File size: 20,909 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team

#include "z3.h"
#include "deepcompile.h"

#define USE_C10D_NCCL

#include <ATen/cuda/CUDAEvent.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>

#include <torch/csrc/distributed/c10d/SymmetricMemory.hpp>

namespace dc {

const size_t TIMEOUT_SYMMETRIC_MEMORY_BARRIER = 60000;

class Z3CustomOpExecutor : public CustomOpExecutor {
public:
    Z3CustomOpExecutor(c10::intrusive_ptr<c10d::ProcessGroup> process_group,
                       std::shared_ptr<DSParamRegistry> param_registry,
                       std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets,
                       std::vector<long> ds_ids,
                       ncclComm_t nccl_comm,
                       at::cuda::CUDAStream ag_stream,
                       at::cuda::CUDAStream rs_stream,
                       at::cuda::CUDAStream copy_stream,
                       at::cuda::CUDAStream offload_stream,
                       at::cuda::CUDAStream reload_stream,
                       bool pre_div_reduce)
        : CustomOpExecutor(process_group,
                           param_registry,
                           reduce_buckets,
                           ds_ids,
                           nccl_comm,
                           rs_stream,
                           copy_stream,
                           pre_div_reduce),
          ag_stream_(ag_stream),
          offload_stream_(offload_stream),
          reload_stream_(reload_stream)
    {
        for (long ds_id : ds_ids_) {
            ag_comm_done_events_[ds_id] =
                std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
            ag_comp_done_events_[ds_id] =
                std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);

            param_use_count_[ds_id] = 0;
        }
    }
    ~Z3CustomOpExecutor() {}

    void endBackward() override
    {
        if (param_updated_) {
            for (auto& it : has_acc_grad_) {
                it.second = false;
                param_registry_->setValid(it.first, false);
            }
        }

        for (auto& it : reload_buffers_) {
            it.second.record_stream(at::cuda::getCurrentCUDAStream());
        }
        reload_buffers_.clear();
    }

    void launchAllGather(at::Tensor output_buf,
                         long ds_id,
                         c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> symm_mem)
    {
        const DSParam& param = param_registry_->getParam(ds_id);
        const at::Tensor& ds_tensor = param.getDSTensor();

        if (symm_mem == nullptr) {
            ncclResult_t result = ncclAllGather(ds_tensor.contiguous().data_ptr(),
                                                output_buf.data_ptr(),
                                                ds_tensor.numel(),
                                                get_nccl_data_type(ds_tensor.scalar_type()),
                                                nccl_comm_,
                                                ag_stream_);

            if (result != ncclSuccess) { throw std::runtime_error("NCCL AllGather failed"); }
        } else {
            at::cuda::CUDAStreamGuard guard(ag_stream_);
            int world_size = process_group_->getSize();
            int rank = process_group_->getRank();

            at::Tensor local_buf =
                symm_mem->get_buffer(rank, ds_tensor.sizes(), ds_tensor.scalar_type(), 0);
            local_buf.copy_(ds_tensor, true);

            symm_mem->barrier(0, TIMEOUT_SYMMETRIC_MEMORY_BARRIER);
            auto chunks = output_buf.flatten().chunk(world_size);
            for (int step = 0; step < world_size; step++) {
                int remote_rank = (rank - step + world_size) % world_size;
                auto src_buf = symm_mem->get_buffer(
                    remote_rank, ds_tensor.sizes(), ds_tensor.scalar_type(), 0);
                chunks[remote_rank].copy_(src_buf.flatten(), true);
            }
            symm_mem->barrier(0, TIMEOUT_SYMMETRIC_MEMORY_BARRIER);
        }

        param_registry_->registerGatheredParam(ds_id, output_buf);
        param_registry_->setValid(ds_id, true);
    }

    at::Tensor allgatherParam(long ds_id,
                              c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> symm_mem)
    {
        if (param_registry_->isValid(ds_id)) { return param_registry_->getGatheredParam(ds_id); }

        const DSParam& param = param_registry_->getParam(ds_id);
        const at::Tensor& ds_tensor = param.getDSTensor();
        at::Tensor output_buf = param_registry_->hasGatheredParam(ds_id)
                                    ? param_registry_->getGatheredParam(ds_id)
                                    : torch::empty(param.getShape(), ds_tensor.options());

        assert(hasKey(ag_comp_done_events_, ds_id));
        ag_comp_done_events_[ds_id]->record();
        ag_comp_done_events_[ds_id]->block(ag_stream_);

        launchAllGather(output_buf, ds_id, symm_mem);

        ag_comm_done_events_[ds_id]->record(ag_stream_);
        return output_buf;
    }

    void prefetchParamsFused(std::vector<int64_t> ds_ids,
                             c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> symm_mem)
    {
        std::vector<int64_t> invalid_ds_ids;
        for (const auto& ds_id : ds_ids) {
            if (!param_registry_->isValid(ds_id)) { invalid_ds_ids.push_back(ds_id); }
        }

        std::unordered_map<long, at::Tensor> output_bufs;
        for (long ds_id : invalid_ds_ids) {
            const DSParam& param = param_registry_->getParam(ds_id);
            if (param_registry_->hasGatheredParam(ds_id)) {
                output_bufs[ds_id] = param_registry_->getGatheredParam(ds_id);
            } else {
                output_bufs[ds_id] = torch::empty(param.getShape(), param.getDSTensor().options());
            }
        }

        for (long ds_id : invalid_ds_ids) {
            ag_comp_done_events_[ds_id]->record();
            ag_comp_done_events_[ds_id]->block(ag_stream_);
        }

        ncclGroupStart();
        for (long ds_id : invalid_ds_ids) {
            assert(hasKey(output_bufs, ds_id));
            launchAllGather(output_bufs.at(ds_id), ds_id, symm_mem);
        }
        ncclGroupEnd();

        for (long ds_id : invalid_ds_ids) { ag_comm_done_events_[ds_id]->record(ag_stream_); }
    }

    void releaseParam(long ds_id, long n_users)
    {
        const DSParam& param = param_registry_->getParam(ds_id);

        assert(hasKey(param_use_count_, ds_id));
        if (param_use_count_[ds_id] == 0) { param_use_count_[ds_id] = n_users; }
        param_use_count_[ds_id]--;

        if (param_use_count_[ds_id] == 0 && !param.isPersistent()) {
            at::Tensor gathered_param = param_registry_->getGatheredParam(ds_id);

            if (gathered_param.defined()) {  // gathered param is undefined while profiling
                const auto options = gathered_param.options();
                at::Tensor empty_buffer = torch::empty({0}, options);
                gathered_param.set_data(empty_buffer);
            }

            param_registry_->unregisterGatheredParam(ds_id);
        }
    }

    at::Tensor waitAllgather(at::Tensor v, long ds_id)
    {
        assert(hasKey(ag_comm_done_events_, ds_id));
        ag_comm_done_events_[ds_id]->block(at::cuda::getCurrentCUDAStream());
        return v;
    }

    void flushReduceBucket(at::ScalarType scalar_type) override
    {
        if (!hasKey(reduce_tasks_, scalar_type)) { return; }

        int64_t tmp_recv_numel = 0;
        for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
            auto copy_done_event = rs_copy_done_events_.at(t.getDSId());
            copy_done_event->block(rs_stream_);

            if (has_acc_grad_.at(t.getDSId())) {
                tmp_recv_numel += param_registry_->getParam(t.getDSId()).getGradBuffer().numel();
            }
        }

        at::Tensor tmp_recv_buf = at::Tensor();
        if (tmp_recv_numel > 0) {
            at::cuda::CUDAStreamGuard guard(rs_stream_);
            tmp_recv_buf = torch::empty({tmp_recv_numel},
                                        at::TensorOptions().dtype(scalar_type).device(at::kCUDA));
        }

        ncclGroupStart();
        int64_t offset = 0;
        for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
            auto recv_buf = param_registry_->getParam(t.getDSId()).getGradBuffer();

            bool acc_grad = has_acc_grad_.at(t.getDSId());

            if (acc_grad) {
                recv_buf =
                    tmp_recv_buf.index({torch::indexing::Slice(offset, offset + recv_buf.numel())});
            }

            ncclRedOp_t op = pre_div_reduce_ ? ncclSum : ncclAvg;
            if (pre_div_reduce_) {
                at::cuda::CUDAStreamGuard guard(rs_stream_);
                t.getSendBuf().div_(process_group_->getSize());
            }
            ncclResult_t result = ncclReduceScatter(t.getSendBuf().data_ptr(),
                                                    recv_buf.data_ptr(),
                                                    recv_buf.numel(),
                                                    get_nccl_data_type(scalar_type),
                                                    op,
                                                    nccl_comm_,
                                                    rs_stream_);
            if (result != ncclSuccess) { throw std::runtime_error("NCCL ReduceScatter failed"); }

            if (acc_grad) { offset += recv_buf.numel(); }
        }
        ncclGroupEnd();

        {
            at::cuda::CUDAStreamGuard guard(rs_stream_);
            int64_t offset = 0;
            for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
                bool acc_grad = has_acc_grad_.at(t.getDSId());

                if (acc_grad) {
                    auto recv_buf = param_registry_->getParam(t.getDSId()).getGradBuffer();
                    recv_buf.add_(tmp_recv_buf.index(
                        {torch::indexing::Slice(offset, offset + recv_buf.numel())}));
                    offset += recv_buf.numel();
                }
                has_acc_grad_[t.getDSId()] = true;
            }
        }

        reduce_buckets_->swap(scalar_type, rs_stream_, copy_stream_);

        // Not very sure if this is necessary
        // Want to prevent grad tensor from being released before the copy is done
        auto comp_stream = at::cuda::getCurrentCUDAStream();
        for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
            auto copy_done_event = rs_copy_done_events_.at(t.getDSId());
            copy_done_event->block(comp_stream);
        }
        reduce_tasks_[scalar_type].clear();

        if (tmp_recv_numel > 0) { tmp_recv_buf.record_stream(rs_stream_); }
    }

    at::Tensor offloadTensor(at::Tensor tensor, long id)
    {
        if (!hasKey(offload_events_, id)) {
            offload_events_[id] = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
            offload_comp_done_events_[id] =
                std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);

            const auto options = at::TensorOptions().pinned_memory(true).device(torch::kCPU);
            offload_buffers_[id] = at::empty_like(tensor, options);
        }

        offload_comp_done_events_[id]->record();
        offload_comp_done_events_[id]->block(offload_stream_);
        {
            at::cuda::CUDAStreamGuard guard(offload_stream_);
            offload_buffers_.at(id).copy_(tensor, true);
        }

        tensor.record_stream(offload_stream_);

        offload_events_[id]->record(offload_stream_);
        assert(hasKey(offload_buffers_, id));
        return offload_buffers_.at(id);
    }

    at::Tensor reloadTensor(at::Tensor tensor, long id)
    {
        if (!hasKey(reload_events_, id)) {
            reload_events_[id] = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
        }

        assert(hasKey(offload_buffers_, id));
        offload_events_[id]->block(reload_stream_);

        at::Tensor ten;
        {
            at::cuda::CUDAStreamGuard guard(reload_stream_);

            assert(hasKey(offload_buffers_, id));
            at::Tensor buf = offload_buffers_.at(id);
            const auto options = at::TensorOptions().device(torch::kCUDA);
            ten = at::empty_like(buf, options);
            ten.copy_(buf, true);

            reload_buffers_[id] = ten;
        }

        reload_events_[id]->record(reload_stream_);
        return ten;
    }

    at::Tensor waitOffload(at::Tensor tensor, long id)
    {
        assert(hasKey(offload_events_, id));
        offload_events_[id]->block(at::cuda::getCurrentCUDAStream());

        assert(hasKey(offload_buffers_, id));
        return offload_buffers_.at(id);
    }

    at::Tensor waitReload(at::Tensor tensor, long id)
    {
        assert(hasKey(reload_events_, id));
        reload_events_[id]->block(at::cuda::getCurrentCUDAStream());

        assert(hasKey(reload_buffers_, id));
        auto ten = reload_buffers_.at(id);

        // We can't release here because the tensor is still being used
        // We will need "freeReloadedTensor" after the last user of the tensor to call
        // ".record_stream". As it is a bit complicated, we clear the buffer and do at the end of
        // the backward pass for now. reload_buffers_.erase(id);
        return ten;
    }

    void offloadParameter(at::Tensor tensor, long ds_id) { param_registry_->offload(ds_id); }
    void reloadParameter(at::Tensor tensor, long ds_id) { param_registry_->reload(ds_id); }

    bool hasReloadBuffer(long id) { return hasKey(reload_buffers_, id); }

    bool hasParam(long ds_id) const { return hasKey(has_acc_grad_, ds_id); }

private:
    at::cuda::CUDAStream ag_stream_;
    at::cuda::CUDAStream offload_stream_;
    at::cuda::CUDAStream reload_stream_;

    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> ag_comp_done_events_;
    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> ag_comm_done_events_;

    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> offload_events_;
    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> offload_comp_done_events_;
    std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> reload_events_;
    std::unordered_map<long, at::Tensor> offload_buffers_;
    std::unordered_map<long, at::Tensor> reload_buffers_;

    std::unordered_map<long, long> param_use_count_;
};

static at::cuda::CUDAStream ag_stream = at::cuda::getStreamFromPool(true);
static at::cuda::CUDAStream rs_stream = at::cuda::getStreamFromPool(true);
static at::cuda::CUDAStream copy_stream = at::cuda::getStreamFromPool(true);
static at::cuda::CUDAStream offload_stream = at::cuda::getStreamFromPool(true);
static at::cuda::CUDAStream reload_stream = at::cuda::getStreamFromPool(true);

void register_graph_z3(long graph_id, const std::vector<long>& ds_ids)
{
    executors[graph_id] = std::make_shared<Z3CustomOpExecutor>(process_group,
                                                               param_registry,
                                                               reduce_buckets,
                                                               ds_ids,
                                                               nccl_comm,
                                                               ag_stream,
                                                               rs_stream,
                                                               copy_stream,
                                                               offload_stream,
                                                               reload_stream,
                                                               pre_div_reduce);
}

void register_z3_param(long ds_id,
                       const std::vector<int64_t>& ds_shape,
                       at::Tensor ds_tensor,
                       at::Tensor grad_buffer,
                       bool persistent)
{
    param_registry->registerParam(ds_id, ds_shape, ds_tensor, grad_buffer, true, 0, persistent);
    if (persistent) { param_registry->registerGatheredParam(ds_id, ds_tensor); }
}

at::Tensor allgather_param(at::Tensor param_tensor, long graph_id, long ds_id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);

    if (sync_before_allgather) { c10::cuda::device_synchronize(); }
    auto ret = executor->allgatherParam(ds_id, symm_mem);
    if (sync_after_allgather) { c10::cuda::device_synchronize(); }
    return ret;
}

void set_persistent(long ds_id)
{
    param_registry->setPersistent(ds_id, true);

    // Allocate buffer here
    // Memory fragmentation will be more severe if we allocate in forward/backward
    for (auto& it : executors) {
        if (it.second->hasParam(ds_id)) {
            auto executor = getExecutor<Z3CustomOpExecutor>(it.first, executors);
            executor->allgatherParam(ds_id, symm_mem);
        }
    }
}

void prefetch_params_fused(long graph_id,
                           const std::vector<at::Tensor> params,
                           const std::vector<long>& ds_ids)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    executor->prefetchParamsFused(ds_ids, symm_mem);
}

void prefetch_params_fused_meta(long graph_id,
                                const std::vector<at::Tensor> params,
                                const std::vector<long>& ds_ids)
{
}

// for profiling
void invalidate_gathered_param(long ds_id)
{
    const DSParam& param = param_registry->getParam(ds_id);
    if (param.isPersistent()) { return; }

    param_registry->unregisterGatheredParam(ds_id);
    param_registry->registerGatheredParam(ds_id, at::Tensor());
}

void clear_all_gathered_params()
{
    for (const auto& it : param_registry->getParams()) {
        long ds_id = it.first;
        const DSParam& param = param_registry->getParam(ds_id);
        if (param.isPersistent()) { continue; }
        if (param_registry->hasGatheredParam(ds_id)) {
            param_registry->unregisterGatheredParam(ds_id);
        }
    }
}

at::Tensor allgather_param_meta(at::Tensor param_tensor, long graph_id, long ds_id)
{
    const DSParam& param = param_registry->getParam(ds_id);
    auto options = param.getDSTensor().options().device(c10::kMeta);
    at::Tensor output_buf = torch::empty(param.getShape(), options);
    return output_buf;
}

at::Tensor release_param(at::Tensor dummy, long graph_id, long ds_id, long n_users)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    executor->releaseParam(ds_id, n_users);

    if (clone_custom_op_output) { return dummy.clone(); }
    return dummy;
}

at::Tensor release_param_meta(at::Tensor dummy, long graph_id, long ds_id, long n_users)
{
    return dummy;
}

at::Tensor wait_allgather(at::Tensor v, long graph_id, long ds_id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    executor->waitAllgather(v, ds_id);
    return v;
}

at::Tensor wait_allgather_meta(at::Tensor v, long graph_id, long ds_id) { return v; }

at::Tensor offload_tensor(at::Tensor tensor, long graph_id, long id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    return executor->offloadTensor(tensor, id);
}

at::Tensor reload_tensor(at::Tensor tensor, long graph_id, long id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    return executor->reloadTensor(tensor, id);
}

at::Tensor wait_offload(at::Tensor tensor, long graph_id, long id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    return executor->waitOffload(tensor, id);
}

at::Tensor wait_reload(at::Tensor tensor, long graph_id, long id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    if (profile && !executor->hasReloadBuffer(id)) { return tensor; }
    return executor->waitReload(tensor, id);
}

at::Tensor test_call(at::Tensor a)
{
    std::cout << "test_call" << std::endl;
    return a;
}

void reload_parameter(at::Tensor tensor, long graph_id, long ds_id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    executor->reloadParameter(tensor, ds_id);
}

void offload_parameter(at::Tensor tensor, long graph_id, long ds_id)
{
    auto executor = getExecutor<Z3CustomOpExecutor>(graph_id, executors);
    executor->offloadParameter(tensor, ds_id);
}
void reload_parameter_meta(at::Tensor param_tensor, long graph_id, long ds_id) {}
void offload_parameter_meta(at::Tensor tensor, long graph_id, long ds_id) {}

}  // namespace dc