File size: 15,084 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import functools
import operator
from typing import List, Tuple, Dict
from collections import defaultdict

import torch
from torch.fx import Node, Graph
from torch.fx.node import map_aggregate, Argument, map_arg

try:
    from torch._subclasses.fake_tensor import unset_fake_temporarily
except ImportError:
    # Unsupported torch version
    pass

import deepspeed.comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.utils.torch import required_torch_version
from deepspeed.ops.op_builder.dc import DeepCompileBuilder


def is_deepcompile_supported() -> bool:
    return required_torch_version(min_version=2.6, max_version=2.7) and get_accelerator().device_name() == "cuda"


dc_handle = None

if is_deepcompile_supported():
    sym_size_ops = {
        operator.ge,
        operator.le,
        operator.eq,
        operator.ne,
        operator.gt,
        operator.lt,
        torch.ops.aten.sym_size.int,
        operator.getitem,
    }


def get_deepcompile_handle():
    global dc_handle
    if dc_handle is None:
        dc_handle = DeepCompileBuilder().load()
    return dc_handle


def is_backend_inductor(backend):
    return backend == "inductor"


backward_started = False
pre_backward_hooks = []


def add_pre_backward_hook(hook):
    pre_backward_hooks.append(hook)


def deepcompile_backward_prologue(is_gradient_accumulation_boundary):

    for hook in pre_backward_hooks:
        hook()

    dc = get_deepcompile_handle()
    dc.start_backward(is_gradient_accumulation_boundary)


def log_rank0(msg: str, enable: bool = False):
    if dist.get_rank() == 0 and enable:
        print(msg)


def get_no_copy_ops():
    # Need to compile custom ops
    get_deepcompile_handle()
    return {
        torch.ops.aten.t.default, torch.ops.aten.view.default, torch.ops.aten.detach.default,
        torch.ops.aten.permute.default, torch.ops.dc.wait_allgather.default
    }


def get_input_nodes(graph: Graph) -> List[Node]:
    return [n for n in graph.nodes if n.op == "placeholder"]


def get_param_nodes(graph: Graph, index_to_ds_ids: List[Tuple[int, int]]) -> List[Node]:
    all_input_nodes = get_input_nodes(graph)
    return [all_input_nodes[i] for i, _, _ in index_to_ds_ids]


def is_comm_op(node: Node) -> bool:
    return "comm" in node.meta and node.meta["comm"]


def exclude_from_act_offload(node: Node) -> bool:
    return node.target in sym_size_ops


def dtype_to_elem_size(dtype: torch.dtype) -> int:
    if dtype == torch.float32:
        elem_size = 4
    elif dtype == torch.float64:
        elem_size = 8
    elif dtype == torch.float16:
        elem_size = 2
    else:
        raise ValueError(f"Unsupported dtype: {dtype}")
    return elem_size


def tensor_meta_size(tensor_meta) -> int:
    numel = 1 if len(tensor_meta.shape) == 0 else functools.reduce(operator.mul, tensor_meta.shape)

    dtype = tensor_meta.dtype
    if dtype == torch.float32:
        elem_size = 4
    elif dtype == torch.float64 or dtype == torch.int64:
        elem_size = 8
    elif dtype == torch.float16 or dtype == torch.bfloat16:
        elem_size = 2
    elif dtype == torch.bool:
        elem_size = 1
    else:
        raise ValueError(f"Unsupported dtype: {dtype}")

    return numel * elem_size


class NodeValueOffloadHelper:

    def __init__(self, device):
        self.device = device
        self.env_values: Dict[str, Argument] = {}
        self.original_device: Dict[torch.Tensor, torch.device] = {}

    def _to_cpu(self, v):
        if torch.is_tensor(v):
            with unset_fake_temporarily():
                device = v.device
                offloaded = v.to('cpu').detach()
                self.original_device[offloaded] = device
                return offloaded
        return v

    def _from_cpu(self, v):
        if torch.is_tensor(v) and v in self.original_device:
            return v.to(self.original_device[v])
        return v

    def save(self, name: str, v: Argument, offload) -> None:
        self.env_values[name] = map_aggregate(v, lambda x: self._to_cpu(x) if offload else x)

    def load(self, name: str) -> Argument:
        return map_aggregate(self.env_values[name], lambda x: self._from_cpu(x))

    def get_offloaded_value(self, name: str) -> Argument:
        return self.env_values[name]

    def has_value(self, name: str) -> bool:
        return name in self.env_values

    def clear(self) -> None:
        self.env_values.clear()
        self.original_device.clear()


def materialize_fake(v, device=None):
    from torch._subclasses.fake_tensor import is_fake

    def convert(t):
        if is_fake(t):
            with unset_fake_temporarily():
                if t.is_floating_point():
                    return torch.randn(t.shape,
                                       dtype=t.dtype,
                                       device=t.device if device is None else device,
                                       layout=t.layout,
                                       requires_grad=t.requires_grad,
                                       pin_memory=t.is_pinned())
                else:
                    return torch.zeros(t.shape,
                                       dtype=t.dtype,
                                       device=t.device if device is None else device,
                                       requires_grad=t.requires_grad)

        return t

    return map_aggregate(v, lambda x: convert(x))


def get_last_uses(graph: Graph):
    position = {node: i for i, node in enumerate(graph.nodes)}

    node_to_last_use: Dict[Node, Node] = {}
    user_to_last_uses: Dict[Node, List[Node]] = {}
    no_copy_ops = get_no_copy_ops()

    def register_last_uses(n: Node, user: Node):
        update = False
        known_last_use = None

        if user.target in no_copy_ops and n in node_to_last_use:
            last_user = node_to_last_use[user]
            last_use_position = position[last_user]

            known_last_use = node_to_last_use[n]
            known_last_use_position = position[known_last_use]
            update = last_use_position > known_last_use_position

        if n not in node_to_last_use or update:
            if user.target in no_copy_ops:
                user = node_to_last_use[user]

            node_to_last_use[n] = user
            user_to_last_uses.setdefault(user, []).append(n)

            if known_last_use:
                user_to_last_uses[known_last_use].remove(n)

    for node in reversed(graph.nodes):
        map_arg(node.args, lambda n: register_last_uses(n, node))
        map_arg(node.kwargs, lambda n: register_last_uses(n, node))

    return node_to_last_use, user_to_last_uses


def get_real_uses(graph: Graph):
    node_to_uses: Dict[Node, List[Node]] = defaultdict(list)
    no_copy_ops = get_no_copy_ops()

    def register_last_uses(n: Node, user: Node):
        if user.target == "output":
            return

        if user.target in no_copy_ops:
            users = node_to_uses[user]
            node_to_uses[n].extend(users)
        else:
            node_to_uses[n].append(user)

    for node in reversed(graph.nodes):
        map_arg(node.args, lambda n: register_last_uses(n, node))
        map_arg(node.kwargs, lambda n: register_last_uses(n, node))

    return node_to_uses


def count_inflight_values(graph: Graph, file_path: str):
    position = {node: i for i, node in enumerate(graph.nodes)}

    node_to_last_use, user_to_last_uses = get_last_uses(graph)

    max_inflight_size = 0
    inflight_values = set()

    # Output csv.
    csv_filename = file_path
    csv_data = []
    header = [
        'Node', 'tensor_size', 'inflight_size', 'inflight_size_in_output', 'args', 'users', 'node_to_last_use',
        'lifetime', 'user_to_last_uses', 'inflight_values'
    ]
    csv_data.append(header)

    from .fx import get_output_node
    output_node = get_output_node(graph)
    values_in_output = set([n for n in output_node.args[0] if isinstance(n, Node)])

    for node in graph.nodes:
        inflight_values.add(node)
        if node in user_to_last_uses:
            for to_delete in user_to_last_uses[node]:
                inflight_values.remove(to_delete)

        assert "tensor_size" in node.meta, f"Node {node} does not have tensor_size"
        inflight_size = sum(n.meta["tensor_size"] for n in inflight_values)
        inflight_size_in_output = sum(n.meta["tensor_size"] for n in inflight_values if n in values_in_output)

        lifetime = position[node_to_last_use[node]] - position[node] if node in node_to_last_use else 0

        row = [
            node.name, node.meta["tensor_size"], inflight_size, inflight_size_in_output,
            [a.name for a in node.args if isinstance(a, Node)],
            list(node.users.keys()), node_to_last_use[node] if node in node_to_last_use else 'NA', lifetime,
            user_to_last_uses[node] if node in user_to_last_uses else 'NA',
            list(inflight_values)
        ]
        csv_data.append(row)

        # print(
        #     f"Node: {node.name} users: {list(node.users.keys())} node_to_last_use: {node_to_last_use[node] if node in node_to_last_use else 'NA'} user_to_last_uses: {user_to_last_uses[node] if node in user_to_last_uses else 'NA'} inflight_values: {inflight_values} inflight_size: {inflight_size}"
        # )
        max_inflight_size = max(max_inflight_size, inflight_size)

    import csv
    with open(csv_filename, mode='w', newline='') as file:
        writer = csv.writer(file)
        writer.writerows(csv_data)

    print(f"Max inflight size: {max_inflight_size}")
    print(f"Data successfully written to {csv_filename}")


def get_activation_node_names(graph: Graph, param_nodes_bw: List[Node], fwd_output_names: List[str]):

    input_nodes = get_input_nodes(graph)
    param_node_names = set([n.name for n in param_nodes_bw])

    activation_node_names = []
    for in_node in input_nodes:
        if in_node.name in fwd_output_names:
            if in_node.name not in param_node_names:
                activation_node_names.append(in_node.name)

    return activation_node_names


class TensorOffloadHelper():

    def __init__(self):
        self.devices = {}
        self.base_tensors = {}
        self.views = {}
        self.arg_list = []
        self.offloaded = {}
        self.non_tensor = {}

    def offload(self, argument):

        def is_base_tensor(tensor):
            return torch.is_tensor(a) and not a._is_view() and not hasattr(tensor, "ds_id")

        base_tensor_ids = set()
        for a in argument:
            if is_base_tensor(a):
                base_tensor_ids.add(id(a))

        for a in argument:
            a_id = id(a)

            if is_base_tensor(a):
                # Base tensor
                self.devices[a_id] = a.device
                self.base_tensors[a_id] = a
            # elif torch.is_tensor(a) and not hasattr(a, "ds_id") and id(a._base) in base_tensor_ids:
            #     # View
            #     self.views[a_id] = {
            #         "base_id": id(a._base),
            #         "size": a.size(),
            #         "stride": a.stride(),
            #         "offset": a.storage_offset(),
            #     }
            else:
                # other types or ds tensor
                self.non_tensor[a_id] = a

            self.arg_list.append(a_id)

        for a in argument:
            if is_base_tensor(a):
                a.data = a.data.to("cpu")

    def reload(self, in_place):

        loaded_base_tensors = {}
        for a_id in self.arg_list:
            if a_id in self.base_tensors:
                device = self.devices[a_id]

                if in_place:
                    self.base_tensors[a_id].data = self.base_tensors[a_id].to(device)
                    loaded_base_tensors[a_id] = self.base_tensors[a_id]
                else:
                    loaded_base_tensors[a_id] = self.base_tensors[a_id].to(device)

        results = []
        for a_id in self.arg_list:
            if a_id in self.base_tensors:
                results.append(loaded_base_tensors[a_id])

            # elif a_id in self.views:
            #     view_info = self.views[a_id]
            #     # print(f"load_args loading view {a_id} base_id={view_info['base_id']} size={view_info['size']} stride={view_info['stride']} offset={view_info['offset']}")
            #     base_tensor = loaded_base_tensors[view_info["base_id"]]
            #     view_tensor = base_tensor.as_strided(
            #         view_info["size"], view_info["stride"], view_info["offset"]
            #     )
            #     results.append(view_tensor)

            elif a_id in self.non_tensor:
                results.append(self.non_tensor[a_id])

        return results


def add_mem_profile_nodes(graph: Graph, prefix: str):

    def show_memory(label: str):
        if dist.get_rank() == 0:
            print(
                f"{prefix} {label} alloc_mem={get_accelerator().memory_allocated()} max_mem={get_accelerator().max_memory_allocated()}"
            )

    nodes = list(graph.nodes)
    for node in nodes:
        if node.op == "output":
            continue

        with graph.inserting_after(node):
            msg = f"Mem {node.name}"
            name = f"show_memory_{node.name}"
            graph.create_node('call_function', show_memory, (msg, ), {}, name=name)


def is_release_node(n: Node) -> bool:
    return n.target == torch.ops.dc.release_param.default


def get_index_by_graph_id(graph_order, target_graph_id):
    for index, (graph_id, _) in enumerate(graph_order):
        if graph_id == target_graph_id:
            return index
    return -1


def pad_tensors(specs: List[Tuple[torch.Tensor, int, int]]) -> List[torch.Tensor]:
    """
    specs = [
        (input_ids,     1, pad_token_id),   # Example: Pad the right side with <pad>
        (attention_mask, 1, 0),             # Example: Pad the right side with 0
        ...
    ]

    - Share the "maximum length of the dim dimension" across ranks for all specs
    - Pad the right side for the missing parts and return
    - Communication (`all_reduce`) happens only once
    """
    assert len(specs) > 0, "specs is empty"

    device = specs[0][0].device
    # Vectorize local lengths
    local_sizes = torch.tensor(
        [tensor.size(dim) for tensor, dim, _ in specs],
        dtype=torch.long,
        device=device,
    )

    # Element-wise MAX across ranks
    dist.all_reduce(local_sizes, op=dist.ReduceOp.MAX)
    max_sizes = local_sizes.tolist()

    # Pad each tensor as needed
    padded: List[torch.Tensor] = []
    for (tensor, dim, pad_val), max_len in zip(specs, max_sizes):
        cur_len = tensor.size(dim)
        if cur_len < max_len:
            pad_len = max_len - cur_len
            pad_shape = [0] * (tensor.dim() * 2)  # F.pad specification
            pad_shape[-(2 * dim + 1)] = pad_len  # Pad the right side
            tensor = torch.nn.functional.pad(tensor, pad_shape, value=pad_val)
        padded.append(tensor)

    return padded