File size: 9,367 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import re
import textwrap
from collections import Counter
from itertools import groupby
from operator import itemgetter
from typing import Any, ClassVar, Optional

import yaml
from huggingface_hub import DatasetCardData

from ..config import METADATA_CONFIGS_FIELD
from ..features import Features
from ..info import DatasetInfo, DatasetInfosDict
from ..naming import _split_re
from ..utils.logging import get_logger


logger = get_logger(__name__)


class _NoDuplicateSafeLoader(yaml.SafeLoader):
    def _check_no_duplicates_on_constructed_node(self, node):
        keys = [self.constructed_objects[key_node] for key_node, _ in node.value]
        keys = [tuple(key) if isinstance(key, list) else key for key in keys]
        counter = Counter(keys)
        duplicate_keys = [key for key in counter if counter[key] > 1]
        if duplicate_keys:
            raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}")

    def construct_mapping(self, node, deep=False):
        mapping = super().construct_mapping(node, deep=deep)
        self._check_no_duplicates_on_constructed_node(node)
        return mapping


def _split_yaml_from_readme(readme_content: str) -> tuple[Optional[str], str]:
    full_content = list(readme_content.splitlines())
    if full_content and full_content[0] == "---" and "---" in full_content[1:]:
        sep_idx = full_content[1:].index("---") + 1
        yamlblock = "\n".join(full_content[1:sep_idx])
        return yamlblock, "\n".join(full_content[sep_idx + 1 :])

    return None, "\n".join(full_content)


class MetadataConfigs(dict[str, dict[str, Any]]):
    """Should be in format {config_name: {**config_params}}."""

    FIELD_NAME: ClassVar[str] = METADATA_CONFIGS_FIELD

    @staticmethod
    def _raise_if_data_files_field_not_valid(metadata_config: dict):
        yaml_data_files = metadata_config.get("data_files")
        if yaml_data_files is not None:
            yaml_error_message = textwrap.dedent(
                f"""
                Expected data_files in YAML to be either a string or a list of strings
                or a list of dicts with two keys: 'split' and 'path', but got {yaml_data_files}
                Examples of data_files in YAML:

                   data_files: data.csv

                   data_files: data/*.png

                   data_files:
                    - part0/*
                    - part1/*

                   data_files:
                    - split: train
                      path: train/*
                    - split: test
                      path: test/*

                   data_files:
                    - split: train
                      path:
                      - train/part1/*
                      - train/part2/*
                    - split: test
                      path: test/*

                PS: some symbols like dashes '-' are not allowed in split names
                """
            )
            if not isinstance(yaml_data_files, (list, str)):
                raise ValueError(yaml_error_message)
            if isinstance(yaml_data_files, list):
                for yaml_data_files_item in yaml_data_files:
                    if (
                        not isinstance(yaml_data_files_item, (str, dict))
                        or isinstance(yaml_data_files_item, dict)
                        and not (
                            len(yaml_data_files_item) == 2
                            and "split" in yaml_data_files_item
                            and re.match(_split_re, yaml_data_files_item["split"])
                            and isinstance(yaml_data_files_item.get("path"), (str, list))
                        )
                    ):
                        raise ValueError(yaml_error_message)

    @classmethod
    def _from_exported_parquet_files_and_dataset_infos(
        cls,
        parquet_commit_hash: str,
        exported_parquet_files: list[dict[str, Any]],
        dataset_infos: DatasetInfosDict,
    ) -> "MetadataConfigs":
        metadata_configs = {
            config_name: {
                "data_files": [
                    {
                        "split": split_name,
                        "path": [
                            parquet_file["url"].replace("refs%2Fconvert%2Fparquet", parquet_commit_hash)
                            for parquet_file in parquet_files_for_split
                        ],
                    }
                    for split_name, parquet_files_for_split in groupby(parquet_files_for_config, itemgetter("split"))
                ],
                "version": str(dataset_infos.get(config_name, DatasetInfo()).version or "0.0.0"),
            }
            for config_name, parquet_files_for_config in groupby(exported_parquet_files, itemgetter("config"))
        }
        if dataset_infos:
            # Preserve order of configs and splits
            metadata_configs = {
                config_name: {
                    "data_files": [
                        data_file
                        for split_name in dataset_info.splits
                        for data_file in metadata_configs[config_name]["data_files"]
                        if data_file["split"] == split_name
                    ],
                    "version": metadata_configs[config_name]["version"],
                }
                for config_name, dataset_info in dataset_infos.items()
            }
        return cls(metadata_configs)

    @classmethod
    def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "MetadataConfigs":
        if dataset_card_data.get(cls.FIELD_NAME):
            metadata_configs = dataset_card_data[cls.FIELD_NAME]
            if not isinstance(metadata_configs, list):
                raise ValueError(f"Expected {cls.FIELD_NAME} to be a list, but got '{metadata_configs}'")
            for metadata_config in metadata_configs:
                if "config_name" not in metadata_config:
                    raise ValueError(
                        f"Each config must include `config_name` field with a string name of a config, "
                        f"but got {metadata_config}. "
                    )
                cls._raise_if_data_files_field_not_valid(metadata_config)
            return cls(
                {
                    config.pop("config_name"): {
                        param: value if param != "features" else Features._from_yaml_list(value)
                        for param, value in config.items()
                    }
                    for metadata_config in metadata_configs
                    if (config := metadata_config.copy())
                }
            )
        return cls()

    def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None:
        if self:
            for metadata_config in self.values():
                self._raise_if_data_files_field_not_valid(metadata_config)
            current_metadata_configs = self.from_dataset_card_data(dataset_card_data)
            total_metadata_configs = dict(sorted({**current_metadata_configs, **self}.items()))
            for config_name, config_metadata in total_metadata_configs.items():
                config_metadata.pop("config_name", None)
            dataset_card_data[self.FIELD_NAME] = [
                {"config_name": config_name, **config_metadata}
                for config_name, config_metadata in total_metadata_configs.items()
            ]

    def get_default_config_name(self) -> Optional[str]:
        default_config_name = None
        for config_name, metadata_config in self.items():
            if len(self) == 1 or config_name == "default" or metadata_config.get("default"):
                if default_config_name is None:
                    default_config_name = config_name
                else:
                    raise ValueError(
                        f"Dataset has several default configs: '{default_config_name}' and '{config_name}'."
                    )
        return default_config_name


# DEPRECATED - just here to support old versions of evaluate like 0.2.2
# To support new tasks on the Hugging Face Hub, please open a PR for this file:
# https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/pipelines.ts
known_task_ids = {
    "image-classification": [],
    "translation": [],
    "image-segmentation": [],
    "fill-mask": [],
    "automatic-speech-recognition": [],
    "token-classification": [],
    "sentence-similarity": [],
    "audio-classification": [],
    "question-answering": [],
    "summarization": [],
    "zero-shot-classification": [],
    "table-to-text": [],
    "feature-extraction": [],
    "other": [],
    "multiple-choice": [],
    "text-classification": [],
    "text-to-image": [],
    "text2text-generation": [],
    "zero-shot-image-classification": [],
    "tabular-classification": [],
    "tabular-regression": [],
    "image-to-image": [],
    "tabular-to-text": [],
    "unconditional-image-generation": [],
    "text-retrieval": [],
    "text-to-speech": [],
    "object-detection": [],
    "audio-to-audio": [],
    "text-generation": [],
    "conversational": [],
    "table-question-answering": [],
    "visual-question-answering": [],
    "image-to-text": [],
    "reinforcement-learning": [],
    "voice-activity-detection": [],
    "time-series-forecasting": [],
    "document-question-answering": [],
}