File size: 19,792 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team

#pragma once

#define NOMINMAX  // Windows idiosyncrasy
                  // https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c

#define USE_C10D_NCCL

#include <stdio.h>
#include <torch/extension.h>

#include <ATen/cuda/CUDAEvent.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/SymmetricMemory.hpp>

namespace dc {

template <typename K, typename V>
static bool hasKey(const std::unordered_map<K, V>& map, const K& key)
{
    return map.find(key) != map.end();
}

template <typename T>
inline std::string to_string(const T& v)
{
    std::stringstream ss;
    ss << v;
    return ss.str();
}

template <typename L>
size_t productDim(const L& dim)
{
    size_t prod = 1;
    for (auto d : dim) { prod *= d; }
    return prod;
}

template <typename T>
std::string join_as_str(const T& v, const char* delim = ",", const size_t maxlen = 0)
{
    std::stringstream ss;

    if (!v.empty()) {
        auto it = v.begin();
        ss << to_string(*it);
        it++;
        for (; it != v.end(); ++it) {
            if (delim) ss << delim;
            ss << to_string(*it);
        }
    }

    std::string s = ss.str();
    if (maxlen > 0 && s.length() > maxlen) { s = s.substr(0, maxlen) + " ..."; }

    return "[" + s + "]";
}

template <typename T>
std::string tensorPtrToString(T* ptr, size_t size, size_t str_len = 100)
{
    std::vector<T> vals;
    for (size_t i = 0; i < size; i++) {
        vals.push_back(*ptr);
        ptr++;
    }
    return join_as_str(vals, ",", str_len);
}

std::string tensorPtrToString(void* ptr,
                              size_t size,
                              c10::ScalarType datatype,
                              size_t max_elem = 20,
                              size_t max_str_len = 100);

std::string tensorToString(const at::Tensor& t, size_t max_elem = 20, size_t max_str_len = 100);

std::string tensorDimToString(const at::Tensor& t);

at::Tensor test_call(at::Tensor param);

extern c10::intrusive_ptr<c10d::ProcessGroup> process_group;
extern c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> symm_mem;
extern ncclComm_t nccl_comm;
extern bool use_symm_mem;
extern bool clone_custom_op_output;
extern bool profile;
extern bool pre_div_reduce;

extern bool sync_before_reduce;     // for debugging
extern bool sync_after_reduce;      // for debugging
extern bool sync_before_allgather;  // for debugging
extern bool sync_after_allgather;   // for debugging

std::vector<int64_t> sizes_to_int_vector(at::IntArrayRef sizes);
void enable_profiling(bool enable);
bool is_profiling();

c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> getSymmMemWorkspace(int64_t size);
void lazy_init_symm_memory();
ncclDataType_t get_nccl_data_type(at::ScalarType scalar_type);
void cleanup();

class ReduceTask {
public:
    ReduceTask(long ds_id, at::Tensor grad, at::Tensor send_buf)
        : ds_id_(ds_id), grad_(std::move(grad)), send_buf_(std::move(send_buf))
    {
    }

    long getDSId() const { return ds_id_; }
    at::Tensor getSendBuf() const { return send_buf_; }

private:
    long ds_id_;
    at::Tensor grad_;
    at::Tensor send_buf_;
};

class ReduceBucket {
public:
    ReduceBucket(int64_t size, at::ScalarType scalar_type) : size_(size), scalar_type_(scalar_type)
    {
        buffer_ = torch::empty({size}, at::TensorOptions().dtype(scalar_type).device(at::kCUDA));
        offset_ = 0;
    }

    int64_t getSize() const { return size_; }
    int64_t getOffset() const { return offset_; }
    at::Tensor getBuffer() const { return buffer_; }
    at::ScalarType getScalarType() const { return scalar_type_; }

    void reserve(int64_t size)
    {
        if (size > size_) {
            buffer_ =
                torch::empty({size}, at::TensorOptions().dtype(scalar_type_).device(at::kCUDA));
            size_ = size;
        }
    }

    at::Tensor allocate(int64_t numel)
    {
        if (offset_ + numel > size_) {
            throw std::runtime_error("Buffer size exceeds the reduce bucket size");
        }

        at::Tensor result = buffer_.index({torch::indexing::Slice(offset_, offset_ + numel)});
        offset_ += numel;
        return result;
    }

    bool shouldFlush(int64_t numel) { return offset_ > 0 && offset_ + numel > size_; }

    void reset() { offset_ = 0; }

private:
    int64_t size_;
    int64_t offset_;
    at::Tensor buffer_;
    at::ScalarType scalar_type_;
};

class DoubleBufferedReduceBucket {
public:
    DoubleBufferedReduceBucket(int64_t initial_bucket_size, bool enable_double_buffer)
        : initial_bucket_size_(initial_bucket_size), enable_double_buffer_(enable_double_buffer)
    {
    }

    void swap(at::ScalarType scalar_type,
              at::cuda::CUDAStream rs_stream,
              at::cuda::CUDAStream copy_stream)
    {
        assert(hasKey(current_buffer_, scalar_type));
        assert(hasKey(current_buffer_events_, scalar_type));

        current_buffer_.at(scalar_type)->reset();
        current_buffer_events_.at(scalar_type)->record(rs_stream);

        if (enable_double_buffer_) {
            assert(hasKey(shadow_buffer_, scalar_type));
            assert(hasKey(shadow_buffer_events_, scalar_type));

            auto tmp = current_buffer_.at(scalar_type);
            current_buffer_[scalar_type] = shadow_buffer_.at(scalar_type);
            shadow_buffer_[scalar_type] = tmp;

            auto tmp_event = current_buffer_events_.at(scalar_type);
            current_buffer_events_[scalar_type] = shadow_buffer_events_.at(scalar_type);
            shadow_buffer_events_[scalar_type] = tmp_event;
        }
    }

    std::shared_ptr<ReduceBucket> getBuffer(at::ScalarType scalar_type)
    {
        if (!hasKey(current_buffer_, scalar_type)) {
            current_buffer_[scalar_type] =
                std::make_shared<ReduceBucket>(initial_bucket_size_, scalar_type);
            current_buffer_events_[scalar_type] =
                std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);

            if (enable_double_buffer_) {
                shadow_buffer_[scalar_type] =
                    std::make_shared<ReduceBucket>(initial_bucket_size_, scalar_type);
                shadow_buffer_events_[scalar_type] =
                    std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
            }
        }

        return current_buffer_.at(scalar_type);
    }

    std::shared_ptr<at::cuda::CUDAEvent> getEvent(at::ScalarType scalar_type)
    {
        assert(hasKey(current_buffer_events_, scalar_type));
        return current_buffer_events_.at(scalar_type);
    }

    void clear()
    {
        current_buffer_.clear();
        shadow_buffer_.clear();
        current_buffer_events_.clear();
        shadow_buffer_events_.clear();
    }

private:
    int64_t initial_bucket_size_;
    bool enable_double_buffer_;
    std::unordered_map<at::ScalarType, std::shared_ptr<ReduceBucket>> current_buffer_;
    std::unordered_map<at::ScalarType, std::shared_ptr<ReduceBucket>> shadow_buffer_;
    std::unordered_map<at::ScalarType, std::shared_ptr<at::cuda::CUDAEvent>> current_buffer_events_;
    std::unordered_map<at::ScalarType, std::shared_ptr<at::cuda::CUDAEvent>> shadow_buffer_events_;
};

class DSParam {
public:
    DSParam(long id,
            std::vector<int64_t> ds_shape,
            at::Tensor ds_tensor,
            at::Tensor grad_buffer,
            bool partitioned,
            int64_t offset,  // for Z1
            bool persistent  // for Z3
            )
        : id_(id),
          shape_(std::move(ds_shape)),
          ds_tensor_(ds_tensor),
          grad_buffer_(grad_buffer),
          partitioned_(partitioned),
          offset_(offset),
          persistent_(persistent),
          offload_stream_(at::cuda::getStreamFromPool()),
          reload_stream_(at::cuda::getStreamFromPool())
    {
    }

    long getId() const { return id_; }
    std::vector<int64_t> getShape() const { return shape_; }
    at::Tensor getDSTensor() const
    {
        // If the reload event exists and is complete, return the reloaded tensor (if defined)
        if (reload_done_event_) {
            if (!reload_done_event_->query()) {
                reload_done_event_->block(at::cuda::getCurrentCUDAStream());
            }
            if (ds_reload_tensor_.defined()) { return ds_reload_tensor_; }
        }
        // Otherwise, if an offload event exists, wait for it to complete
        if (offload_done_event_) {
            if (!offload_done_event_->query()) {
                offload_done_event_->block(at::cuda::getCurrentCUDAStream());
            }
        }
        return ds_tensor_;
    }
    at::Tensor getGradBuffer() const { return grad_buffer_; }
    bool isPartitioned() const { return partitioned_; }
    int64_t getOffset() const { return offset_; }
    void setPersistent(bool persistent) { persistent_ = persistent; }
    bool isPersistent() const { return persistent_; }

    void offload()
    {
        // If a reloaded tensor exists, offload its data back to ds_tensor_
        if (ds_reload_tensor_.defined()) {
            auto comp_stream = at::cuda::getCurrentCUDAStream();
            comp_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
            // Record completion and wait on the offload stream
            comp_done_event_->record(comp_stream);
            comp_done_event_->block(offload_stream_);
            offload_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);

            {
                at::cuda::CUDAStreamGuard guard(offload_stream_);
                ds_tensor_.copy_(ds_reload_tensor_, /*non_blocking=*/true);
                ds_reload_tensor_.reset();  // Clear the reloaded tensor
                offload_done_event_->record(offload_stream_);
            }
            // Reset the reload event to indicate that no valid reload is present.
            if (reload_done_event_) { reload_done_event_.reset(); }
        }
    }

    void reload()
    {
        // Reload only if the current ds_tensor_ is on CPU
        if (ds_tensor_.device().is_cpu()) {
            auto comp_stream = at::cuda::getCurrentCUDAStream();
            comp_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
            // Record and wait on the reload stream
            comp_done_event_->record(comp_stream);
            comp_done_event_->block(reload_stream_);
            reload_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);

            {
                at::cuda::CUDAStreamGuard guard(reload_stream_);
                ds_reload_tensor_ =
                    at::empty_like(ds_tensor_, ds_tensor_.options().device(torch::kCUDA));
                ds_reload_tensor_.copy_(ds_tensor_, /*non_blocking=*/true);
                reload_done_event_->record(reload_stream_);
            }
            // Reset offload_done_event if it exists to clear any stale offload state.
            if (offload_done_event_) { offload_done_event_.reset(); }
        }
    }

private:
    long id_;
    std::vector<int64_t> shape_;
    at::Tensor ds_tensor_;
    at::Tensor ds_reload_tensor_;
    at::Tensor grad_buffer_;
    bool partitioned_;
    int64_t offset_;   // for Z1
    bool persistent_;  // for Z3
    mutable bool is_reloaded = false;

    at::cuda::CUDAStream offload_stream_;
    at::cuda::CUDAStream reload_stream_;
    std::shared_ptr<at::cuda::CUDAEvent> comp_done_event_;
    std::shared_ptr<at::cuda::CUDAEvent> offload_done_event_;
    std::shared_ptr<at::cuda::CUDAEvent> reload_done_event_;
};

class DSParamRegistry {
public:
    DSParamRegistry() {}
    ~DSParamRegistry() {}

    void registerParam(long ds_id,
                       const std::vector<int64_t>& ds_shape,
                       at::Tensor ds_tensor,
                       at::Tensor grad_buffer,
                       bool partitioned,
                       int64_t offset,  // for Z1
                       bool persistent  // for Z3
    )
    {
        grad_buffer.zero_();
        params_.emplace(
            ds_id,
            DSParam(ds_id, ds_shape, ds_tensor, grad_buffer, partitioned, offset, persistent));
        valid_[ds_id] = false;
    }

    void registerGatheredParam(long ds_id, at::Tensor ds_tensor)
    {
        gathered_params_.emplace(ds_id, ds_tensor);
    }

    void unregisterGatheredParam(long ds_id)
    {
        assert(hasKey(gathered_params_, ds_id));
        gathered_params_.erase(ds_id);
        valid_[ds_id] = false;
    }

    const std::unordered_map<long, DSParam>& getParams() const { return params_; }

    const DSParam& getParam(long ds_id) const { return params_.at(ds_id); }
    const size_t getNumParams() const { return params_.size(); }
    const at::Tensor& getGatheredParam(long ds_id) const
    {
        assert(hasKey(gathered_params_, ds_id));
        return gathered_params_.at(ds_id);
    }
    bool hasGatheredParam(long ds_id) const { return hasKey(gathered_params_, ds_id); }
    void setPersistent(long ds_id, bool persistent) { params_.at(ds_id).setPersistent(persistent); }
    void offload(long ds_id) { params_.at(ds_id).offload(); }
    void reload(long ds_id) { params_.at(ds_id).reload(); }

    void setValid(long ds_id, bool valid) { valid_[ds_id] = valid; }
    bool isValid(long ds_id) const
    {
        assert(hasKey(valid_, ds_id));
        return valid_.at(ds_id);
    }

private:
    std::unordered_map<long, DSParam> params_;
    std::unordered_map<long, at::Tensor> gathered_params_;
    std::unordered_map<long, bool> valid_;
};

class CustomOpExecutor {
public:
    CustomOpExecutor(c10::intrusive_ptr<c10d::ProcessGroup> process_group,
                     std::shared_ptr<DSParamRegistry> param_registry,
                     std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets,
                     std::vector<long> ds_ids,
                     ncclComm_t nccl_comm,
                     at::cuda::CUDAStream rs_stream,
                     at::cuda::CUDAStream copy_stream,
                     bool pre_div_reduce)
        : process_group_(process_group),
          param_registry_(std::move(param_registry)),
          reduce_buckets_(std::move(reduce_buckets)),
          ds_ids_(std::move(ds_ids)),
          nccl_comm_(nccl_comm),
          rs_stream_(rs_stream),
          copy_stream_(copy_stream),
          pre_div_reduce_(pre_div_reduce)
    {
        for (long ds_id : ds_ids_) {
            has_acc_grad_[ds_id] = false;

            rs_comp_done_events_[ds_id] =
                std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
            rs_copy_done_events_[ds_id] =
                std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
        }
        reduce_counter_ = ds_ids_.size();
    }
    ~CustomOpExecutor() {}

    virtual void startForward() {}

    virtual void endForward() {}

    virtual void startBackward(bool update) { param_updated_ = update; }

    virtual void endBackward() {}

    at::Tensor reduceGrad(at::Tensor grad_tensor, long ds_id)
    {
        int world_size = process_group_->getSize();
        const DSParam& param = param_registry_->getParam(ds_id);
        const auto scalar_type = grad_tensor.scalar_type();
        std::shared_ptr<ReduceBucket> reduce_bucket = reduce_buckets_->getBuffer(scalar_type);

        auto comp_stream = at::cuda::getCurrentCUDAStream();

        if (reduce_bucket->shouldFlush(grad_tensor.numel())) {
            int rank = process_group_->getRank();

            flushReduceBucket(scalar_type);

            // reduce_bucket is swapped in flushReduceBucket if double buffering is enabled
            reduce_bucket = reduce_buckets_->getBuffer(scalar_type);
        }

        if (grad_tensor.numel() > reduce_bucket->getSize()) {
            // extend buckets
            at::cuda::stream_synchronize(rs_stream_);
            reduce_bucket->reserve(grad_tensor.numel());
        }

        at::Tensor reduce_in_buffer = reduce_bucket->allocate(grad_tensor.numel());

        // This ensures the order of reduce_scatter -> copy
        // Without this block, copy may start while reduce_scatter is still running
        reduce_buckets_->getEvent(scalar_type)->block(comp_stream);
        auto copy_src = grad_tensor.contiguous().view({-1}).detach();
        // keep references to copy src
        reduce_tasks_[scalar_type].emplace_back(ds_id, copy_src, reduce_in_buffer);

        // computation must be done before copy
        rs_comp_done_events_[ds_id]->record(comp_stream);
        rs_comp_done_events_[ds_id]->block(copy_stream_);
        {
            at::cuda::CUDAStreamGuard guard(copy_stream_);
            reduce_in_buffer.copy_(copy_src, true);
            rs_copy_done_events_[ds_id]->record(copy_stream_);
        }

        reduce_counter_--;

        if (reduce_counter_ == 0) {
            flushAllReduceBuckets();

            reduce_counter_ = ds_ids_.size();

            // This synchronization ensures all of reduce calls are done before optimizer's step.
            at::cuda::stream_synchronize(rs_stream_);

            endBackward();
        }

        return at::Tensor();
    }

    bool hasParam(long ds_id) const { return hasKey(has_acc_grad_, ds_id); }

protected:
    c10::intrusive_ptr<c10d::ProcessGroup> process_group_;
    std::shared_ptr<DSParamRegistry> param_registry_;
    std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets_;
    std::vector<long> ds_ids_;
    ncclComm_t nccl_comm_;
    at::cuda::CUDAStream rs_stream_;
    at::cuda::CUDAStream copy_stream_;

    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> rs_comp_done_events_;
    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> rs_copy_done_events_;

    size_t reduce_counter_ = 0;
    bool param_updated_ = false;
    std::unordered_map<at::ScalarType, std::vector<ReduceTask>> reduce_tasks_;
    std::unordered_map<long, bool> has_acc_grad_;
    bool pre_div_reduce_;

    virtual void flushReduceBucket(at::ScalarType scalar_type) = 0;

    void flushAllReduceBuckets()
    {
        for (const auto& it : reduce_tasks_) { flushReduceBucket(it.first); }
    }
};

template <typename T, typename U>
std::shared_ptr<T> getExecutor(long graph_id,
                               const std::unordered_map<long, std::shared_ptr<U>>& executors)
{
    assert(hasKey(executors, graph_id));
    if (auto executor = std::dynamic_pointer_cast<T>(executors.at(graph_id))) { return executor; }
    throw std::runtime_error("Invalid executor type");
}

extern std::shared_ptr<DSParamRegistry> param_registry;
extern std::unordered_map<long, std::shared_ptr<CustomOpExecutor>> executors;
extern std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets;

at::Tensor reduce_grad(at::Tensor grad_tensor, long graph_id, long ds_id);
at::Tensor reduce_grad_meta(at::Tensor grad_tensor, long graph_id, long ds_id);
void free_tensors(std::vector<at::Tensor> tensors);
void free_tensors_meta(std::vector<at::Tensor> tensors);

void init(c10::intrusive_ptr<c10d::ProcessGroup> pg,
          int64_t initial_reduce_bucket_size,
          bool enable_double_buffer,
          bool _use_symm_mem,
          bool _clone_custom_op_output,
          bool _sync_before_reduce,
          bool _sync_after_reduce,
          bool _sync_before_allgather,
          bool _sync_after_allgather);
void reset();
void cleanup();

void start_forward();
void end_forward();
void start_backward(bool update);

}  // namespace dc