File size: 95,878 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
import copy
import os
from collections.abc import Iterator
from functools import partial
from itertools import groupby
from typing import TYPE_CHECKING, Any, Callable, Optional, TypeVar, Union

import numpy as np
import pyarrow as pa
import pyarrow.compute as pc
import pyarrow.types

from .utils.logging import get_logger


if TYPE_CHECKING:
    from .features.features import Features, FeatureType


logger = get_logger(__name__)


def inject_arrow_table_documentation(arrow_table_method):
    def wrapper(fn):
        fn.__doc__ = arrow_table_method.__doc__ + (fn.__doc__ if fn.__doc__ is not None else "")
        fn.__doc__ = fn.__doc__.replace("pyarrow.Table", "Table")
        if hasattr(arrow_table_method, "__annotations__"):
            fn.__annotations__ = arrow_table_method.__annotations__
        return fn

    return wrapper


def _in_memory_arrow_table_from_file(filename: str) -> pa.Table:
    in_memory_stream = pa.input_stream(filename)
    opened_stream = pa.ipc.open_stream(in_memory_stream)
    pa_table = opened_stream.read_all()
    return pa_table


def _in_memory_arrow_table_from_buffer(buffer: pa.Buffer) -> pa.Table:
    stream = pa.BufferReader(buffer)
    opened_stream = pa.ipc.open_stream(stream)
    table = opened_stream.read_all()
    return table


def _memory_mapped_record_batch_reader_from_file(filename: str) -> pa.RecordBatchStreamReader:
    memory_mapped_stream = pa.memory_map(filename)
    return pa.ipc.open_stream(memory_mapped_stream)


def read_schema_from_file(filename: str) -> pa.Schema:
    """
    Infer arrow table schema from file without loading whole file into memory.
    Useful especially while having very big files.
    """
    with pa.memory_map(filename) as memory_mapped_stream:
        schema = pa.ipc.open_stream(memory_mapped_stream).schema
    return schema


def _memory_mapped_arrow_table_from_file(filename: str) -> pa.Table:
    opened_stream = _memory_mapped_record_batch_reader_from_file(filename)
    pa_table = opened_stream.read_all()
    return pa_table


def _deepcopy(x, memo: dict):
    """deepcopy a regular class instance"""
    cls = x.__class__
    result = cls.__new__(cls)
    memo[id(x)] = result
    for k, v in x.__dict__.items():
        setattr(result, k, copy.deepcopy(v, memo))
    return result


def _interpolation_search(arr: list[int], x: int) -> int:
    """
    Return the position i of a sorted array so that arr[i] <= x < arr[i+1]

    Args:
        arr (`List[int]`): non-empty sorted list of integers
        x (`int`): query

    Returns:
        `int`: the position i so that arr[i] <= x < arr[i+1]

    Raises:
        `IndexError`: if the array is empty or if the query is outside the array values
    """
    i, j = 0, len(arr) - 1
    while i < j and arr[i] <= x < arr[j]:
        k = i + ((j - i) * (x - arr[i]) // (arr[j] - arr[i]))
        if arr[k] <= x < arr[k + 1]:
            return k
        elif arr[k] < x:
            i, j = k + 1, j
        else:
            i, j = i, k
    raise IndexError(f"Invalid query '{x}' for size {arr[-1] if len(arr) else 'none'}.")


class IndexedTableMixin:
    def __init__(self, table: pa.Table):
        self._schema: pa.Schema = table.schema
        self._batches: list[pa.RecordBatch] = [
            recordbatch for recordbatch in table.to_batches() if len(recordbatch) > 0
        ]
        self._offsets: np.ndarray = np.cumsum([0] + [len(b) for b in self._batches], dtype=np.int64)

    def fast_gather(self, indices: Union[list[int], np.ndarray]) -> pa.Table:
        """
        Create a pa.Table by gathering the records at the records at the specified indices. Should be faster
        than pa.concat_tables(table.fast_slice(int(i) % table.num_rows, 1) for i in indices) since NumPy can compute
        the binary searches in parallel, highly optimized C
        """
        if not len(indices):
            raise ValueError("Indices must be non-empty")
        batch_indices = np.searchsorted(self._offsets, indices, side="right") - 1
        return pa.Table.from_batches(
            [
                self._batches[batch_idx].slice(i - self._offsets[batch_idx], 1)
                for batch_idx, i in zip(batch_indices, indices)
            ],
            schema=self._schema,
        )

    def fast_slice(self, offset=0, length=None) -> pa.Table:
        """
        Slice the Table using interpolation search.
        The behavior is the same as `pyarrow.Table.slice` but it's significantly faster.

        Interpolation search is used to find the start and end indexes of the batches we want to keep.
        The batches to keep are then concatenated to form the sliced Table.
        """
        if offset < 0:
            raise IndexError("Offset must be non-negative")
        elif offset >= self._offsets[-1] or (length is not None and length <= 0):
            return pa.Table.from_batches([], schema=self._schema)
        i = _interpolation_search(self._offsets, offset)
        if length is None or length + offset >= self._offsets[-1]:
            batches = self._batches[i:]
            batches[0] = batches[0].slice(offset - self._offsets[i])
        else:
            j = _interpolation_search(self._offsets, offset + length - 1)
            batches = self._batches[i : j + 1]
            batches[-1] = batches[-1].slice(0, offset + length - self._offsets[j])
            batches[0] = batches[0].slice(offset - self._offsets[i])
        return pa.Table.from_batches(batches, schema=self._schema)


class Table(IndexedTableMixin):
    """
    Wraps a pyarrow Table by using composition.
    This is the base class for `InMemoryTable`, `MemoryMappedTable` and `ConcatenationTable`.

    It implements all the basic attributes/methods of the pyarrow Table class except
    the Table transforms: `slice, filter, flatten, combine_chunks, cast, add_column,
    append_column, remove_column, set_column, rename_columns` and `drop`.

    The implementation of these methods differs for the subclasses.
    """

    def __init__(self, table: pa.Table):
        super().__init__(table)
        self.table = table

    def __deepcopy__(self, memo: dict):
        # arrow tables are immutable, so there's no need to copy self.table
        # moreover calling deepcopy on a pyarrow table seems to make pa.total_allocated_bytes() decrease for some reason
        # by adding it to the memo, self.table won't be copied
        memo[id(self.table)] = self.table
        # same for the recordbatches used by the index
        memo[id(self._batches)] = list(self._batches)
        return _deepcopy(self, memo)

    def validate(self, *args, **kwargs):
        """
        Perform validation checks.  An exception is raised if validation fails.

        By default only cheap validation checks are run.  Pass `full=True`
        for thorough validation checks (potentially `O(n)`).

        Args:
            full (`bool`, defaults to `False`):
                If `True`, run expensive checks, otherwise cheap checks only.

        Raises:
            `pa.lib.ArrowInvalid`: if validation fails
        """
        return self.table.validate(*args, **kwargs)

    def equals(self, *args, **kwargs):
        """
        Check if contents of two tables are equal.

        Args:
            other ([`~datasets.table.Table`]):
                Table to compare against.
            check_metadata `bool`, defaults to `False`):
                Whether schema metadata equality should be checked as well.

        Returns:
            `bool`
        """
        args = tuple(arg.table if isinstance(arg, Table) else arg for arg in args)
        kwargs = {k: v.table if isinstance(v, Table) else v for k, v in kwargs}
        return self.table.equals(*args, **kwargs)

    def to_batches(self, *args, **kwargs):
        """
        Convert Table to list of (contiguous) `RecordBatch` objects.

        Args:
            max_chunksize (`int`, defaults to `None`):
                Maximum size for `RecordBatch` chunks. Individual chunks may be
                smaller depending on the chunk layout of individual columns.

        Returns:
            `List[pyarrow.RecordBatch]`
        """
        return self.table.to_batches(*args, **kwargs)

    def to_pydict(self, *args, **kwargs):
        """
        Convert the Table to a `dict` or `OrderedDict`.

        Returns:
            `dict`
        """
        return self.table.to_pydict(*args, **kwargs)

    def to_pylist(self, *args, **kwargs):
        """
        Convert the Table to a list

        Returns:
            `list`
        """
        return self.table.to_pylist(*args, **kwargs)

    def to_pandas(self, *args, **kwargs):
        """
        Convert to a pandas-compatible NumPy array or DataFrame, as appropriate.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                Arrow MemoryPool to use for allocations. Uses the default memory
                pool is not passed.
            strings_to_categorical (`bool`, defaults to `False`):
                Encode string (UTF8) and binary types to `pandas.Categorical`.
            categories (`list`, defaults to `empty`):
                List of fields that should be returned as `pandas.Categorical`. Only
                applies to table-like data structures.
            zero_copy_only (`bool`, defaults to `False`):
                Raise an `ArrowException` if this function call would require copying
                the underlying data.
            integer_object_nulls (`bool`, defaults to `False`):
                Cast integers with nulls to objects.
            date_as_object (`bool`, defaults to `True`):
                Cast dates to objects. If `False`, convert to `datetime64[ns]` dtype.
            timestamp_as_object (`bool`, defaults to `False`):
                Cast non-nanosecond timestamps (`np.datetime64`) to objects. This is
                useful if you have timestamps that don't fit in the normal date
                range of nanosecond timestamps (1678 CE-2262 CE).
                If `False`, all timestamps are converted to `datetime64[ns]` dtype.
            use_threads (`bool`, defaults to `True`):
                Whether to parallelize the conversion using multiple threads.
            deduplicate_objects (`bool`, defaults to `False`):
                Do not create multiple copies Python objects when created, to save
                on memory use. Conversion will be slower.
            ignore_metadata (`bool`, defaults to `False`):
                If `True`, do not use the 'pandas' metadata to reconstruct the
                DataFrame index, if present.
            safe (`bool`, defaults to `True`):
                For certain data types, a cast is needed in order to store the
                data in a pandas DataFrame or Series (e.g. timestamps are always
                stored as nanoseconds in pandas). This option controls whether it
                is a safe cast or not.
            split_blocks (`bool`, defaults to `False`):
                If `True`, generate one internal "block" for each column when
                creating a pandas.DataFrame from a `RecordBatch` or `Table`. While this
                can temporarily reduce memory note that various pandas operations
                can trigger "consolidation" which may balloon memory use.
            self_destruct (`bool`, defaults to `False`):
                EXPERIMENTAL: If `True`, attempt to deallocate the originating Arrow
                memory while converting the Arrow object to pandas. If you use the
                object after calling `to_pandas` with this option it will crash your
                program.
            types_mapper (`function`, defaults to `None`):
                A function mapping a pyarrow DataType to a pandas `ExtensionDtype`.
                This can be used to override the default pandas type for conversion
                of built-in pyarrow types or in absence of `pandas_metadata` in the
                Table schema. The function receives a pyarrow DataType and is
                expected to return a pandas `ExtensionDtype` or `None` if the
                default conversion should be used for that type. If you have
                a dictionary mapping, you can pass `dict.get` as function.

        Returns:
            `pandas.Series` or `pandas.DataFrame`: `pandas.Series` or `pandas.DataFrame` depending on type of object
        """
        return self.table.to_pandas(*args, **kwargs)

    def to_string(self, *args, **kwargs):
        return self.table.to_string(*args, **kwargs)

    def to_reader(self, max_chunksize: Optional[int] = None):
        """
        Convert the Table to a RecordBatchReader.

        Note that this method is zero-copy, it merely exposes the same data under a different API.

        Args:
            max_chunksize (`int`, defaults to `None`)
                Maximum size for RecordBatch chunks. Individual chunks may be smaller depending
                on the chunk layout of individual columns.

        Returns:
            `pyarrow.RecordBatchReader`
        """
        return self.table.to_reader(max_chunksize=max_chunksize)

    def field(self, *args, **kwargs):
        """
        Select a schema field by its column name or numeric index.

        Args:
            i (`Union[int, str]`):
                The index or name of the field to retrieve.

        Returns:
            `pyarrow.Field`
        """
        return self.table.field(*args, **kwargs)

    def column(self, *args, **kwargs):
        """
        Select a column by its column name, or numeric index.

        Args:
            i (`Union[int, str]`):
                The index or name of the column to retrieve.

        Returns:
            `pyarrow.ChunkedArray`
        """
        return self.table.column(*args, **kwargs)

    def itercolumns(self, *args, **kwargs):
        """
        Iterator over all columns in their numerical order.

        Yields:
            `pyarrow.ChunkedArray`
        """
        return self.table.itercolumns(*args, **kwargs)

    @property
    def schema(self):
        """
        Schema of the table and its columns.

        Returns:
            `pyarrow.Schema`
        """
        return self.table.schema

    @property
    def columns(self):
        """
        List of all columns in numerical order.

        Returns:
            `List[pa.ChunkedArray]`
        """
        return self.table.columns

    @property
    def num_columns(self):
        """
        Number of columns in this table.

        Returns:
            int
        """
        return self.table.num_columns

    @property
    def num_rows(self):
        """
        Number of rows in this table.

        Due to the definition of a table, all columns have the same number of
        rows.

        Returns:
            int
        """
        return self.table.num_rows

    @property
    def shape(self):
        """
        Dimensions of the table: (#rows, #columns).

        Returns:
            `(int, int)`: Number of rows and number of columns.
        """
        return self.table.shape

    @property
    def nbytes(self):
        """
        Total number of bytes consumed by the elements of the table.
        """
        return self.table.nbytes

    @property
    def column_names(self):
        """
        Names of the table's columns.
        """
        return self.table.column_names

    def __eq__(self, other):
        return self.equals(other)

    def __getitem__(self, i):
        return self.table[i]

    def __len__(self):
        return len(self.table)

    def __repr__(self):
        return self.table.__repr__().replace("pyarrow.Table", self.__class__.__name__)

    def __str__(self):
        return self.table.__str__().replace("pyarrow.Table", self.__class__.__name__)

    def slice(self, *args, **kwargs):
        """
        Compute zero-copy slice of this Table.

        Args:
            offset (`int`, defaults to `0`):
                Offset from start of table to slice.
            length (`int`, defaults to `None`):
                Length of slice (default is until end of table starting from
                offset).

        Returns:
            `datasets.table.Table`
        """
        raise NotImplementedError()

    def filter(self, *args, **kwargs):
        """
        Select records from a Table. See `pyarrow.compute.filter` for full usage.
        """
        raise NotImplementedError()

    def flatten(self, *args, **kwargs):
        """
        Flatten this Table.  Each column with a struct type is flattened
        into one column per struct field.  Other columns are left unchanged.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        raise NotImplementedError()

    def combine_chunks(self, *args, **kwargs):
        """
        Make a new table by combining the chunks this table has.

        All the underlying chunks in the `ChunkedArray` of each column are
        concatenated into zero or one chunk.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        raise NotImplementedError()

    def cast(self, *args, **kwargs):
        """
        Cast table values to another schema.

        Args:
            target_schema (`Schema`):
                Schema to cast to, the names and order of fields must match.
            safe (`bool`, defaults to `True`):
                Check for overflows or other unsafe conversions.

        Returns:
            `datasets.table.Table`
        """
        raise NotImplementedError()

    def replace_schema_metadata(self, *args, **kwargs):
        """
        EXPERIMENTAL: Create shallow copy of table by replacing schema
        key-value metadata with the indicated new metadata (which may be None,
        which deletes any existing metadata

        Args:
            metadata (`dict`, defaults to `None`):

        Returns:
            `datasets.table.Table`: shallow_copy
        """
        raise NotImplementedError()

    def add_column(self, *args, **kwargs):
        """
        Add column to Table at position.

        A new table is returned with the column added, the original table
        object is left unchanged.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`: New table with the passed column added.
        """
        raise NotImplementedError()

    def append_column(self, *args, **kwargs):
        """
        Append column at end of columns.

        Args:
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:  New table with the passed column added.
        """
        raise NotImplementedError()

    def remove_column(self, *args, **kwargs):
        """
        Create new Table with the indicated column removed.

        Args:
            i (`int`):
                Index of column to remove.

        Returns:
            `datasets.table.Table`: New table without the column.
        """
        raise NotImplementedError()

    def set_column(self, *args, **kwargs):
        """
        Replace column in Table at position.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`: New table with the passed column set.
        """
        raise NotImplementedError()

    def rename_columns(self, *args, **kwargs):
        """
        Create new table with columns renamed to provided names.
        """
        raise NotImplementedError()

    def drop(self, *args, **kwargs):
        """
        Drop one or more columns and return a new table.

        Args:
            columns (`List[str]`):
                List of field names referencing existing columns.

        Raises:
            `KeyError` : if any of the passed columns name are not existing.

        Returns:
            `datasets.table.Table`: New table without the columns.
        """
        raise NotImplementedError()

    def select(self, *args, **kwargs):
        """
        Select columns of the table.

        Returns a new table with the specified columns, and metadata preserved.

        Args:
            columns (:obj:`Union[List[str], List[int]]`):
                The column names or integer indices to select.

        Returns:
            `datasets.table.Table`: table with only a subset of the columns
        """
        raise NotImplementedError()


class TableBlock(Table):
    """
    `TableBlock` is the allowed class inside a `ConcanetationTable`.
    Only `MemoryMappedTable` and `InMemoryTable` are `TableBlock`.
    This is because we don't want a `ConcanetationTable` made out of other `ConcanetationTables`.
    """

    pass


class InMemoryTable(TableBlock):
    """
    The table is said in-memory when it is loaded into the user's RAM.

    Pickling it does copy all the data using memory.
    Its implementation is simple and uses the underlying pyarrow Table methods directly.

    This is different from the `MemoryMapped` table, for which pickling doesn't copy all the
    data in memory. For a `MemoryMapped`, unpickling instead reloads the table from the disk.

    `InMemoryTable` must be used when data fit in memory, while `MemoryMapped` are reserved for
    data bigger than memory or when you want the memory footprint of your application to
    stay low.
    """

    @classmethod
    def from_file(cls, filename: str):
        table = _in_memory_arrow_table_from_file(filename)
        return cls(table)

    @classmethod
    def from_buffer(cls, buffer: pa.Buffer):
        table = _in_memory_arrow_table_from_buffer(buffer)
        return cls(table)

    @classmethod
    def from_pandas(cls, *args, **kwargs):
        """
        Convert pandas.DataFrame to an Arrow Table.

        The column types in the resulting Arrow Table are inferred from the
        dtypes of the pandas.Series in the DataFrame. In the case of non-object
        Series, the NumPy dtype is translated to its Arrow equivalent. In the
        case of `object`, we need to guess the datatype by looking at the
        Python objects in this Series.

        Be aware that Series of the `object` dtype don't carry enough
        information to always lead to a meaningful Arrow type. In the case that
        we cannot infer a type, e.g. because the DataFrame is of length 0 or
        the Series only contains `None/nan` objects, the type is set to
        null. This behavior can be avoided by constructing an explicit schema
        and passing it to this function.

        Args:
            df (`pandas.DataFrame`):
            schema (`pyarrow.Schema`, *optional*):
                The expected schema of the Arrow Table. This can be used to
                indicate the type of columns if we cannot infer it automatically.
                If passed, the output will have exactly this schema. Columns
                specified in the schema that are not found in the DataFrame columns
                or its index will raise an error. Additional columns or index
                levels in the DataFrame which are not specified in the schema will
                be ignored.
            preserve_index (`bool`, *optional*):
                Whether to store the index as an additional column in the resulting
                `Table`. The default of None will store the index as a column,
                except for RangeIndex which is stored as metadata only. Use
                `preserve_index=True` to force it to be stored as a column.
            nthreads (`int`, defaults to `None` (may use up to system CPU count threads))
                If greater than 1, convert columns to Arrow in parallel using
                indicated number of threads.
            columns (`List[str]`, *optional*):
               List of column to be converted. If `None`, use all columns.
            safe (`bool`, defaults to `True`):
               Check for overflows or other unsafe conversions,

        Returns:
            `datasets.table.Table`:

        Examples:
        ```python
        >>> import pandas as pd
        >>> import pyarrow as pa
        >>> df = pd.DataFrame({
            ...     'int': [1, 2],
            ...     'str': ['a', 'b']
            ... })
        >>> pa.Table.from_pandas(df)
        <pyarrow.lib.Table object at 0x7f05d1fb1b40>
        ```
        """
        return cls(pa.Table.from_pandas(*args, **kwargs))

    @classmethod
    def from_arrays(cls, *args, **kwargs):
        """
        Construct a Table from Arrow arrays.

        Args:
            arrays (`List[Union[pyarrow.Array, pyarrow.ChunkedArray]]`):
                Equal-length arrays that should form the table.
            names (`List[str]`, *optional*):
                Names for the table columns. If not passed, schema must be passed.
            schema (`Schema`, defaults to `None`):
                Schema for the created table. If not passed, names must be passed.
            metadata (`Union[dict, Mapping]`, defaults to `None`):
                Optional metadata for the schema (if inferred).

        Returns:
            `datasets.table.Table`
        """
        return cls(pa.Table.from_arrays(*args, **kwargs))

    @classmethod
    def from_pydict(cls, *args, **kwargs):
        """
        Construct a Table from Arrow arrays or columns.

        Args:
            mapping (`Union[dict, Mapping]`):
                A mapping of strings to Arrays or Python lists.
            schema (`Schema`, defaults to `None`):
                If not passed, will be inferred from the Mapping values
            metadata (`Union[dict, Mapping]`, defaults to `None`):
                Optional metadata for the schema (if inferred).

        Returns:
            `datasets.table.Table`
        """
        return cls(pa.Table.from_pydict(*args, **kwargs))

    @classmethod
    def from_pylist(cls, mapping, *args, **kwargs):
        """
        Construct a Table from list of rows / dictionaries.

        Args:
            mapping (`List[dict]`):
                A mapping of strings to row values.
            schema (`Schema`, defaults to `None`):
                If not passed, will be inferred from the Mapping values
            metadata (`Union[dict, Mapping]`, defaults to `None`):
                Optional metadata for the schema (if inferred).

        Returns:
            `datasets.table.Table`
        """
        return cls(pa.Table.from_pylist(mapping, *args, **kwargs))

    @classmethod
    def from_batches(cls, *args, **kwargs):
        """
        Construct a Table from a sequence or iterator of Arrow `RecordBatches`.

        Args:
            batches (`Union[Sequence[pyarrow.RecordBatch], Iterator[pyarrow.RecordBatch]]`):
                Sequence of `RecordBatch` to be converted, all schemas must be equal.
            schema (`Schema`, defaults to `None`):
                If not passed, will be inferred from the first `RecordBatch`.

        Returns:
            `datasets.table.Table`:
        """
        return cls(pa.Table.from_batches(*args, **kwargs))

    def slice(self, offset=0, length=None):
        """
        Compute zero-copy slice of this Table.

        Args:
            offset (`int`, defaults to `0`):
                Offset from start of table to slice.
            length (`int`, defaults to `None`):
                Length of slice (default is until end of table starting from
                offset).

        Returns:
            `datasets.table.Table`
        """
        # Use fast slicing here
        return InMemoryTable(self.fast_slice(offset=offset, length=length))

    def filter(self, *args, **kwargs):
        """
        Select records from a Table. See `pyarrow.compute.filter` for full usage.
        """
        return InMemoryTable(self.table.filter(*args, **kwargs))

    def flatten(self, *args, **kwargs):
        """
        Flatten this Table.  Each column with a struct type is flattened
        into one column per struct field.  Other columns are left unchanged.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        return InMemoryTable(table_flatten(self.table, *args, **kwargs))

    def combine_chunks(self, *args, **kwargs):
        """
        Make a new table by combining the chunks this table has.

        All the underlying chunks in the `ChunkedArray` of each column are
        concatenated into zero or one chunk.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        return InMemoryTable(self.table.combine_chunks(*args, **kwargs))

    def cast(self, *args, **kwargs):
        """
        Cast table values to another schema.

        Args:
            target_schema (`Schema`):
                Schema to cast to, the names and order of fields must match.
            safe (`bool`, defaults to `True`):
                Check for overflows or other unsafe conversions.

        Returns:
            `datasets.table.Table`
        """
        return InMemoryTable(table_cast(self.table, *args, **kwargs))

    def replace_schema_metadata(self, *args, **kwargs):
        """
        EXPERIMENTAL: Create shallow copy of table by replacing schema
        key-value metadata with the indicated new metadata (which may be `None`,
        which deletes any existing metadata).

        Args:
            metadata (`dict`, defaults to `None`):

        Returns:
            `datasets.table.Table`: shallow_copy
        """
        return InMemoryTable(self.table.replace_schema_metadata(*args, **kwargs))

    def add_column(self, *args, **kwargs):
        """
        Add column to Table at position.

        A new table is returned with the column added, the original table
        object is left unchanged.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`: New table with the passed column added.
        """
        return InMemoryTable(self.table.add_column(*args, **kwargs))

    def append_column(self, *args, **kwargs):
        """
        Append column at end of columns.

        Args:
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:
                New table with the passed column added.
        """
        return InMemoryTable(self.table.append_column(*args, **kwargs))

    def remove_column(self, *args, **kwargs):
        """
        Create new Table with the indicated column removed.

        Args:
            i (`int`):
                Index of column to remove.

        Returns:
            `datasets.table.Table`:
                New table without the column.
        """
        return InMemoryTable(self.table.remove_column(*args, **kwargs))

    def set_column(self, *args, **kwargs):
        """
        Replace column in Table at position.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:
                New table with the passed column set.
        """
        return InMemoryTable(self.table.set_column(*args, **kwargs))

    def rename_columns(self, *args, **kwargs):
        """
        Create new table with columns renamed to provided names.
        """
        return InMemoryTable(self.table.rename_columns(*args, **kwargs))

    def drop(self, *args, **kwargs):
        """
        Drop one or more columns and return a new table.

        Args:
            columns (`List[str]`):
                List of field names referencing existing columns.

        Raises:
            `KeyError` : if any of the passed columns name are not existing.

        Returns:
            `datasets.table.Table`:
                New table without the columns.
        """
        return InMemoryTable(self.table.drop(*args, **kwargs))

    def select(self, *args, **kwargs):
        """
        Select columns of the table.

        Returns a new table with the specified columns, and metadata preserved.

        Args:
            columns (:obj:`Union[List[str], List[int]]`):
                The column names or integer indices to select.

        Returns:
            :class:`datasets.table.Table`: New table with the specified columns, and metadata preserved.
        """
        return InMemoryTable(self.table.select(*args, **kwargs))


# The MemoryMappedTable needs replays to properly reload tables from the disk
Replay = tuple[str, tuple, dict]


class MemoryMappedTable(TableBlock):
    """
    The table is said memory mapped when it doesn't use the user's RAM but loads the data
    from the disk instead.

    Pickling it doesn't copy the data into memory.
    Instead, only the path to the memory mapped arrow file is pickled, as well as the list
    of transforms to "replay" when reloading the table from the disk.

    Its implementation requires to store an history of all the transforms that were applied
    to the underlying pyarrow Table, so that they can be "replayed" when reloading the Table
    from the disk.

    This is different from the `InMemoryTable` table, for which pickling does copy all the
    data in memory.

    `InMemoryTable` must be used when data fit in memory, while `MemoryMapped` are reserved for
    data bigger than memory or when you want the memory footprint of your application to
    stay low.
    """

    def __init__(self, table: pa.Table, path: str, replays: Optional[list[Replay]] = None):
        super().__init__(table)
        self.path = os.path.abspath(path)
        self.replays: list[Replay] = replays if replays is not None else []

    @classmethod
    def from_file(cls, filename: str, replays=None):
        table = _memory_mapped_arrow_table_from_file(filename)
        table = cls._apply_replays(table, replays)
        return cls(table, filename, replays)

    def __getstate__(self):
        return {"path": self.path, "replays": self.replays}

    def __setstate__(self, state):
        path = state["path"]
        replays = state["replays"]
        table = _memory_mapped_arrow_table_from_file(path)
        table = self._apply_replays(table, replays)
        MemoryMappedTable.__init__(self, table, path=path, replays=replays)

    @staticmethod
    def _apply_replays(table: pa.Table, replays: Optional[list[Replay]] = None) -> pa.Table:
        if replays is not None:
            for name, args, kwargs in replays:
                if name == "cast":
                    table = table_cast(table, *args, **kwargs)
                elif name == "flatten":
                    table = table_flatten(table, *args, **kwargs)
                else:
                    table = getattr(table, name)(*args, **kwargs)
        return table

    def _append_replay(self, replay: Replay) -> list[Replay]:
        replays = copy.deepcopy(self.replays)
        replays.append(replay)
        return replays

    def slice(self, offset=0, length=None):
        """
        Compute zero-copy slice of this Table.

        Args:
            offset (`int`, defaults to `0`):
                Offset from start of table to slice.
            length (`int`, defaults to `None`):
                Length of slice (default is until end of table starting from
                offset).

        Returns:
            `datasets.table.Table`
        """
        replay = ("slice", (offset, length), {})
        replays = self._append_replay(replay)
        # Use fast slicing here
        return MemoryMappedTable(self.fast_slice(offset=offset, length=length), self.path, replays)

    def filter(self, *args, **kwargs):
        """
        Select records from a Table. See `pyarrow.compute.filter` for full usage.
        """
        replay = ("filter", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.filter(*args, **kwargs), self.path, replays)

    def flatten(self, *args, **kwargs):
        """
        Flatten this Table.  Each column with a struct type is flattened
        into one column per struct field.  Other columns are left unchanged.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        replay = ("flatten", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(table_flatten(self.table, *args, **kwargs), self.path, replays)

    def combine_chunks(self, *args, **kwargs):
        """
        Make a new table by combining the chunks this table has.

        All the underlying chunks in the ChunkedArray of each column are
        concatenated into zero or one chunk.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        replay = ("combine_chunks", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.combine_chunks(*args, **kwargs), self.path, replays)

    def cast(self, *args, **kwargs):
        """
        Cast table values to another schema

        Args:
            target_schema (`Schema`):
                Schema to cast to, the names and order of fields must match.
            safe (`bool`, defaults to `True`):
                Check for overflows or other unsafe conversions.

        Returns:
            `datasets.table.Table`
        """
        replay = ("cast", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(table_cast(self.table, *args, **kwargs), self.path, replays)

    def replace_schema_metadata(self, *args, **kwargs):
        """
        EXPERIMENTAL: Create shallow copy of table by replacing schema
        key-value metadata with the indicated new metadata (which may be None,
        which deletes any existing metadata.

        Args:
            metadata (`dict`, defaults to `None`):

        Returns:
            `datasets.table.Table`: shallow_copy
        """
        replay = ("replace_schema_metadata", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.replace_schema_metadata(*args, **kwargs), self.path, replays)

    def add_column(self, *args, **kwargs):
        """
        Add column to Table at position.

        A new table is returned with the column added, the original table
        object is left unchanged.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`: New table with the passed column added.
        """
        replay = ("add_column", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.add_column(*args, **kwargs), self.path, replays)

    def append_column(self, *args, **kwargs):
        """
        Append column at end of columns.

        Args:
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:
                New table with the passed column added.
        """
        replay = ("append_column", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.append_column(*args, **kwargs), self.path, replays)

    def remove_column(self, *args, **kwargs):
        """
        Create new Table with the indicated column removed.

        Args:
            i (`int`):
                Index of column to remove.

        Returns:
            `datasets.table.Table`:
                New table without the column.
        """
        replay = ("remove_column", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.remove_column(*args, **kwargs), self.path, replays)

    def set_column(self, *args, **kwargs):
        """
        Replace column in Table at position.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:
                New table with the passed column set.
        """
        replay = ("set_column", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.set_column(*args, **kwargs), self.path, replays)

    def rename_columns(self, *args, **kwargs):
        """
        Create new table with columns renamed to provided names.
        """
        replay = ("rename_columns", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.rename_columns(*args, **kwargs), self.path, replays)

    def drop(self, *args, **kwargs):
        """
        Drop one or more columns and return a new table.

        Args:
            columns (`List[str]`):
                List of field names referencing existing columns.

        Raises:
            `KeyError` : if any of the passed columns name are not existing.

        Returns:
            `datasets.table.Table`:
                New table without the columns.
        """
        replay = ("drop", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.drop(*args, **kwargs), self.path, replays)

    def select(self, *args, **kwargs):
        """
        Select columns of the table.

        Returns a new table with the specified columns, and metadata preserved.

        Args:
            columns (:obj:`Union[List[str], List[int]]`):
                The column names or integer indices to select.

        Returns:
            :class:`datasets.table.Table`: New table with the specified columns, and metadata preserved.
        """
        replay = ("select", copy.deepcopy(args), copy.deepcopy(kwargs))
        replays = self._append_replay(replay)
        return MemoryMappedTable(self.table.select(*args, **kwargs), self.path, replays)


# A ConcatenationTable is the concatenation of several tables.
# The ``blocks`` attributes stores a list of list of blocks.
# The first axis concatenates the tables along the axis 0 (it appends rows),
# while the second axis concatenates tables along the axis 1 (it appends columns).
TableBlockContainer = TypeVar("TableBlockContainer", TableBlock, list[TableBlock], list[list[TableBlock]])


class ConcatenationTable(Table):
    """
    The table comes from the concatenation of several tables called blocks.
    It enables concatenation on both axis 0 (append rows) and axis 1 (append columns).

    The underlying tables are called "blocks" and can be either `InMemoryTable`
    or `MemoryMappedTable` objects.
    This allows to combine tables that come from memory or that are memory mapped.
    When a `ConcatenationTable` is pickled, then each block is pickled:
    - the `InMemoryTable` objects are pickled by copying all the data in memory.
    - the MemoryMappedTable objects are pickled without copying the data into memory.
    Instead, only the path to the memory mapped arrow file is pickled, as well as the list
    of transforms to "replays" when reloading the table from the disk.

    Its implementation requires to store each block separately.
    The `blocks` attributes stores a list of list of blocks.
    The first axis concatenates the tables along the axis 0 (it appends rows),
    while the second axis concatenates tables along the axis 1 (it appends columns).

    If some columns are missing when concatenating on axis 0, they are filled with null values.
    This is done using `pyarrow.concat_tables(tables, promote=True)`.

    You can access the fully combined table by accessing the `ConcatenationTable.table` attribute,
    and the blocks by accessing the `ConcatenationTable.blocks` attribute.
    """

    def __init__(self, table: pa.Table, blocks: list[list[TableBlock]]):
        super().__init__(table)
        self.blocks = blocks
        # Check that all the blocks have the right type.
        # Only InMemoryTable and MemoryMappedTable are allowed.
        for subtables in blocks:
            for subtable in subtables:
                if not isinstance(subtable, TableBlock):
                    raise TypeError(
                        "The blocks of a ConcatenationTable must be InMemoryTable or MemoryMappedTable objects"
                        f", but got {_short_str(subtable)}."
                    )

    def __getstate__(self):
        return {"blocks": self.blocks, "schema": self.table.schema}

    def __setstate__(self, state):
        blocks = state["blocks"]
        schema = state["schema"]
        table = self._concat_blocks_horizontally_and_vertically(blocks)
        if schema is not None and table.schema != schema:
            # We fix the columns by concatenating with an empty table with the right columns
            empty_table = pa.Table.from_batches([], schema=schema)
            # We set promote_options="default" to fill missing columns with null values
            table = pa.concat_tables([table, empty_table], promote_options="default")
        ConcatenationTable.__init__(self, table, blocks=blocks)

    @staticmethod
    def _concat_blocks(blocks: list[Union[TableBlock, pa.Table]], axis: int = 0) -> pa.Table:
        pa_tables = [table.table if hasattr(table, "table") else table for table in blocks]
        if axis == 0:
            # We set promote_options="default" to fill missing columns with null values
            return pa.concat_tables(pa_tables, promote_options="default")
        elif axis == 1:
            for i, table in enumerate(pa_tables):
                if i == 0:
                    pa_table = table
                else:
                    for name, col in zip(table.column_names, table.columns):
                        pa_table = pa_table.append_column(name, col)
            return pa_table
        else:
            raise ValueError("'axis' must be either 0 or 1")

    @classmethod
    def _concat_blocks_horizontally_and_vertically(cls, blocks: list[list[TableBlock]]) -> pa.Table:
        pa_tables_to_concat_vertically = []
        for i, tables in enumerate(blocks):
            if not tables:
                continue
            pa_table_horizontally_concatenated = cls._concat_blocks(tables, axis=1)
            pa_tables_to_concat_vertically.append(pa_table_horizontally_concatenated)
        return cls._concat_blocks(pa_tables_to_concat_vertically, axis=0)

    @classmethod
    def _merge_blocks(cls, blocks: TableBlockContainer, axis: Optional[int] = None) -> TableBlockContainer:
        if axis is not None:
            merged_blocks = []
            for is_in_memory, block_group in groupby(blocks, key=lambda x: isinstance(x, InMemoryTable)):
                if is_in_memory:
                    block_group = [InMemoryTable(cls._concat_blocks(list(block_group), axis=axis))]
                merged_blocks += list(block_group)
        else:  # both
            merged_blocks = [cls._merge_blocks(row_block, axis=1) for row_block in blocks]
            if all(len(row_block) == 1 for row_block in merged_blocks):
                merged_blocks = cls._merge_blocks(
                    [block for row_block in merged_blocks for block in row_block], axis=0
                )
        return merged_blocks

    @classmethod
    def _consolidate_blocks(cls, blocks: TableBlockContainer) -> TableBlockContainer:
        if isinstance(blocks, TableBlock):
            return blocks
        elif isinstance(blocks[0], TableBlock):
            return cls._merge_blocks(blocks, axis=0)
        else:
            return cls._merge_blocks(blocks)

    @classmethod
    def from_blocks(cls, blocks: TableBlockContainer) -> "ConcatenationTable":
        blocks = cls._consolidate_blocks(blocks)
        if isinstance(blocks, TableBlock):
            table = blocks
            return cls(table.table, [[table]])
        elif isinstance(blocks[0], TableBlock):
            table = cls._concat_blocks(blocks, axis=0)
            blocks = [[t] for t in blocks]
            return cls(table, blocks)
        else:
            table = cls._concat_blocks_horizontally_and_vertically(blocks)
            return cls(table, blocks)

    @classmethod
    def from_tables(cls, tables: list[Union[pa.Table, Table]], axis: int = 0) -> "ConcatenationTable":
        """Create `ConcatenationTable` from list of tables.

        Args:
            tables (list of `Table` or list of `pyarrow.Table`):
                List of tables.
            axis (`{0, 1}`, defaults to `0`, meaning over rows):
                Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns
                (horizontally).

                <Added version="1.6.0"/>
        """

        def to_blocks(table: Union[pa.Table, Table]) -> list[list[TableBlock]]:
            if isinstance(table, pa.Table):
                return [[InMemoryTable(table)]]
            elif isinstance(table, ConcatenationTable):
                return copy.deepcopy(table.blocks)
            else:
                return [[table]]

        def _slice_row_block(row_block: list[TableBlock], length: int) -> tuple[list[TableBlock], list[TableBlock]]:
            sliced = [table.slice(0, length) for table in row_block]
            remainder = [table.slice(length, len(row_block[0]) - length) for table in row_block]
            return sliced, remainder

        def _split_both_like(
            result: list[list[TableBlock]], blocks: list[list[TableBlock]]
        ) -> tuple[list[list[TableBlock]], list[list[TableBlock]]]:
            """
            Make sure each row_block contain the same num_rows to be able to concatenate them on axis=1.

            To do so, we modify both blocks sets to have the same row_blocks boundaries.
            For example, if `result` has 2 row_blocks of 3 rows and `blocks` has 3 row_blocks of 2 rows,
            we modify both to have 4 row_blocks of size 2, 1, 1 and 2:

                    [ x   x   x | x   x   x ]
                +   [ y   y | y   y | y   y ]
                -----------------------------
                =   [ x   x | x | x | x   x ]
                    [ y   y | y | y | y   y ]

            """
            result, blocks = list(result), list(blocks)
            new_result, new_blocks = [], []
            while result and blocks:
                # we slice the longest row block to save two row blocks of same length
                # and we replace the long row block by its remainder if necessary
                if len(result[0][0]) > len(blocks[0][0]):
                    new_blocks.append(blocks[0])
                    sliced, result[0] = _slice_row_block(result[0], len(blocks.pop(0)[0]))
                    new_result.append(sliced)
                elif len(result[0][0]) < len(blocks[0][0]):
                    new_result.append(result[0])
                    sliced, blocks[0] = _slice_row_block(blocks[0], len(result.pop(0)[0]))
                    new_blocks.append(sliced)
                else:
                    new_result.append(result.pop(0))
                    new_blocks.append(blocks.pop(0))
            if result or blocks:
                raise ValueError("Failed to concatenate on axis=1 because tables don't have the same number of rows")
            return new_result, new_blocks

        def _extend_blocks(
            result: list[list[TableBlock]], blocks: list[list[TableBlock]], axis: int = 0
        ) -> list[list[TableBlock]]:
            if axis == 0:
                result.extend(blocks)
            elif axis == 1:
                # We make sure each row_block have the same num_rows
                result, blocks = _split_both_like(result, blocks)
                for i, row_block in enumerate(blocks):
                    result[i].extend(row_block)
            return result

        blocks = to_blocks(tables[0])
        for table in tables[1:]:
            table_blocks = to_blocks(table)
            blocks = _extend_blocks(blocks, table_blocks, axis=axis)
        return cls.from_blocks(blocks)

    @property
    def _slices(self):
        offset = 0
        for tables in self.blocks:
            length = len(tables[0])
            yield (offset, length)
            offset += length

    def slice(self, offset=0, length=None):
        """
        Compute zero-copy slice of this Table.

        Args:
            offset (`int`, defaults to `0`):
                Offset from start of table to slice.
            length (`int`, defaults to `None`):
                Length of slice (default is until end of table starting from
                offset).

        Returns:
            `datasets.table.Table`
        """
        table = self.table.slice(offset, length=length)
        length = length if length is not None else self.num_rows - offset
        blocks = []
        for tables in self.blocks:
            n_rows = len(tables[0])
            if length == 0:
                break
            elif n_rows <= offset:
                offset = offset - n_rows
            elif n_rows <= offset + length:
                blocks.append([t.slice(offset) for t in tables])
                length, offset = length + offset - n_rows, 0
            else:
                blocks.append([t.slice(offset, length) for t in tables])
                length, offset = 0, 0
        return ConcatenationTable(table, blocks)

    def filter(self, mask, *args, **kwargs):
        """
        Select records from a Table. See `pyarrow.compute.filter` for full usage.
        """
        table = self.table.filter(mask, *args, **kwargs)
        blocks = []
        for (offset, length), tables in zip(self._slices, self.blocks):
            submask = mask.slice(offset, length)
            blocks.append([t.filter(submask, *args, **kwargs) for t in tables])
        return ConcatenationTable(table, blocks)

    def flatten(self, *args, **kwargs):
        """
        Flatten this Table.  Each column with a struct type is flattened
        into one column per struct field.  Other columns are left unchanged.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        table = table_flatten(self.table, *args, **kwargs)
        blocks = []
        for tables in self.blocks:
            blocks.append([t.flatten(*args, **kwargs) for t in tables])
        return ConcatenationTable(table, blocks)

    def combine_chunks(self, *args, **kwargs):
        """
        Make a new table by combining the chunks this table has.

        All the underlying chunks in the `ChunkedArray` of each column are
        concatenated into zero or one chunk.

        Args:
            memory_pool (`MemoryPool`, defaults to `None`):
                For memory allocations, if required, otherwise use default pool.

        Returns:
            `datasets.table.Table`
        """
        table = self.table.combine_chunks(*args, **kwargs)
        blocks = []
        for tables in self.blocks:
            blocks.append([t.combine_chunks(*args, **kwargs) for t in tables])
        return ConcatenationTable(table, blocks)

    def cast(self, target_schema, *args, **kwargs):
        """
        Cast table values to another schema.

        Args:
            target_schema (`Schema`):
                Schema to cast to, the names and order of fields must match.
            safe (`bool`, defaults to `True`):
                Check for overflows or other unsafe conversions.

        Returns:
            `datasets.table.Table`
        """
        from .features import Features

        table = table_cast(self.table, target_schema, *args, **kwargs)
        target_features = Features.from_arrow_schema(target_schema)
        blocks = []
        for subtables in self.blocks:
            new_tables = []
            fields = list(target_schema)
            for subtable in subtables:
                subfields = []
                for name in subtable.column_names:
                    subfields.append(fields.pop(next(i for i, field in enumerate(fields) if field.name == name)))
                subfeatures = Features({subfield.name: target_features[subfield.name] for subfield in subfields})
                subschema = subfeatures.arrow_schema
                new_tables.append(subtable.cast(subschema, *args, **kwargs))
            blocks.append(new_tables)
        return ConcatenationTable(table, blocks)

    def replace_schema_metadata(self, *args, **kwargs):
        """
        EXPERIMENTAL: Create shallow copy of table by replacing schema
        key-value metadata with the indicated new metadata (which may be `None`,
        which deletes any existing metadata).

        Args:
            metadata (`dict`, defaults to `None`):

        Returns:
            `datasets.table.Table`: shallow_copy
        """
        table = self.table.replace_schema_metadata(*args, **kwargs)
        blocks = []
        for tables in self.blocks:
            blocks.append([t.replace_schema_metadata(*args, **kwargs) for t in tables])
        return ConcatenationTable(table, self.blocks)

    def add_column(self, *args, **kwargs):
        """
        Add column to Table at position.

        A new table is returned with the column added, the original table
        object is left unchanged.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`: New table with the passed column added.
        """
        raise NotImplementedError()

    def append_column(self, *args, **kwargs):
        """
        Append column at end of columns.

        Args:
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:
                New table with the passed column added.
        """
        raise NotImplementedError()

    def remove_column(self, i, *args, **kwargs):
        """
        Create new Table with the indicated column removed.

        Args:
            i (`int`):
                Index of column to remove.

        Returns:
            `datasets.table.Table`:
                New table without the column.
        """
        table = self.table.remove_column(i, *args, **kwargs)
        name = self.table.column_names[i]
        blocks = []
        for tables in self.blocks:
            blocks.append(
                [
                    t.remove_column(t.column_names.index(name), *args, **kwargs) if name in t.column_names else t
                    for t in tables
                ]
            )
        return ConcatenationTable(table, blocks)

    def set_column(self, *args, **kwargs):
        """
        Replace column in Table at position.

        Args:
            i (`int`):
                Index to place the column at.
            field_ (`Union[str, pyarrow.Field]`):
                If a string is passed then the type is deduced from the column
                data.
            column (`Union[pyarrow.Array, List[pyarrow.Array]]`):
                Column data.

        Returns:
            `datasets.table.Table`:
                New table with the passed column set.
        """
        raise NotImplementedError()

    def rename_columns(self, names, *args, **kwargs):
        """
        Create new table with columns renamed to provided names.
        """
        table = self.table.rename_columns(names, *args, **kwargs)
        names = dict(zip(self.table.column_names, names))
        blocks = []
        for tables in self.blocks:
            blocks.append(
                [t.rename_columns([names[name] for name in t.column_names], *args, **kwargs) for t in tables]
            )
        return ConcatenationTable(table, blocks)

    def drop(self, columns, *args, **kwargs):
        """
        Drop one or more columns and return a new table.

        Args:
            columns (`List[str]`):
                List of field names referencing existing columns.

        Raises:
            `KeyError` : if any of the passed columns name are not existing.

        Returns:
            `datasets.table.Table`:
                New table without the columns.
        """
        table = self.table.drop(columns, *args, **kwargs)
        blocks = []
        for tables in self.blocks:
            blocks.append([t.drop([c for c in columns if c in t.column_names], *args, **kwargs) for t in tables])
        return ConcatenationTable(table, blocks)

    def select(self, columns, *args, **kwargs):
        """
        Select columns of the table.

        Returns a new table with the specified columns, and metadata preserved.

        Args:
            columns (:obj:`Union[List[str], List[int]]`):
                The column names or integer indices to select.

        Returns:
            :class:`datasets.table.Table`: New table with the specified columns, and metadata preserved.
        """
        table = self.table.select(columns, *args, **kwargs)
        blocks = []
        for tables in self.blocks:
            blocks.append([t.select([c for c in columns if c in t.column_names], *args, **kwargs) for t in tables])
        return ConcatenationTable(table, blocks)


def concat_tables(tables: list[Table], axis: int = 0) -> Table:
    """
    Concatenate tables.

    Args:
        tables (list of `Table`):
            List of tables to be concatenated.
        axis (`{0, 1}`, defaults to `0`, meaning over rows):
            Axis to concatenate over, where `0` means over rows (vertically) and `1` means over columns
            (horizontally).

            <Added version="1.6.0"/>
    Returns:
        `datasets.table.Table`:
            If the number of input tables is > 1, then the returned table is a `datasets.table.ConcatenationTable`.
            Otherwise if there's only one table, it is returned as is.
    """
    tables = list(tables)
    if len(tables) == 1:
        return tables[0]
    return ConcatenationTable.from_tables(tables, axis=axis)


def list_table_cache_files(table: Table) -> list[str]:
    """
    Get the cache files that are loaded by the table.
    Cache file are used when parts of the table come from the disk via memory mapping.

    Returns:
        `List[str]`:
            A list of paths to the cache files loaded by the table.
    """
    if isinstance(table, ConcatenationTable):
        cache_files = []
        for subtables in table.blocks:
            for subtable in subtables:
                cache_files += list_table_cache_files(subtable)
        return cache_files
    elif isinstance(table, MemoryMappedTable):
        return [table.path]
    else:
        return []


def _wrap_for_chunked_arrays(func):
    """Apply the function on each chunk of a `pyarrow.ChunkedArray`, or on the array directly"""

    def wrapper(array, *args, **kwargs):
        if isinstance(array, pa.ChunkedArray):
            return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
        else:
            return func(array, *args, **kwargs)

    return wrapper


def _are_list_values_of_length(array: pa.ListArray, length: int) -> bool:
    """Check if all the sub-lists of a `pa.ListArray` have the specified length."""
    return pc.all(pc.equal(array.value_lengths(), length)).as_py() or array.null_count == len(array)


def _combine_list_array_offsets_with_mask(array: pa.ListArray) -> pa.Array:
    """Add the null bitmap to the offsets of a `pa.ListArray`."""
    offsets = array.offsets
    if array.null_count > 0:
        offsets = pa.concat_arrays(
            [
                pc.replace_with_mask(offsets[:-1], array.is_null(), pa.nulls(len(array), pa.int32())),
                offsets[-1:],
            ]
        )
    return offsets


def _storage_type(type: pa.DataType) -> pa.DataType:
    """Convert a (possibly nested) `pa.ExtensionType` to its storage type."""
    if isinstance(type, pa.ExtensionType):
        return _storage_type(type.storage_type)
    elif isinstance(type, pa.StructType):
        return pa.struct([pa.field(field.name, _storage_type(field.type)) for field in type])
    elif isinstance(type, pa.ListType):
        return pa.list_(_storage_type(type.value_type))
    elif isinstance(type, pa.FixedSizeListType):
        return pa.list_(_storage_type(type.value_type), type.list_size)
    return type


def _short_str(value: Any) -> str:
    out = str(value)
    if len(out) > 3000:
        out = out[:1500] + "\n...\n" + out[-1500:]
    return out


@_wrap_for_chunked_arrays
def array_cast(
    array: pa.Array, pa_type: pa.DataType, allow_primitive_to_str: bool = True, allow_decimal_to_str: bool = True
) -> Union[pa.Array, pa.FixedSizeListArray, pa.ListArray, pa.StructArray, pa.ExtensionArray]:
    """Improved version of `pa.Array.cast`

    It supports casting `pa.StructArray` objects to re-order the fields.
    It also let you control certain aspects of the casting, e.g. whether
    to disable casting primitives (`booleans`, `floats` or `ints`) or
    disable casting decimals to strings.

    Args:
        array (`pa.Array`):
            PyArrow array to cast
        pa_type (`pa.DataType`):
            Target PyArrow type
        allow_primitive_to_str (`bool`, defaults to `True`):
            Whether to allow casting primitives to strings.
            Defaults to `True`.
        allow_decimal_to_str (`bool`, defaults to `True`):
            Whether to allow casting decimals to strings.
            Defaults to `True`.

    Raises:
        `pa.ArrowInvalidError`: if the arrow data casting fails
        `TypeError`: if the target type is not supported according, e.g.

            - if a field is missing
            - if casting from primitives to strings and `allow_primitive_to_str` is `False`
            - if casting from decimals to strings and `allow_decimal_to_str` is `False`

    Returns:
        `List[pyarrow.Array]`: the casted array
    """
    _c = partial(array_cast, allow_primitive_to_str=allow_primitive_to_str, allow_decimal_to_str=allow_decimal_to_str)
    if isinstance(array, pa.ExtensionArray):
        array = array.storage
    if isinstance(pa_type, pa.ExtensionType):
        return pa_type.wrap_array(_c(array, pa_type.storage_type))
    elif array.type == pa_type:
        return array
    elif pa.types.is_struct(array.type):
        if pa.types.is_struct(pa_type) and ({field.name for field in pa_type} == {field.name for field in array.type}):
            if array.type.num_fields == 0:
                return array
            arrays = [_c(array.field(field.name), field.type) for field in pa_type]
            return pa.StructArray.from_arrays(arrays, fields=list(pa_type), mask=array.is_null())
    elif pa.types.is_list(array.type) or pa.types.is_large_list(array.type):
        if pa.types.is_fixed_size_list(pa_type):
            if _are_list_values_of_length(array, pa_type.list_size):
                if array.null_count > 0:
                    # Ensure each null value in the array translates to [null] * pa_type.list_size in the array's values array
                    array_type = array.type
                    storage_type = _storage_type(array_type)
                    if array_type != storage_type:
                        # Temporarily convert to the storage type to support extension types in the slice operation
                        array = _c(array, storage_type)
                        array = pc.list_slice(array, 0, pa_type.list_size, return_fixed_size_list=True)
                        array = _c(array, array_type)
                    else:
                        array = pc.list_slice(array, 0, pa_type.list_size, return_fixed_size_list=True)
                    array_values = array.values
                    return pa.FixedSizeListArray.from_arrays(
                        _c(array_values, pa_type.value_type), pa_type.list_size, mask=array.is_null()
                    )
                else:
                    array_values = array.values[
                        array.offset * pa_type.list_size : (array.offset + len(array)) * pa_type.list_size
                    ]
                    return pa.FixedSizeListArray.from_arrays(_c(array_values, pa_type.value_type), pa_type.list_size)
        elif pa.types.is_list(pa_type):
            # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
            array_offsets = _combine_list_array_offsets_with_mask(array)
            return pa.ListArray.from_arrays(array_offsets, _c(array.values, pa_type.value_type))
        elif pa.types.is_large_list(pa_type):
            # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
            array_offsets = _combine_list_array_offsets_with_mask(array)
            return pa.LargeListArray.from_arrays(array_offsets, _c(array.values, pa_type.value_type))
    elif pa.types.is_fixed_size_list(array.type):
        if pa.types.is_fixed_size_list(pa_type):
            if pa_type.list_size == array.type.list_size:
                array_values = array.values[
                    array.offset * array.type.list_size : (array.offset + len(array)) * array.type.list_size
                ]
                return pa.FixedSizeListArray.from_arrays(
                    _c(array_values, pa_type.value_type), pa_type.list_size, mask=array.is_null()
                )
        elif pa.types.is_list(pa_type):
            array_offsets = (np.arange(len(array) + 1) + array.offset) * array.type.list_size
            return pa.ListArray.from_arrays(array_offsets, _c(array.values, pa_type.value_type), mask=array.is_null())
        elif pa.types.is_large_list(pa_type):
            array_offsets = (np.arange(len(array) + 1) + array.offset) * array.type.list_size
            return pa.LargeListArray.from_arrays(
                array_offsets, _c(array.values, pa_type.value_type), mask=array.is_null()
            )
    else:
        if pa.types.is_string(pa_type):
            if not allow_primitive_to_str and pa.types.is_primitive(array.type):
                raise TypeError(
                    f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)} "
                    f"since allow_primitive_to_str is set to {allow_primitive_to_str} "
                )
            if not allow_decimal_to_str and pa.types.is_decimal(array.type):
                raise TypeError(
                    f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)} "
                    f"and allow_decimal_to_str is set to {allow_decimal_to_str}"
                )
        if pa.types.is_null(pa_type) and not pa.types.is_null(array.type):
            raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}")
        return array.cast(pa_type)
    raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}")


@_wrap_for_chunked_arrays
def cast_array_to_feature(
    array: pa.Array, feature: "FeatureType", allow_primitive_to_str: bool = True, allow_decimal_to_str: bool = True
) -> pa.Array:
    """Cast an array to the arrow type that corresponds to the requested feature type.
    For custom features like [`Audio`] or [`Image`], it takes into account the "cast_storage" methods
    they defined to enable casting from other arrow types.

    Args:
        array (`pa.Array`):
            The PyArrow array to cast.
        feature (`datasets.features.FeatureType`):
            The target feature type.
        allow_primitive_to_str (`bool`, defaults to `True`):
            Whether to allow casting primitives to strings.
            Defaults to `True`.
        allow_decimal_to_str (`bool`, defaults to `True`):
            Whether to allow casting decimals to strings.
            Defaults to `True`.

    Raises:
        `pa.ArrowInvalidError`: if the arrow data casting fails
        `TypeError`: if the target type is not supported according, e.g.

            - if a field is missing
            - if casting from primitives and `allow_primitive_to_str` is `False`
            - if casting from decimals and `allow_decimal_to_str` is `False`

    Returns:
        array (`pyarrow.Array`): the casted array
    """
    from .features.features import LargeList, Sequence, get_nested_type

    _c = partial(
        cast_array_to_feature,
        allow_primitive_to_str=allow_primitive_to_str,
        allow_decimal_to_str=allow_decimal_to_str,
    )

    if isinstance(array, pa.ExtensionArray):
        array = array.storage
    if hasattr(feature, "cast_storage"):
        return feature.cast_storage(array)

    elif pa.types.is_struct(array.type):
        # feature must be a dict or Sequence(subfeatures_dict)
        if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
            sequence_kwargs = vars(feature).copy()
            feature = sequence_kwargs.pop("feature")
            feature = {name: Sequence(subfeature, **sequence_kwargs) for name, subfeature in feature.items()}
        if isinstance(feature, dict) and (array_fields := {field.name for field in array.type}) <= set(feature):
            null_array = pa.array([None] * len(array))
            arrays = [
                _c(array.field(name) if name in array_fields else null_array, subfeature)
                for name, subfeature in feature.items()
            ]
            return pa.StructArray.from_arrays(arrays, names=list(feature), mask=array.is_null())
    elif pa.types.is_list(array.type) or pa.types.is_large_list(array.type):
        # feature must be either [subfeature] or LargeList(subfeature) or Sequence(subfeature)
        if isinstance(feature, list):
            casted_array_values = _c(array.values, feature[0])
            if pa.types.is_list(array.type) and casted_array_values.type == array.values.type:
                # Both array and feature have equal list type and values (within the list) type
                return array
            else:
                # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
                array_offsets = _combine_list_array_offsets_with_mask(array)
                return pa.ListArray.from_arrays(array_offsets, casted_array_values)
        elif isinstance(feature, LargeList):
            casted_array_values = _c(array.values, feature.feature)
            if pa.types.is_large_list(array.type) and casted_array_values.type == array.values.type:
                # Both array and feature have equal large_list type and values (within the list) type
                return array
            else:
                # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
                array_offsets = _combine_list_array_offsets_with_mask(array)
                return pa.LargeListArray.from_arrays(array_offsets, casted_array_values)
        elif isinstance(feature, Sequence):
            if feature.length > -1:
                if _are_list_values_of_length(array, feature.length):
                    if array.null_count > 0:
                        # Ensure each null value in the array translates to [null] * pa_type.list_size in the array's values array
                        array_type = array.type
                        storage_type = _storage_type(array_type)
                        if array_type != storage_type:
                            # Temporarily convert to the storage type to support extension types in the slice operation
                            array = array_cast(
                                array,
                                storage_type,
                                allow_primitive_to_str=allow_primitive_to_str,
                                allow_decimal_to_str=allow_decimal_to_str,
                            )
                            array = pc.list_slice(array, 0, feature.length, return_fixed_size_list=True)
                            array = array_cast(
                                array,
                                array_type,
                                allow_primitive_to_str=allow_primitive_to_str,
                                allow_decimal_to_str=allow_decimal_to_str,
                            )
                        else:
                            array = pc.list_slice(array, 0, feature.length, return_fixed_size_list=True)
                        array_values = array.values
                        casted_array_values = _c(array_values, feature.feature)
                        return pa.FixedSizeListArray.from_arrays(
                            casted_array_values, feature.length, mask=array.is_null()
                        )
                    else:
                        array_values = array.values[
                            array.offset * feature.length : (array.offset + len(array)) * feature.length
                        ]
                        return pa.FixedSizeListArray.from_arrays(_c(array_values, feature.feature), feature.length)
            else:
                casted_array_values = _c(array.values, feature.feature)
                if pa.types.is_list(array.type) and casted_array_values.type == array.values.type:
                    # Both array and feature have equal list type and values (within the list) type
                    return array
                else:
                    # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
                    array_offsets = _combine_list_array_offsets_with_mask(array)
                    return pa.ListArray.from_arrays(array_offsets, casted_array_values)
    elif pa.types.is_fixed_size_list(array.type):
        # feature must be either [subfeature] or Sequence(subfeature)
        if isinstance(feature, list):
            array_offsets = (np.arange(len(array) + 1) + array.offset) * array.type.list_size
            return pa.ListArray.from_arrays(array_offsets, _c(array.values, feature[0]), mask=array.is_null())
        elif isinstance(feature, LargeList):
            array_offsets = (np.arange(len(array) + 1) + array.offset) * array.type.list_size
            return pa.LargeListArray.from_arrays(
                array_offsets, _c(array.values, feature.feature), mask=array.is_null()
            )
        elif isinstance(feature, Sequence):
            if feature.length > -1:
                if feature.length == array.type.list_size:
                    array_values = array.values[
                        array.offset * array.type.list_size : (array.offset + len(array)) * array.type.list_size
                    ]
                    casted_array_values = _c(array_values, feature.feature)
                    return pa.FixedSizeListArray.from_arrays(casted_array_values, feature.length, mask=array.is_null())
            else:
                array_offsets = (np.arange(len(array) + 1) + array.offset) * array.type.list_size
                return pa.ListArray.from_arrays(array_offsets, _c(array.values, feature.feature), mask=array.is_null())
    if pa.types.is_null(array.type):
        return array_cast(
            array,
            get_nested_type(feature),
            allow_primitive_to_str=allow_primitive_to_str,
            allow_decimal_to_str=allow_decimal_to_str,
        )
    elif not isinstance(feature, (Sequence, dict, list, tuple)):
        return array_cast(
            array,
            feature(),
            allow_primitive_to_str=allow_primitive_to_str,
            allow_decimal_to_str=allow_decimal_to_str,
        )
    raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}")


@_wrap_for_chunked_arrays
def embed_array_storage(array: pa.Array, feature: "FeatureType"):
    """Embed data into an arrays's storage.
    For custom features like Audio or Image, it takes into account the "embed_storage" methods
    they define to embed external data (e.g. an image file) into an array.

    <Added version="2.4.0"/>

    Args:
        array (`pa.Array`):
            The PyArrow array in which to embed data.
        feature (`datasets.features.FeatureType`):
            Array features.

    Raises:
        `TypeError`: if the target type is not supported according, e.g.

            - if a field is missing

    Returns:
         array (`pyarrow.Array`): the casted array
    """
    from .features import Sequence

    _e = embed_array_storage

    if isinstance(array, pa.ExtensionArray):
        array = array.storage
    if hasattr(feature, "embed_storage"):
        return feature.embed_storage(array)
    elif pa.types.is_struct(array.type):
        # feature must be a dict or Sequence(subfeatures_dict)
        if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
            feature = {
                name: Sequence(subfeature, length=feature.length) for name, subfeature in feature.feature.items()
            }
        if isinstance(feature, dict):
            arrays = [_e(array.field(name), subfeature) for name, subfeature in feature.items()]
            return pa.StructArray.from_arrays(arrays, names=list(feature), mask=array.is_null())
    elif pa.types.is_list(array.type):
        # feature must be either [subfeature] or Sequence(subfeature)
        # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
        array_offsets = _combine_list_array_offsets_with_mask(array)
        if isinstance(feature, list):
            return pa.ListArray.from_arrays(array_offsets, _e(array.values, feature[0]))
        if isinstance(feature, Sequence) and feature.length == -1:
            return pa.ListArray.from_arrays(array_offsets, _e(array.values, feature.feature))
    elif pa.types.is_large_list(array.type):
        # feature must be LargeList(subfeature)
        # Merge offsets with the null bitmap to avoid the "Null bitmap with offsets slice not supported" ArrowNotImplementedError
        array_offsets = _combine_list_array_offsets_with_mask(array)
        return pa.LargeListArray.from_arrays(array_offsets, _e(array.values, feature.feature))
    elif pa.types.is_fixed_size_list(array.type):
        # feature must be Sequence(subfeature)
        if isinstance(feature, Sequence) and feature.length > -1:
            array_values = array.values[
                array.offset * array.type.list_size : (array.offset + len(array)) * array.type.list_size
            ]
            embedded_array_values = _e(array_values, feature.feature)
            return pa.FixedSizeListArray.from_arrays(embedded_array_values, feature.length, mask=array.is_null())
    if not isinstance(feature, (Sequence, dict, list, tuple)):
        return array
    raise TypeError(f"Couldn't embed array of type\n{_short_str(array.type)}\nwith\n{_short_str(feature)}")


class CastError(ValueError):
    """When it's not possible to cast an Arrow table to a specific schema or set of features"""

    def __init__(self, *args, table_column_names: list[str], requested_column_names: list[str]) -> None:
        super().__init__(*args)
        self.table_column_names = table_column_names
        self.requested_column_names = requested_column_names

    def __reduce__(self):
        # Fix unpickling: TypeError: __init__() missing 2 required keyword-only arguments: 'table_column_names' and 'requested_column_names'
        return partial(
            CastError, table_column_names=self.table_column_names, requested_column_names=self.requested_column_names
        ), ()

    def details(self):
        new_columns = set(self.table_column_names) - set(self.requested_column_names)
        missing_columns = set(self.requested_column_names) - set(self.table_column_names)
        if new_columns and missing_columns:
            return f"there are {len(new_columns)} new columns ({_short_str(new_columns)}) and {len(missing_columns)} missing columns ({_short_str(missing_columns)})."
        elif new_columns:
            return f"there are {len(new_columns)} new columns ({_short_str(new_columns)})"
        else:
            return f"there are {len(missing_columns)} missing columns ({_short_str(missing_columns)})"


def cast_table_to_features(table: pa.Table, features: "Features"):
    """Cast a table to the arrow schema that corresponds to the requested features.

    Args:
        table (`pyarrow.Table`):
            PyArrow table to cast.
        features ([`Features`]):
            Target features.

    Returns:
        table (`pyarrow.Table`): the casted table
    """
    if sorted(table.column_names) != sorted(features):
        raise CastError(
            f"Couldn't cast\n{_short_str(table.schema)}\nto\n{_short_str(features)}\nbecause column names don't match",
            table_column_names=table.column_names,
            requested_column_names=list(features),
        )
    arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
    return pa.Table.from_arrays(arrays, schema=features.arrow_schema)


def cast_table_to_schema(table: pa.Table, schema: pa.Schema):
    """Cast a table to the arrow schema. Different from `cast_table_to_features`, this method can preserve nullability.

    Args:
        table (`pa.Table`):
            PyArrow table to cast.
        features ([`Features`]):
            Target features.

    Returns:
        `pa.Table`: the casted table
    """
    from .features import Features

    features = Features.from_arrow_schema(schema)
    table_column_names = set(table.column_names)
    if not table_column_names <= set(schema.names):
        raise CastError(
            f"Couldn't cast\n{_short_str(table.schema)}\nto\n{_short_str(features)}\nbecause column names don't match",
            table_column_names=table.column_names,
            requested_column_names=list(features),
        )
    arrays = [
        cast_array_to_feature(
            table[name] if name in table_column_names else pa.array([None] * len(table), type=schema.field(name).type),
            feature,
        )
        for name, feature in features.items()
    ]
    return pa.Table.from_arrays(arrays, schema=schema)


def embed_table_storage(table: pa.Table):
    """Embed external data into a table's storage.

    <Added version="2.4.0"/>

    Args:
        table (`pyarrow.Table`):
            PyArrow table in which to embed data.

    Returns:
        table (`pyarrow.Table`): the table with embedded data
    """
    from .features.features import Features, require_storage_embed

    features = Features.from_arrow_schema(table.schema)
    arrays = [
        embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]
        for name, feature in features.items()
    ]
    return pa.Table.from_arrays(arrays, schema=features.arrow_schema)


def table_cast(table: pa.Table, schema: pa.Schema):
    """Improved version of `pa.Table.cast`.

    It supports casting to feature types stored in the schema metadata.

    Args:
        table (`pyarrow.Table`):
            PyArrow table to cast.
        schema (`pyarrow.Schema`):
            Target PyArrow schema.

    Returns:
        table (`pyarrow.Table`): the casted table
    """
    if table.schema != schema:
        return cast_table_to_schema(table, schema)
    elif table.schema.metadata != schema.metadata:
        return table.replace_schema_metadata(schema.metadata)
    else:
        return table


def table_flatten(table: pa.Table):
    """Improved version of `pa.Table.flatten`.

    It behaves as `pa.Table.flatten` in a sense it does 1-step flatten of the columns with a struct type into one column per struct field,
    but updates the metadata and skips decodable features unless the `decode` attribute of these features is set to False.

    Args:
        table (`pa.Table`):
            PyArrow table to flatten.

    Returns:
        `Table`: the flattened table
    """
    from .features import Features

    features = Features.from_arrow_schema(table.schema)
    if any(hasattr(subfeature, "flatten") and subfeature.flatten() == subfeature for subfeature in features.values()):
        flat_arrays = []
        flat_column_names = []
        for field in table.schema:
            array = table.column(field.name)
            subfeature = features[field.name]
            if pa.types.is_struct(field.type) and (
                not hasattr(subfeature, "flatten") or subfeature.flatten() != subfeature
            ):
                flat_arrays.extend(array.flatten())
                flat_column_names.extend([f"{field.name}.{subfield.name}" for subfield in field.type])
            else:
                flat_arrays.append(array)
                flat_column_names.append(field.name)
        flat_table = pa.Table.from_arrays(
            flat_arrays,
            names=flat_column_names,
        )
    else:
        flat_table = table.flatten()
    # Preserve complex types in the metadata
    flat_features = features.flatten(max_depth=2)
    flat_features = Features({column_name: flat_features[column_name] for column_name in flat_table.column_names})
    return flat_table.replace_schema_metadata(flat_features.arrow_schema.metadata)


def table_visitor(table: pa.Table, function: Callable[[pa.Array], None]):
    """Visit all arrays in a table and apply a function to them.

    Args:
        table (`pyarrow.Table`):
            PyArrow table to visit.
        function (`Callable[[pa.Array], None]`):
            Function to apply to each array.
    """
    from .features import Features, Sequence

    features = Features.from_arrow_schema(table.schema)

    def _visit(array, feature):
        if isinstance(array, pa.ChunkedArray):
            for chunk in array.chunks:
                _visit(chunk, feature)
        else:
            if isinstance(array, pa.ExtensionArray):
                array = array.storage
            function(array, feature)
            if pa.types.is_struct(array.type) and not hasattr(feature, "cast_storage"):
                if isinstance(feature, Sequence) and isinstance(feature.feature, dict):
                    feature = {
                        name: Sequence(subfeature, length=feature.length)
                        for name, subfeature in feature.feature.items()
                    }
                for name, subfeature in feature.items():
                    _visit(array.field(name), subfeature)
            elif pa.types.is_list(array.type):
                if isinstance(feature, list):
                    _visit(array.values, feature[0])
                elif isinstance(feature, Sequence):
                    _visit(array.values, feature.feature)

    for name, feature in features.items():
        _visit(table[name], feature)


def table_iter(table: Table, batch_size: int, drop_last_batch=False) -> Iterator[pa.Table]:
    """Iterate over sub-tables of size `batch_size`.

    Args:
        table (`pyarrow.Table`):
            PyArrow table to iterate over.
        batch_size (`int`):
            Size of each sub-table to yield.
        drop_last_batch (`bool`, defaults to `False`):
            Drop the last batch if it is smaller than `batch_size`.
    """
    chunks_buffer = []
    chunks_buffer_size = 0
    for chunk in table.to_reader(max_chunksize=batch_size):
        if len(chunk) == 0:
            continue
        elif chunks_buffer_size + len(chunk) < batch_size:
            chunks_buffer.append(chunk)
            chunks_buffer_size += len(chunk)
            continue
        elif chunks_buffer_size + len(chunk) == batch_size:
            chunks_buffer.append(chunk)
            yield pa.Table.from_batches(chunks_buffer)
            chunks_buffer = []
            chunks_buffer_size = 0
        else:
            cropped_chunk_length = batch_size - chunks_buffer_size
            chunks_buffer.append(chunk.slice(0, cropped_chunk_length))
            yield pa.Table.from_batches(chunks_buffer)
            chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)]
            chunks_buffer_size = len(chunk) - cropped_chunk_length
    if not drop_last_batch and chunks_buffer:
        yield pa.Table.from_batches(chunks_buffer)