for item in filter(lambda item: is_zero_param(item) or hasattr(item, 'ds_param_alias'), output):
                key = id(item) if hasattr(item, 'ds_id') else id(item.ds_param_alias)
                actual_external_param = item if hasattr(item, 'ds_id') else item.ds_param_alias

                if not any(key in m._external_params for m in FWD_MODULE_STACK):
                    actual_external_param.is_external_param = True
                    module_to_register = FWD_MODULE_STACK[-1]
                    register_external_parameter(module_to_register, actual_external_param)
                    print_rank_0(
                        f'Registering dangling parameter for module {module_to_register.__class__.__name__}, ds_id = {actual_external_param.ds_id}.',
                        force=False)

                    # It's possible that the parameter was already external to the completed module. If so, remove it the
                    # registration as it will be covered by the outer module instead.
                    if key in module._external_params:
                        print_rank_0(
                            f'  Unregistering nested dangling parameter from module {module.__class__.__name__}, ds_id = {actual_external_param.ds_id}',
                            force=False)
                        unregister_external_parameter(module, actual_external_param)

                    actual_external_param.all_gather()

            self.post_sub_module_forward_function(module)

        def _bwd_hook_unexpected_inputs_msg(value):
            return f"A module has unknown inputs or outputs type ({type(value)}) and the tensors embedded in it cannot be detected. " \
                "The ZeRO-3 hooks designed to trigger before or after backward pass of the module relies on knowing the input and " \
                "output tensors and therefore may not get triggered properly."

        def _pre_backward_module_hook(module, inputs, output):

            return apply_to_tensors_only(module.pre_bwd_fn.apply,
                                         output,
                                         warning_msg_fn=_bwd_hook_unexpected_inputs_msg)

        #This is an alternate to doing _post_backward_module_hook
        #it uses tensor.register_hook instead of using torch.autograd.Function
        def _alternate_post_backward_module_hook(module, inputs):
            module.ds_grads_remaining = 0

            #print(f"Before Forward {module.__class__.__name__}")

            def _run_after_backward_hook(*unused):
                module.ds_grads_remaining = module.ds_grads_remaining - 1
                if module.ds_grads_remaining == 0:
                    #print(f"After backward {module.__class__.__name__}")
                    self.post_sub_module_backward_function(module)

            def _run_before_forward_function(input):
                if input.requires_grad:
                    module.ds_grads_remaining += 1

            return _apply_forward_and_backward_to_tensors_only(module, _run_before_forward_function,
                                                               _run_after_backward_hook, inputs)

        @torch.compiler.disable
        def _post_backward_module_hook(module, inputs):
            module.ds_grads_remaining = 0

            return apply_to_tensors_only(module.post_bwd_fn.apply,
                                         inputs,
                                         warning_msg_fn=_bwd_hook_unexpected_inputs_msg)

        # Pre forward hook
        self.forward_hooks.append(module.register_forward_pre_hook(_pre_forward_module_hook))

        # Post forward hook
        self.forward_hooks.append(module.register_forward_hook(_post_forward_module_hook))

        # Pre backward hook
        if not hasattr(module, "pre_bwd_fn"):

            @instrument_w_nvtx
            def _run_before_backward_function(sub_module):
                # some models (e.g. Albert) may run multiple forwards on the same layer in a loop
                # before doing backwards, so each backward will need a pre-fetch - using reference
                # counting to support this scenario
                #print(f"COUNTER before: {sub_module.applied_pre_backward_ref_cnt}")
                if sub_module.applied_pre_backward_ref_cnt > 0:
                    self.pre_sub_module_backward_function(sub_module)
                    sub_module.applied_pre_backward_ref_cnt -= 1
                #print(f"COUNTER after: {sub_module.applied_pre_backward_ref_cnt}")

            class PreBackwardFunctionForModule(torch.autograd.Function):

                @staticmethod
                def forward(ctx, outputs):
                    # Capture `module` and _run_before_backward_function
                    ctx.module = module
                    ctx.pre_backward_function = _run_before_backward_function
                    if not hasattr(ctx.module, "applied_pre_backward_ref_cnt"):
                        ctx.module.applied_pre_backward_ref_cnt = 0
                    ctx.module.applied_pre_backward_ref_cnt += 1
                    outputs = outputs.detach()
                    return outputs

                @staticmethod
                def backward(ctx, *args):
                    ctx.pre_backward_function(ctx.module)
                    return args

            module.pre_bwd_fn = PreBackwardFunctionForModule

        self.backward_hooks.append(module.register_forward_hook(_pre_backward_module_hook))

        # post backward hook
        if not hasattr(module, "post_bwd_fn"):

            @instrument_w_nvtx
            def _run_after_backward_function(sub_module):
                if sub_module.ds_grads_remaining == 0:
                    self.post_sub_module_backward_function(sub_module)

            class PostBackwardFunctionModule(torch.autograd.Function):

                @staticmethod
                def forward(ctx, output):
                    ctx.module = module
                    if output.requires_grad:
                        #TODO SOME TIMES post backward does not seem to be triggered debug in detail
                        #Should only cause increase in memory not correctness issue
                        #if output.grad_fn.__class__.__name__ == 'ViewBackward':
                        #    ctx.view=True
                        #    print(f"Warning view tensor for input to module : {module.__class__.__name__}. Backward hooks may not trigger properly")
                        #assert len(module.parameters(recurse=False)), "The input tensor to the module is a view, and autograd Function or register_hook is not triggered with view tensors."
                        #if module.ds_grads_remaining == 0:
                        #    print(f"Before Forward: {ctx.module.__class__.__name__}")
                        module.ds_grads_remaining += 1
                        ctx.post_backward_function = _run_after_backward_function
                    output = output.detach()
                    return output

                @staticmethod
                def backward(ctx, *args):
                    ctx.module.ds_grads_remaining = ctx.module.ds_grads_remaining - 1
                    if ctx.module.ds_grads_remaining == 0:
                        ctx.post_backward_function(ctx.module)
                    return args

            module.post_bwd_fn = PostBackwardFunctionModule

        self.backward_hooks.append(module.register_forward_pre_hook(_post_backward_module_hook))

    @torch.no_grad()
    def pre_sub_module_forward_function(self, sub_module):
        see_memory_usage(f"Before sub module function {sub_module.__class__.__name__}", force=False)

        global FWD_MODULE_STACK
        FWD_MODULE_STACK.append(sub_module)

        param_coordinator = self.get_param_coordinator()
        param_coordinator.trace_prologue(sub_module)
        if param_coordinator.is_record_trace():
            param_coordinator.record_module(sub_module)
        param_coordinator.fetch_sub_module(sub_module, forward=True)

        see_memory_usage(f"Before sub module function {sub_module.__class__.__name__} after fetch", force=False)

    @torch.no_grad()
    def post_sub_module_forward_function(self, sub_module):
        see_memory_usage(
            f"After sub module function {sub_module.__class__.__name__} {sub_module.ds_id} before release",
            force=False)

        param_coordinator = self.get_param_coordinator()
        param_coordinator.release_sub_module(sub_module, forward=True)

        see_memory_usage(
            f"After sub module function {sub_module.__class__.__name__}  {sub_module.ds_id} after release",
            force=False)

    @torch.no_grad()
    def pre_sub_module_backward_function(self, sub_module):
        # assert sub_module.training, "backward pass is invalid for module in evaluation mode"
        param_coordinator = self.get_param_coordinator()
        param_coordinator.trace_prologue(sub_module)
        if param_coordinator.is_record_trace():
            param_coordinator.record_module(sub_module)
        param_coordinator.fetch_sub_module(sub_module, forward=False)

    @torch.no_grad()
    def post_sub_module_backward_function(self, sub_module):
        # assert sub_module.training, "backward pass is invalid for module in evaluation mode"
        see_memory_usage(
            f"After sub module backward function {sub_module.__class__.__name__} {sub_module.ds_id} before release",
            force=False)

        self.get_param_coordinator().release_sub_module(sub_module, forward=False)

        see_memory_usage(
            f"After sub module backward function {sub_module.__class__.__name__} {sub_module.ds_id} after release",
            force=False)

    def _set_z3_leaf_modules_by_threshold(self, module, zero_module_granularity_threshold):

        self._get_granularity_recursively(module)
        print_rank_0(f"{'MODULE NAME'.ljust(30)}|{'GRANULARITY VALUE'.rjust(20)}", force=True)
        for granularity in self.granularity_info:
            print_rank_0(granularity, force=True)

        if self.min_granularity_value <= zero_module_granularity_threshold:
            self._set_leaf_by_threshold_preorder(module, zero_module_granularity_threshold)
            utils.logger.info(
                f"z3_leaf_module was set by stage3_module_granularity_threshold:{zero_module_granularity_threshold}")
            for layer in self.z3_leaf_layers:
                print_rank_0(f"{layer.__class__.__name__}:{layer.ds_model_granularity}", force=True)
        else:
            utils.logger.warning(
                f"The smallest module granularity is [{self.min_granularity_layer}:{self.min_granularity_value}]. "\
                f"To make stage3_module_granularity_threshold effective, you need to set stage3_module_granularity_threshold >= {self.min_granularity_value}. "\
                f"Current Value:{zero_module_granularity_threshold}"
            )

    def _get_granularity_recursively(self, module):
        """This function is used to recursively obtain the granularity of each module."""

        # avoid setting as leaf for particularly large models, even if the granularity is very small
        # an oversized leaf module increases the number of live parameters, introducing memory overhead
        Z3_MAX_LEAF_SIZE = 1e9

        if not list(module.parameters()):
            # skip Modules without parameters, such as GELU, etc.
            module.ds_model_granularity = sys.maxsize
            return 0, 0

        num_layers = 0
        num_params = 0
        num_params += sum(p.ds_numel for p in module.parameters(recurse=False))
        if not any(module.children()):
            # torch leaf module
            module.ds_model_granularity = sys.maxsize
            return 1, num_params

        for child in module.children():
            layers_in_child, params_in_child = self._get_granularity_recursively(child)
            num_layers += layers_in_child
            num_params += params_in_child

        if module.__class__.__name__ in torch.nn.modules.container.__all__:
            # Do not set container modules like ModuleList as leaf modules
            # as this will prevent hooks from being set on their children
            # and they may do not invoke the forward method
            module.ds_model_granularity = sys.maxsize
            return num_layers, num_params

        num_layers += 1
        ds_model_granularity = (num_params // num_layers) if num_params <= Z3_MAX_LEAF_SIZE else sys.maxsize
        module.ds_model_granularity = ds_model_granularity
        # module.ds_model_num_layers = num_layers
        # module.ds_model_num_params = num_params
        if self.min_granularity_value > ds_model_granularity:
            self.min_granularity_value = ds_model_granularity
            self.min_granularity_layer = module.__class__.__name__
        self.granularity_info.add(f"{module.__class__.__name__.ljust(30)}|{str(ds_model_granularity).rjust(20)}")

        return num_layers, num_params

    def _set_leaf_by_threshold_preorder(self, module, granularity_treshhold):
        '''Set modules as leaf modules based on the threshold, prioritizing parent nodes.'''

        num_params = sum(p.ds_numel for p in module.parameters())
        if num_params == 0:
            # skip Modules without parameters, such as GELU, etc.
            return
        if module.ds_model_granularity <= granularity_treshhold:
            set_z3_leaf_module(module, True)
            self.z3_leaf_layers.append(module)
            return

        for sub_module in module.children():
            self._set_leaf_by_threshold_preorder(sub_module, granularity_treshhold)