File size: 13,335 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from typing import Dict, List, Callable
import time
import gc

import torch
from torch.fx import Graph, GraphModule

try:
    import torch.utils._pytree as pytree
    import torch._dynamo
    from functorch.compile import make_boxed_func
    from torch._functorch.aot_autograd import aot_module_simplified
    from torch._subclasses.fake_tensor import unset_fake_temporarily
    from torch._subclasses.fake_tensor import is_fake
except ImportError:
    pass

from deepspeed.accelerator import get_accelerator

from .fx import add_free_activations
from .graph_param import DSGraphParamManager
from .profilers import ProfilingResult
from .profilers.graph_profile import MemoryProfilingInterpreter
from .patch_compiled_func import patch_compiled_func, unpatch_compiled_func, get_backward_inputs
from .util import get_input_nodes, get_activation_node_names, get_index_by_graph_id, get_deepcompile_handle, log_rank0
from .partitioner import get_wrapped_partitioner
from .inductor import register_custom_ops, patch_create_aot_dispatcher_function

remaining_schedule = None
next_pass_step = -1
next_passes = None
current_passes = None

param_manager: Dict[int, DSGraphParamManager] = {}


class GraphOrder:

    def __init__(self):
        self.ordered_frames = []
        self.frames = {}

    def add_graph(self, graph_id, frame_id, needs_backward):
        if frame_id not in self.ordered_frames:
            self.ordered_frames.append(frame_id)

        self.frames[frame_id] = (graph_id, needs_backward)

    def get_graph_order(self):
        return [self.frames[frame_id] for frame_id in self.ordered_frames]

    def clear(self):
        self.frames.clear()


graph_order_with_frame_id = GraphOrder()

frames_needing_bwd = set()
profiling_results: Dict[int, ProfilingResult] = {}
opt_pass_times = []
opt_passes = {}

fwd_real_inputs = []


def register_compile_pass(name: str, opt_pass_fn):
    opt_passes[name] = opt_pass_fn


def init_schedule(schedule):

    assert isinstance(schedule, list), f"schedule should be a list, but got {type(schedule)}"

    for step, passes in schedule:
        assert isinstance(step, int), f"Each step in schedule should be an integer, but got {type(step)}"
        assert isinstance(passes, list), f"Passes at a certain step should be a list, but got {type(passes)}"

    global remaining_schedule
    remaining_schedule = schedule


def launch_compile_passes(global_steps: int):
    global next_pass_step, next_passes

    if len(remaining_schedule) > 0 and global_steps == remaining_schedule[0][0]:
        _, next_passes = remaining_schedule.pop(0)
        log_rank0(f"Launching compile passes: global_steps={global_steps} passes={next_passes}", True)

        torch._dynamo.reset()
        get_deepcompile_handle().reset()
        graph_order_with_frame_id.clear()
        profiling_results.clear()
        param_manager.clear()


def set_time_and_tensor_size(graph_id, graph: Graph, mem, bwd, profiling_results):
    node_time = []
    tensor_sizes = []

    for n in graph.nodes:
        node_time.append((n.name, n.meta["device_time"] if "device_time" in n.meta else 0.0,
                          n.meta["wall_time"] if "wall_time" in n.meta else 0.0))
        tensor_sizes.append((n.name, n.meta["tensor_size"] if "tensor_size" in n.meta else 0))

    if bwd:
        profiling_results[graph_id].bwd_graph = graph
        profiling_results[graph_id].bwd_time = node_time
        profiling_results[graph_id].bwd_tensor_sizes = tensor_sizes
        profiling_results[graph_id].bwd_mem = mem
    else:
        profiling_results[graph_id].fwd_graph = graph
        profiling_results[graph_id].fwd_time = node_time
        profiling_results[graph_id].fwd_tensor_sizes = tensor_sizes
        profiling_results[graph_id].fwd_mem = mem


def evaluate_symint_from_shape_env(sym_int_v):
    assert isinstance(sym_int_v, torch.SymInt)
    # shape_env = sym_int_v.node.shape_env
    # v = shape_env.evaluate_sym_node(sym_int_v.node)
    return sym_int_v.node.hint


def set_example_values_to_symints(real_inputs):
    real_inputs_ret = []
    for v in real_inputs:
        if isinstance(v, torch.Tensor):
            if is_fake(v):
                shape = []
                for fs in v.shape:
                    if isinstance(fs, torch.SymInt):
                        shape.append(evaluate_symint_from_shape_env(fs))
                    else:
                        shape.append(fs)
                stride = []
                for fs in v.stride():
                    if isinstance(fs, torch.SymInt):
                        stride.append(evaluate_symint_from_shape_env(fs))
                    else:
                        stride.append(fs)
                with unset_fake_temporarily():
                    dummy_v = torch.ones(shape,
                                         dtype=v.dtype,
                                         layout=v.layout,
                                         device=v.device,
                                         requires_grad=v.requires_grad).as_strided(shape, stride)
                    real_inputs_ret.append(dummy_v)
            else:
                real_inputs_ret.append(v)
        else:
            if isinstance(v, torch.SymInt):
                real_inputs_ret.append(evaluate_symint_from_shape_env(v))
            else:
                real_inputs_ret.append(v)

    return tuple(real_inputs_ret)


def run_opt_passes(opt_passes: List[Callable],
                   gm: GraphModule,
                   graph_id: int,
                   graph_order: List[int],
                   profiling_results,
                   create_inputs_fn,
                   mem_budget: float,
                   param_manager,
                   bwd: bool,
                   debug_log=False) -> None:

    with unset_fake_temporarily():
        get_accelerator().synchronize()
        gc.collect()
        get_accelerator().empty_cache()

    for i, opt_pass_fn in enumerate(opt_passes):
        log_rank0(f"Running opt pass {i} for graph {graph_id}. bwd={bwd}", enable=debug_log)

        gm_new = opt_pass_fn(gm, graph_id, graph_order, profiling_results, create_inputs_fn, mem_budget, param_manager,
                             bwd)
        if gm_new is not None:
            gm = gm_new
            gm.graph.lint()
            gm.recompile()

            mem_prof = MemoryProfilingInterpreter(gm, debug_log=debug_log)
            mem_prof.run(*create_inputs_fn())
            mem = [(name, current_alloc, delta, peak) for name, current_alloc, delta, peak in mem_prof.mem_record]

            set_time_and_tensor_size(graph_id, gm.graph, mem, bwd, profiling_results)

        with unset_fake_temporarily():
            get_accelerator().synchronize()
            gc.collect()
            get_accelerator().empty_cache()


def make_backend(backend, compile_kwargs={}, free_activation=False, debug_log=False):

    register_custom_ops()

    def backend_fn(gm: GraphModule, real_inputs):
        graph_id = id(gm.graph)

        needs_backward = pytree.tree_any(lambda x: x.requires_grad if torch.is_tensor(x) else False, real_inputs)
        frame_id = gm.meta["dynamo_compile_id"].frame_id
        graph_order_with_frame_id.add_graph(graph_id, frame_id, needs_backward)

        if needs_backward:
            if len(frames_needing_bwd) == 0:
                patch_compiled_func()
            frames_needing_bwd.add(frame_id)

        graph_order = graph_order_with_frame_id.get_graph_order()

        z3_partition = any(hasattr(v, "ds_id") for v in real_inputs)
        if z3_partition:
            param_indices = [(i, input_val.ds_id, input_val.ds_shape) for i, input_val in enumerate(real_inputs)
                             if isinstance(input_val, torch.nn.Parameter)]
        else:
            assert all(hasattr(v, "param_id") for v in real_inputs
                       if isinstance(v, torch.nn.Parameter)), "All param inputs should have param_id"
            param_indices = [(i, input_val.param_id, input_val.shape) for i, input_val in enumerate(real_inputs)
                             if isinstance(input_val, torch.nn.Parameter)]

        global fwd_real_inputs
        fwd_real_inputs.append(real_inputs)

        global profiling_results
        if graph_id not in profiling_results:
            profiling_results[graph_id] = ProfilingResult()
            profiling_results[graph_id].param_indices = param_indices
            profiling_results[graph_id].needs_backward = needs_backward

        def make_fw_graph(gm, sample_inputs):
            time_start = time.time()
            graph_index = len(graph_order) - 1
            real_inputs = fwd_real_inputs.pop(0)
            real_inputs = set_example_values_to_symints(real_inputs)

            param_manager[graph_id] = DSGraphParamManager(gm.graph, real_inputs, param_indices)

            real_inputs_with_rng = real_inputs + tuple(sample_inputs[len(real_inputs):])
            run_opt_passes(
                opt_passes=next_passes,
                gm=gm,
                graph_id=graph_id,
                graph_order=graph_order,
                profiling_results=profiling_results,
                create_inputs_fn=lambda: real_inputs_with_rng,
                mem_budget=.0,  # unused
                param_manager=param_manager,
                bwd=False,
                debug_log=debug_log)

            opt_pass_times.append(("fwd", graph_index, graph_id, time.time() - time_start))

            log_rank0(f"Fwd end {graph_index} graph_id={graph_id} alloc_mem={get_accelerator().memory_allocated()}",
                      enable=debug_log)

            return gm.graph

        def make_bw_graph(gm, sample_inputs):
            time_start = time.time()

            graph_index = get_index_by_graph_id(graph_order, graph_id)
            log_rank0(
                f"Bwd start {graph_index} graph_id={graph_id} alloc_mem={get_accelerator().memory_allocated()} graph={gm.graph}",
                enable=debug_log)

            bwd_inputs_stack = get_backward_inputs()

            if len(bwd_inputs_stack) == 0:
                # dynamo calls bw compiler ahead of time when symints are saved for backward. See the details for aot_dispatch_autograd in jit_compile_runtime_wrappers.
                # As we currently use actually bwd input values in bw compiler, we make dummy data for profiling.
                bwd_real_inputs = set_example_values_to_symints(sample_inputs)
            else:
                bwd_real_inputs = bwd_inputs_stack.pop()

            run_opt_passes(
                opt_passes=next_passes,
                gm=gm,
                graph_id=graph_id,
                graph_order=graph_order,
                profiling_results=profiling_results,
                create_inputs_fn=lambda: tuple(bwd_real_inputs),
                mem_budget=.0,  # unused
                param_manager=param_manager,
                bwd=True,
                debug_log=debug_log)

            # assert graph_id in param_manager, f"Graph {graph_id} not found in param_manager"

            if free_activation:
                param_nodes_bw, _ = param_manager[graph_id].get_bwd_mapping(gm.graph)
                param_names = [n.name for n in param_nodes_bw]
                non_param_input_names = [n.name for n in get_input_nodes(gm.graph) if n.name not in param_names]
                add_free_activations(graph_id, gm.graph,
                                     get_activation_node_names(gm.graph, param_nodes_bw, non_param_input_names))

            frames_needing_bwd.remove(frame_id)
            if len(frames_needing_bwd) == 0:
                unpatch_compiled_func()

            log_rank0(
                f"Bwd end {graph_index} graph_id={graph_id} alloc_mem={get_accelerator().memory_allocated()} graph={gm.graph}",
                enable=debug_log)

            opt_pass_times.append(("bwd", graph_index, graph_id, time.time() - time_start))

            return gm.graph

        if backend == "eager":

            def make_compiler_fn(make_graph_fn):

                def compiler_fn(gm, sample_inputs):
                    return None if make_graph_fn(gm, sample_inputs) is None else make_boxed_func(gm.forward)

                return compiler_fn

            aot_mod = aot_module_simplified(gm,
                                            real_inputs,
                                            fw_compiler=make_compiler_fn(make_fw_graph),
                                            bw_compiler=make_compiler_fn(make_bw_graph),
                                            partition_fn=get_wrapped_partitioner(param_indices))
            return torch._dynamo.optimize(**compile_kwargs)(aot_mod)
        elif backend == "inductor":
            patch_create_aot_dispatcher_function(graph_id, z3_partition, make_fw_graph, make_bw_graph, real_inputs,
                                                 param_indices, param_manager)
            from .partitioner import get_wrapped_choose_saved_values_set
            torch._functorch.partitioners.choose_saved_values_set = get_wrapped_choose_saved_values_set(param_indices)

            return torch._inductor.compile(gm, real_inputs)

        raise ValueError(f"Unsupported backend {backend}")

    return backend_fn