File size: 15,084 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import functools
import operator
from typing import List, Tuple, Dict
from collections import defaultdict
import torch
from torch.fx import Node, Graph
from torch.fx.node import map_aggregate, Argument, map_arg
try:
from torch._subclasses.fake_tensor import unset_fake_temporarily
except ImportError:
# Unsupported torch version
pass
import deepspeed.comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.utils.torch import required_torch_version
from deepspeed.ops.op_builder.dc import DeepCompileBuilder
def is_deepcompile_supported() -> bool:
return required_torch_version(min_version=2.6, max_version=2.7) and get_accelerator().device_name() == "cuda"
dc_handle = None
if is_deepcompile_supported():
sym_size_ops = {
operator.ge,
operator.le,
operator.eq,
operator.ne,
operator.gt,
operator.lt,
torch.ops.aten.sym_size.int,
operator.getitem,
}
def get_deepcompile_handle():
global dc_handle
if dc_handle is None:
dc_handle = DeepCompileBuilder().load()
return dc_handle
def is_backend_inductor(backend):
return backend == "inductor"
backward_started = False
pre_backward_hooks = []
def add_pre_backward_hook(hook):
pre_backward_hooks.append(hook)
def deepcompile_backward_prologue(is_gradient_accumulation_boundary):
for hook in pre_backward_hooks:
hook()
dc = get_deepcompile_handle()
dc.start_backward(is_gradient_accumulation_boundary)
def log_rank0(msg: str, enable: bool = False):
if dist.get_rank() == 0 and enable:
print(msg)
def get_no_copy_ops():
# Need to compile custom ops
get_deepcompile_handle()
return {
torch.ops.aten.t.default, torch.ops.aten.view.default, torch.ops.aten.detach.default,
torch.ops.aten.permute.default, torch.ops.dc.wait_allgather.default
}
def get_input_nodes(graph: Graph) -> List[Node]:
return [n for n in graph.nodes if n.op == "placeholder"]
def get_param_nodes(graph: Graph, index_to_ds_ids: List[Tuple[int, int]]) -> List[Node]:
all_input_nodes = get_input_nodes(graph)
return [all_input_nodes[i] for i, _, _ in index_to_ds_ids]
def is_comm_op(node: Node) -> bool:
return "comm" in node.meta and node.meta["comm"]
def exclude_from_act_offload(node: Node) -> bool:
return node.target in sym_size_ops
def dtype_to_elem_size(dtype: torch.dtype) -> int:
if dtype == torch.float32:
elem_size = 4
elif dtype == torch.float64:
elem_size = 8
elif dtype == torch.float16:
elem_size = 2
else:
raise ValueError(f"Unsupported dtype: {dtype}")
return elem_size
def tensor_meta_size(tensor_meta) -> int:
numel = 1 if len(tensor_meta.shape) == 0 else functools.reduce(operator.mul, tensor_meta.shape)
dtype = tensor_meta.dtype
if dtype == torch.float32:
elem_size = 4
elif dtype == torch.float64 or dtype == torch.int64:
elem_size = 8
elif dtype == torch.float16 or dtype == torch.bfloat16:
elem_size = 2
elif dtype == torch.bool:
elem_size = 1
else:
raise ValueError(f"Unsupported dtype: {dtype}")
return numel * elem_size
class NodeValueOffloadHelper:
def __init__(self, device):
self.device = device
self.env_values: Dict[str, Argument] = {}
self.original_device: Dict[torch.Tensor, torch.device] = {}
def _to_cpu(self, v):
if torch.is_tensor(v):
with unset_fake_temporarily():
device = v.device
offloaded = v.to('cpu').detach()
self.original_device[offloaded] = device
return offloaded
return v
def _from_cpu(self, v):
if torch.is_tensor(v) and v in self.original_device:
return v.to(self.original_device[v])
return v
def save(self, name: str, v: Argument, offload) -> None:
self.env_values[name] = map_aggregate(v, lambda x: self._to_cpu(x) if offload else x)
def load(self, name: str) -> Argument:
return map_aggregate(self.env_values[name], lambda x: self._from_cpu(x))
def get_offloaded_value(self, name: str) -> Argument:
return self.env_values[name]
def has_value(self, name: str) -> bool:
return name in self.env_values
def clear(self) -> None:
self.env_values.clear()
self.original_device.clear()
def materialize_fake(v, device=None):
from torch._subclasses.fake_tensor import is_fake
def convert(t):
if is_fake(t):
with unset_fake_temporarily():
if t.is_floating_point():
return torch.randn(t.shape,
dtype=t.dtype,
device=t.device if device is None else device,
layout=t.layout,
requires_grad=t.requires_grad,
pin_memory=t.is_pinned())
else:
return torch.zeros(t.shape,
dtype=t.dtype,
device=t.device if device is None else device,
requires_grad=t.requires_grad)
return t
return map_aggregate(v, lambda x: convert(x))
def get_last_uses(graph: Graph):
position = {node: i for i, node in enumerate(graph.nodes)}
node_to_last_use: Dict[Node, Node] = {}
user_to_last_uses: Dict[Node, List[Node]] = {}
no_copy_ops = get_no_copy_ops()
def register_last_uses(n: Node, user: Node):
update = False
known_last_use = None
if user.target in no_copy_ops and n in node_to_last_use:
last_user = node_to_last_use[user]
last_use_position = position[last_user]
known_last_use = node_to_last_use[n]
known_last_use_position = position[known_last_use]
update = last_use_position > known_last_use_position
if n not in node_to_last_use or update:
if user.target in no_copy_ops:
user = node_to_last_use[user]
node_to_last_use[n] = user
user_to_last_uses.setdefault(user, []).append(n)
if known_last_use:
user_to_last_uses[known_last_use].remove(n)
for node in reversed(graph.nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
return node_to_last_use, user_to_last_uses
def get_real_uses(graph: Graph):
node_to_uses: Dict[Node, List[Node]] = defaultdict(list)
no_copy_ops = get_no_copy_ops()
def register_last_uses(n: Node, user: Node):
if user.target == "output":
return
if user.target in no_copy_ops:
users = node_to_uses[user]
node_to_uses[n].extend(users)
else:
node_to_uses[n].append(user)
for node in reversed(graph.nodes):
map_arg(node.args, lambda n: register_last_uses(n, node))
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
return node_to_uses
def count_inflight_values(graph: Graph, file_path: str):
position = {node: i for i, node in enumerate(graph.nodes)}
node_to_last_use, user_to_last_uses = get_last_uses(graph)
max_inflight_size = 0
inflight_values = set()
# Output csv.
csv_filename = file_path
csv_data = []
header = [
'Node', 'tensor_size', 'inflight_size', 'inflight_size_in_output', 'args', 'users', 'node_to_last_use',
'lifetime', 'user_to_last_uses', 'inflight_values'
]
csv_data.append(header)
from .fx import get_output_node
output_node = get_output_node(graph)
values_in_output = set([n for n in output_node.args[0] if isinstance(n, Node)])
for node in graph.nodes:
inflight_values.add(node)
if node in user_to_last_uses:
for to_delete in user_to_last_uses[node]:
inflight_values.remove(to_delete)
assert "tensor_size" in node.meta, f"Node {node} does not have tensor_size"
inflight_size = sum(n.meta["tensor_size"] for n in inflight_values)
inflight_size_in_output = sum(n.meta["tensor_size"] for n in inflight_values if n in values_in_output)
lifetime = position[node_to_last_use[node]] - position[node] if node in node_to_last_use else 0
row = [
node.name, node.meta["tensor_size"], inflight_size, inflight_size_in_output,
[a.name for a in node.args if isinstance(a, Node)],
list(node.users.keys()), node_to_last_use[node] if node in node_to_last_use else 'NA', lifetime,
user_to_last_uses[node] if node in user_to_last_uses else 'NA',
list(inflight_values)
]
csv_data.append(row)
# print(
# f"Node: {node.name} users: {list(node.users.keys())} node_to_last_use: {node_to_last_use[node] if node in node_to_last_use else 'NA'} user_to_last_uses: {user_to_last_uses[node] if node in user_to_last_uses else 'NA'} inflight_values: {inflight_values} inflight_size: {inflight_size}"
# )
max_inflight_size = max(max_inflight_size, inflight_size)
import csv
with open(csv_filename, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerows(csv_data)
print(f"Max inflight size: {max_inflight_size}")
print(f"Data successfully written to {csv_filename}")
def get_activation_node_names(graph: Graph, param_nodes_bw: List[Node], fwd_output_names: List[str]):
input_nodes = get_input_nodes(graph)
param_node_names = set([n.name for n in param_nodes_bw])
activation_node_names = []
for in_node in input_nodes:
if in_node.name in fwd_output_names:
if in_node.name not in param_node_names:
activation_node_names.append(in_node.name)
return activation_node_names
class TensorOffloadHelper():
def __init__(self):
self.devices = {}
self.base_tensors = {}
self.views = {}
self.arg_list = []
self.offloaded = {}
self.non_tensor = {}
def offload(self, argument):
def is_base_tensor(tensor):
return torch.is_tensor(a) and not a._is_view() and not hasattr(tensor, "ds_id")
base_tensor_ids = set()
for a in argument:
if is_base_tensor(a):
base_tensor_ids.add(id(a))
for a in argument:
a_id = id(a)
if is_base_tensor(a):
# Base tensor
self.devices[a_id] = a.device
self.base_tensors[a_id] = a
# elif torch.is_tensor(a) and not hasattr(a, "ds_id") and id(a._base) in base_tensor_ids:
# # View
# self.views[a_id] = {
# "base_id": id(a._base),
# "size": a.size(),
# "stride": a.stride(),
# "offset": a.storage_offset(),
# }
else:
# other types or ds tensor
self.non_tensor[a_id] = a
self.arg_list.append(a_id)
for a in argument:
if is_base_tensor(a):
a.data = a.data.to("cpu")
def reload(self, in_place):
loaded_base_tensors = {}
for a_id in self.arg_list:
if a_id in self.base_tensors:
device = self.devices[a_id]
if in_place:
self.base_tensors[a_id].data = self.base_tensors[a_id].to(device)
loaded_base_tensors[a_id] = self.base_tensors[a_id]
else:
loaded_base_tensors[a_id] = self.base_tensors[a_id].to(device)
results = []
for a_id in self.arg_list:
if a_id in self.base_tensors:
results.append(loaded_base_tensors[a_id])
# elif a_id in self.views:
# view_info = self.views[a_id]
# # print(f"load_args loading view {a_id} base_id={view_info['base_id']} size={view_info['size']} stride={view_info['stride']} offset={view_info['offset']}")
# base_tensor = loaded_base_tensors[view_info["base_id"]]
# view_tensor = base_tensor.as_strided(
# view_info["size"], view_info["stride"], view_info["offset"]
# )
# results.append(view_tensor)
elif a_id in self.non_tensor:
results.append(self.non_tensor[a_id])
return results
def add_mem_profile_nodes(graph: Graph, prefix: str):
def show_memory(label: str):
if dist.get_rank() == 0:
print(
f"{prefix} {label} alloc_mem={get_accelerator().memory_allocated()} max_mem={get_accelerator().max_memory_allocated()}"
)
nodes = list(graph.nodes)
for node in nodes:
if node.op == "output":
continue
with graph.inserting_after(node):
msg = f"Mem {node.name}"
name = f"show_memory_{node.name}"
graph.create_node('call_function', show_memory, (msg, ), {}, name=name)
def is_release_node(n: Node) -> bool:
return n.target == torch.ops.dc.release_param.default
def get_index_by_graph_id(graph_order, target_graph_id):
for index, (graph_id, _) in enumerate(graph_order):
if graph_id == target_graph_id:
return index
return -1
def pad_tensors(specs: List[Tuple[torch.Tensor, int, int]]) -> List[torch.Tensor]:
"""
specs = [
(input_ids, 1, pad_token_id), # Example: Pad the right side with <pad>
(attention_mask, 1, 0), # Example: Pad the right side with 0
...
]
- Share the "maximum length of the dim dimension" across ranks for all specs
- Pad the right side for the missing parts and return
- Communication (`all_reduce`) happens only once
"""
assert len(specs) > 0, "specs is empty"
device = specs[0][0].device
# Vectorize local lengths
local_sizes = torch.tensor(
[tensor.size(dim) for tensor, dim, _ in specs],
dtype=torch.long,
device=device,
)
# Element-wise MAX across ranks
dist.all_reduce(local_sizes, op=dist.ReduceOp.MAX)
max_sizes = local_sizes.tolist()
# Pad each tensor as needed
padded: List[torch.Tensor] = []
for (tensor, dim, pad_val), max_len in zip(specs, max_sizes):
cur_len = tensor.size(dim)
if cur_len < max_len:
pad_len = max_len - cur_len
pad_shape = [0] * (tensor.dim() * 2) # F.pad specification
pad_shape[-(2 * dim + 1)] = pad_len # Pad the right side
tensor = torch.nn.functional.pad(tensor, pad_shape, value=pad_val)
padded.append(tensor)
return padded
|