File size: 19,792 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0
// DeepSpeed Team
#pragma once
#define NOMINMAX // Windows idiosyncrasy
// https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c
#define USE_C10D_NCCL
#include <stdio.h>
#include <torch/extension.h>
#include <ATen/cuda/CUDAEvent.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/SymmetricMemory.hpp>
namespace dc {
template <typename K, typename V>
static bool hasKey(const std::unordered_map<K, V>& map, const K& key)
{
return map.find(key) != map.end();
}
template <typename T>
inline std::string to_string(const T& v)
{
std::stringstream ss;
ss << v;
return ss.str();
}
template <typename L>
size_t productDim(const L& dim)
{
size_t prod = 1;
for (auto d : dim) { prod *= d; }
return prod;
}
template <typename T>
std::string join_as_str(const T& v, const char* delim = ",", const size_t maxlen = 0)
{
std::stringstream ss;
if (!v.empty()) {
auto it = v.begin();
ss << to_string(*it);
it++;
for (; it != v.end(); ++it) {
if (delim) ss << delim;
ss << to_string(*it);
}
}
std::string s = ss.str();
if (maxlen > 0 && s.length() > maxlen) { s = s.substr(0, maxlen) + " ..."; }
return "[" + s + "]";
}
template <typename T>
std::string tensorPtrToString(T* ptr, size_t size, size_t str_len = 100)
{
std::vector<T> vals;
for (size_t i = 0; i < size; i++) {
vals.push_back(*ptr);
ptr++;
}
return join_as_str(vals, ",", str_len);
}
std::string tensorPtrToString(void* ptr,
size_t size,
c10::ScalarType datatype,
size_t max_elem = 20,
size_t max_str_len = 100);
std::string tensorToString(const at::Tensor& t, size_t max_elem = 20, size_t max_str_len = 100);
std::string tensorDimToString(const at::Tensor& t);
at::Tensor test_call(at::Tensor param);
extern c10::intrusive_ptr<c10d::ProcessGroup> process_group;
extern c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> symm_mem;
extern ncclComm_t nccl_comm;
extern bool use_symm_mem;
extern bool clone_custom_op_output;
extern bool profile;
extern bool pre_div_reduce;
extern bool sync_before_reduce; // for debugging
extern bool sync_after_reduce; // for debugging
extern bool sync_before_allgather; // for debugging
extern bool sync_after_allgather; // for debugging
std::vector<int64_t> sizes_to_int_vector(at::IntArrayRef sizes);
void enable_profiling(bool enable);
bool is_profiling();
c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> getSymmMemWorkspace(int64_t size);
void lazy_init_symm_memory();
ncclDataType_t get_nccl_data_type(at::ScalarType scalar_type);
void cleanup();
class ReduceTask {
public:
ReduceTask(long ds_id, at::Tensor grad, at::Tensor send_buf)
: ds_id_(ds_id), grad_(std::move(grad)), send_buf_(std::move(send_buf))
{
}
long getDSId() const { return ds_id_; }
at::Tensor getSendBuf() const { return send_buf_; }
private:
long ds_id_;
at::Tensor grad_;
at::Tensor send_buf_;
};
class ReduceBucket {
public:
ReduceBucket(int64_t size, at::ScalarType scalar_type) : size_(size), scalar_type_(scalar_type)
{
buffer_ = torch::empty({size}, at::TensorOptions().dtype(scalar_type).device(at::kCUDA));
offset_ = 0;
}
int64_t getSize() const { return size_; }
int64_t getOffset() const { return offset_; }
at::Tensor getBuffer() const { return buffer_; }
at::ScalarType getScalarType() const { return scalar_type_; }
void reserve(int64_t size)
{
if (size > size_) {
buffer_ =
torch::empty({size}, at::TensorOptions().dtype(scalar_type_).device(at::kCUDA));
size_ = size;
}
}
at::Tensor allocate(int64_t numel)
{
if (offset_ + numel > size_) {
throw std::runtime_error("Buffer size exceeds the reduce bucket size");
}
at::Tensor result = buffer_.index({torch::indexing::Slice(offset_, offset_ + numel)});
offset_ += numel;
return result;
}
bool shouldFlush(int64_t numel) { return offset_ > 0 && offset_ + numel > size_; }
void reset() { offset_ = 0; }
private:
int64_t size_;
int64_t offset_;
at::Tensor buffer_;
at::ScalarType scalar_type_;
};
class DoubleBufferedReduceBucket {
public:
DoubleBufferedReduceBucket(int64_t initial_bucket_size, bool enable_double_buffer)
: initial_bucket_size_(initial_bucket_size), enable_double_buffer_(enable_double_buffer)
{
}
void swap(at::ScalarType scalar_type,
at::cuda::CUDAStream rs_stream,
at::cuda::CUDAStream copy_stream)
{
assert(hasKey(current_buffer_, scalar_type));
assert(hasKey(current_buffer_events_, scalar_type));
current_buffer_.at(scalar_type)->reset();
current_buffer_events_.at(scalar_type)->record(rs_stream);
if (enable_double_buffer_) {
assert(hasKey(shadow_buffer_, scalar_type));
assert(hasKey(shadow_buffer_events_, scalar_type));
auto tmp = current_buffer_.at(scalar_type);
current_buffer_[scalar_type] = shadow_buffer_.at(scalar_type);
shadow_buffer_[scalar_type] = tmp;
auto tmp_event = current_buffer_events_.at(scalar_type);
current_buffer_events_[scalar_type] = shadow_buffer_events_.at(scalar_type);
shadow_buffer_events_[scalar_type] = tmp_event;
}
}
std::shared_ptr<ReduceBucket> getBuffer(at::ScalarType scalar_type)
{
if (!hasKey(current_buffer_, scalar_type)) {
current_buffer_[scalar_type] =
std::make_shared<ReduceBucket>(initial_bucket_size_, scalar_type);
current_buffer_events_[scalar_type] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
if (enable_double_buffer_) {
shadow_buffer_[scalar_type] =
std::make_shared<ReduceBucket>(initial_bucket_size_, scalar_type);
shadow_buffer_events_[scalar_type] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
}
}
return current_buffer_.at(scalar_type);
}
std::shared_ptr<at::cuda::CUDAEvent> getEvent(at::ScalarType scalar_type)
{
assert(hasKey(current_buffer_events_, scalar_type));
return current_buffer_events_.at(scalar_type);
}
void clear()
{
current_buffer_.clear();
shadow_buffer_.clear();
current_buffer_events_.clear();
shadow_buffer_events_.clear();
}
private:
int64_t initial_bucket_size_;
bool enable_double_buffer_;
std::unordered_map<at::ScalarType, std::shared_ptr<ReduceBucket>> current_buffer_;
std::unordered_map<at::ScalarType, std::shared_ptr<ReduceBucket>> shadow_buffer_;
std::unordered_map<at::ScalarType, std::shared_ptr<at::cuda::CUDAEvent>> current_buffer_events_;
std::unordered_map<at::ScalarType, std::shared_ptr<at::cuda::CUDAEvent>> shadow_buffer_events_;
};
class DSParam {
public:
DSParam(long id,
std::vector<int64_t> ds_shape,
at::Tensor ds_tensor,
at::Tensor grad_buffer,
bool partitioned,
int64_t offset, // for Z1
bool persistent // for Z3
)
: id_(id),
shape_(std::move(ds_shape)),
ds_tensor_(ds_tensor),
grad_buffer_(grad_buffer),
partitioned_(partitioned),
offset_(offset),
persistent_(persistent),
offload_stream_(at::cuda::getStreamFromPool()),
reload_stream_(at::cuda::getStreamFromPool())
{
}
long getId() const { return id_; }
std::vector<int64_t> getShape() const { return shape_; }
at::Tensor getDSTensor() const
{
// If the reload event exists and is complete, return the reloaded tensor (if defined)
if (reload_done_event_) {
if (!reload_done_event_->query()) {
reload_done_event_->block(at::cuda::getCurrentCUDAStream());
}
if (ds_reload_tensor_.defined()) { return ds_reload_tensor_; }
}
// Otherwise, if an offload event exists, wait for it to complete
if (offload_done_event_) {
if (!offload_done_event_->query()) {
offload_done_event_->block(at::cuda::getCurrentCUDAStream());
}
}
return ds_tensor_;
}
at::Tensor getGradBuffer() const { return grad_buffer_; }
bool isPartitioned() const { return partitioned_; }
int64_t getOffset() const { return offset_; }
void setPersistent(bool persistent) { persistent_ = persistent; }
bool isPersistent() const { return persistent_; }
void offload()
{
// If a reloaded tensor exists, offload its data back to ds_tensor_
if (ds_reload_tensor_.defined()) {
auto comp_stream = at::cuda::getCurrentCUDAStream();
comp_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
// Record completion and wait on the offload stream
comp_done_event_->record(comp_stream);
comp_done_event_->block(offload_stream_);
offload_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
{
at::cuda::CUDAStreamGuard guard(offload_stream_);
ds_tensor_.copy_(ds_reload_tensor_, /*non_blocking=*/true);
ds_reload_tensor_.reset(); // Clear the reloaded tensor
offload_done_event_->record(offload_stream_);
}
// Reset the reload event to indicate that no valid reload is present.
if (reload_done_event_) { reload_done_event_.reset(); }
}
}
void reload()
{
// Reload only if the current ds_tensor_ is on CPU
if (ds_tensor_.device().is_cpu()) {
auto comp_stream = at::cuda::getCurrentCUDAStream();
comp_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
// Record and wait on the reload stream
comp_done_event_->record(comp_stream);
comp_done_event_->block(reload_stream_);
reload_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
{
at::cuda::CUDAStreamGuard guard(reload_stream_);
ds_reload_tensor_ =
at::empty_like(ds_tensor_, ds_tensor_.options().device(torch::kCUDA));
ds_reload_tensor_.copy_(ds_tensor_, /*non_blocking=*/true);
reload_done_event_->record(reload_stream_);
}
// Reset offload_done_event if it exists to clear any stale offload state.
if (offload_done_event_) { offload_done_event_.reset(); }
}
}
private:
long id_;
std::vector<int64_t> shape_;
at::Tensor ds_tensor_;
at::Tensor ds_reload_tensor_;
at::Tensor grad_buffer_;
bool partitioned_;
int64_t offset_; // for Z1
bool persistent_; // for Z3
mutable bool is_reloaded = false;
at::cuda::CUDAStream offload_stream_;
at::cuda::CUDAStream reload_stream_;
std::shared_ptr<at::cuda::CUDAEvent> comp_done_event_;
std::shared_ptr<at::cuda::CUDAEvent> offload_done_event_;
std::shared_ptr<at::cuda::CUDAEvent> reload_done_event_;
};
class DSParamRegistry {
public:
DSParamRegistry() {}
~DSParamRegistry() {}
void registerParam(long ds_id,
const std::vector<int64_t>& ds_shape,
at::Tensor ds_tensor,
at::Tensor grad_buffer,
bool partitioned,
int64_t offset, // for Z1
bool persistent // for Z3
)
{
grad_buffer.zero_();
params_.emplace(
ds_id,
DSParam(ds_id, ds_shape, ds_tensor, grad_buffer, partitioned, offset, persistent));
valid_[ds_id] = false;
}
void registerGatheredParam(long ds_id, at::Tensor ds_tensor)
{
gathered_params_.emplace(ds_id, ds_tensor);
}
void unregisterGatheredParam(long ds_id)
{
assert(hasKey(gathered_params_, ds_id));
gathered_params_.erase(ds_id);
valid_[ds_id] = false;
}
const std::unordered_map<long, DSParam>& getParams() const { return params_; }
const DSParam& getParam(long ds_id) const { return params_.at(ds_id); }
const size_t getNumParams() const { return params_.size(); }
const at::Tensor& getGatheredParam(long ds_id) const
{
assert(hasKey(gathered_params_, ds_id));
return gathered_params_.at(ds_id);
}
bool hasGatheredParam(long ds_id) const { return hasKey(gathered_params_, ds_id); }
void setPersistent(long ds_id, bool persistent) { params_.at(ds_id).setPersistent(persistent); }
void offload(long ds_id) { params_.at(ds_id).offload(); }
void reload(long ds_id) { params_.at(ds_id).reload(); }
void setValid(long ds_id, bool valid) { valid_[ds_id] = valid; }
bool isValid(long ds_id) const
{
assert(hasKey(valid_, ds_id));
return valid_.at(ds_id);
}
private:
std::unordered_map<long, DSParam> params_;
std::unordered_map<long, at::Tensor> gathered_params_;
std::unordered_map<long, bool> valid_;
};
class CustomOpExecutor {
public:
CustomOpExecutor(c10::intrusive_ptr<c10d::ProcessGroup> process_group,
std::shared_ptr<DSParamRegistry> param_registry,
std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets,
std::vector<long> ds_ids,
ncclComm_t nccl_comm,
at::cuda::CUDAStream rs_stream,
at::cuda::CUDAStream copy_stream,
bool pre_div_reduce)
: process_group_(process_group),
param_registry_(std::move(param_registry)),
reduce_buckets_(std::move(reduce_buckets)),
ds_ids_(std::move(ds_ids)),
nccl_comm_(nccl_comm),
rs_stream_(rs_stream),
copy_stream_(copy_stream),
pre_div_reduce_(pre_div_reduce)
{
for (long ds_id : ds_ids_) {
has_acc_grad_[ds_id] = false;
rs_comp_done_events_[ds_id] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
rs_copy_done_events_[ds_id] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
}
reduce_counter_ = ds_ids_.size();
}
~CustomOpExecutor() {}
virtual void startForward() {}
virtual void endForward() {}
virtual void startBackward(bool update) { param_updated_ = update; }
virtual void endBackward() {}
at::Tensor reduceGrad(at::Tensor grad_tensor, long ds_id)
{
int world_size = process_group_->getSize();
const DSParam& param = param_registry_->getParam(ds_id);
const auto scalar_type = grad_tensor.scalar_type();
std::shared_ptr<ReduceBucket> reduce_bucket = reduce_buckets_->getBuffer(scalar_type);
auto comp_stream = at::cuda::getCurrentCUDAStream();
if (reduce_bucket->shouldFlush(grad_tensor.numel())) {
int rank = process_group_->getRank();
flushReduceBucket(scalar_type);
// reduce_bucket is swapped in flushReduceBucket if double buffering is enabled
reduce_bucket = reduce_buckets_->getBuffer(scalar_type);
}
if (grad_tensor.numel() > reduce_bucket->getSize()) {
// extend buckets
at::cuda::stream_synchronize(rs_stream_);
reduce_bucket->reserve(grad_tensor.numel());
}
at::Tensor reduce_in_buffer = reduce_bucket->allocate(grad_tensor.numel());
// This ensures the order of reduce_scatter -> copy
// Without this block, copy may start while reduce_scatter is still running
reduce_buckets_->getEvent(scalar_type)->block(comp_stream);
auto copy_src = grad_tensor.contiguous().view({-1}).detach();
// keep references to copy src
reduce_tasks_[scalar_type].emplace_back(ds_id, copy_src, reduce_in_buffer);
// computation must be done before copy
rs_comp_done_events_[ds_id]->record(comp_stream);
rs_comp_done_events_[ds_id]->block(copy_stream_);
{
at::cuda::CUDAStreamGuard guard(copy_stream_);
reduce_in_buffer.copy_(copy_src, true);
rs_copy_done_events_[ds_id]->record(copy_stream_);
}
reduce_counter_--;
if (reduce_counter_ == 0) {
flushAllReduceBuckets();
reduce_counter_ = ds_ids_.size();
// This synchronization ensures all of reduce calls are done before optimizer's step.
at::cuda::stream_synchronize(rs_stream_);
endBackward();
}
return at::Tensor();
}
bool hasParam(long ds_id) const { return hasKey(has_acc_grad_, ds_id); }
protected:
c10::intrusive_ptr<c10d::ProcessGroup> process_group_;
std::shared_ptr<DSParamRegistry> param_registry_;
std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets_;
std::vector<long> ds_ids_;
ncclComm_t nccl_comm_;
at::cuda::CUDAStream rs_stream_;
at::cuda::CUDAStream copy_stream_;
std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> rs_comp_done_events_;
std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> rs_copy_done_events_;
size_t reduce_counter_ = 0;
bool param_updated_ = false;
std::unordered_map<at::ScalarType, std::vector<ReduceTask>> reduce_tasks_;
std::unordered_map<long, bool> has_acc_grad_;
bool pre_div_reduce_;
virtual void flushReduceBucket(at::ScalarType scalar_type) = 0;
void flushAllReduceBuckets()
{
for (const auto& it : reduce_tasks_) { flushReduceBucket(it.first); }
}
};
template <typename T, typename U>
std::shared_ptr<T> getExecutor(long graph_id,
const std::unordered_map<long, std::shared_ptr<U>>& executors)
{
assert(hasKey(executors, graph_id));
if (auto executor = std::dynamic_pointer_cast<T>(executors.at(graph_id))) { return executor; }
throw std::runtime_error("Invalid executor type");
}
extern std::shared_ptr<DSParamRegistry> param_registry;
extern std::unordered_map<long, std::shared_ptr<CustomOpExecutor>> executors;
extern std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets;
at::Tensor reduce_grad(at::Tensor grad_tensor, long graph_id, long ds_id);
at::Tensor reduce_grad_meta(at::Tensor grad_tensor, long graph_id, long ds_id);
void free_tensors(std::vector<at::Tensor> tensors);
void free_tensors_meta(std::vector<at::Tensor> tensors);
void init(c10::intrusive_ptr<c10d::ProcessGroup> pg,
int64_t initial_reduce_bucket_size,
bool enable_double_buffer,
bool _use_symm_mem,
bool _clone_custom_op_output,
bool _sync_before_reduce,
bool _sync_after_reduce,
bool _sync_before_allgather,
bool _sync_after_allgather);
void reset();
void cleanup();
void start_forward();
void end_forward();
void start_backward(bool update);
} // namespace dc
|