File size: 23,430 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Splits related API."""
import abc
import collections
import copy
import dataclasses
import re
from dataclasses import dataclass
from typing import Optional, Union
from .arrow_reader import FileInstructions, make_file_instructions
from .naming import _split_re
from .utils.py_utils import NonMutableDict, asdict
@dataclass
class SplitInfo:
name: str = dataclasses.field(default="", metadata={"include_in_asdict_even_if_is_default": True})
num_bytes: int = dataclasses.field(default=0, metadata={"include_in_asdict_even_if_is_default": True})
num_examples: int = dataclasses.field(default=0, metadata={"include_in_asdict_even_if_is_default": True})
shard_lengths: Optional[list[int]] = None
# Deprecated
# For backward compatibility, this field needs to always be included in files like
# dataset_infos.json and dataset_info.json files
# To do so, we always include it in the output of datasets.utils.py_utils.asdict(split_info)
dataset_name: Optional[str] = dataclasses.field(
default=None, metadata={"include_in_asdict_even_if_is_default": True}
)
@property
def file_instructions(self):
"""Returns the list of dict(filename, take, skip)."""
# `self.dataset_name` is assigned in `SplitDict.add()`.
instructions = make_file_instructions(
name=self.dataset_name,
split_infos=[self],
instruction=str(self.name),
)
return instructions.file_instructions
@dataclass
class SubSplitInfo:
"""Wrapper around a sub split info.
This class expose info on the subsplit:
```
ds, info = datasets.load_dataset(..., split='train[75%:]', with_info=True)
info.splits['train[75%:]'].num_examples
```
"""
instructions: FileInstructions
@property
def num_examples(self):
"""Returns the number of example in the subsplit."""
return self.instructions.num_examples
@property
def file_instructions(self):
"""Returns the list of dict(filename, take, skip)."""
return self.instructions.file_instructions
class SplitBase(metaclass=abc.ABCMeta):
# pylint: disable=line-too-long
"""Abstract base class for Split compositionality.
See the
[guide on splits](../loading#slice-splits)
for more information.
There are three parts to the composition:
1) The splits are composed (defined, merged, split,...) together before
calling the `.as_dataset()` function. This is done with the `__add__`,
`__getitem__`, which return a tree of `SplitBase` (whose leaf
are the `NamedSplit` objects)
```
split = datasets.Split.TRAIN + datasets.Split.TEST.subsplit(datasets.percent[:50])
```
2) The `SplitBase` is forwarded to the `.as_dataset()` function
to be resolved into actual read instruction. This is done by the
`.get_read_instruction()` method which takes the real dataset splits
(name, number of shards,...) and parse the tree to return a
`SplitReadInstruction()` object
```
read_instruction = split.get_read_instruction(self.info.splits)
```
3) The `SplitReadInstruction` is then used in the `tf.data.Dataset` pipeline
to define which files to read and how to skip examples within file.
"""
# pylint: enable=line-too-long
@abc.abstractmethod
def get_read_instruction(self, split_dict):
"""Parse the descriptor tree and compile all read instructions together.
Args:
split_dict: `dict`, The `dict[split_name, SplitInfo]` of the dataset
Returns:
split_read_instruction: `SplitReadInstruction`
"""
raise NotImplementedError("Abstract method")
def __eq__(self, other):
"""Equality: datasets.Split.TRAIN == 'train'."""
if isinstance(other, (NamedSplit, str)):
return False
raise NotImplementedError("Equality is not implemented between merged/sub splits.")
def __ne__(self, other):
"""InEquality: datasets.Split.TRAIN != 'test'."""
return not self.__eq__(other)
def __add__(self, other):
"""Merging: datasets.Split.TRAIN + datasets.Split.TEST."""
return _SplitMerged(self, other)
def subsplit(self, arg=None, k=None, percent=None, weighted=None): # pylint: disable=redefined-outer-name
"""Divides this split into subsplits.
There are 3 ways to define subsplits, which correspond to the 3
arguments `k` (get `k` even subsplits), `percent` (get a slice of the
dataset with `datasets.percent`), and `weighted` (get subsplits with proportions
specified by `weighted`).
Example::
```
# 50% train, 50% test
train, test = split.subsplit(k=2)
# 50% train, 25% test, 25% validation
train, test, validation = split.subsplit(weighted=[2, 1, 1])
# Extract last 20%
subsplit = split.subsplit(datasets.percent[-20:])
```
Warning: k and weighted will be converted into percent which mean that
values below the percent will be rounded up or down. The final split may be
bigger to deal with remainders. For instance:
```
train, test, valid = split.subsplit(k=3) # 33%, 33%, 34%
s1, s2, s3, s4 = split.subsplit(weighted=[2, 2, 1, 1]) # 33%, 33%, 16%, 18%
```
Args:
arg: If no kwargs are given, `arg` will be interpreted as one of
`k`, `percent`, or `weighted` depending on the type.
For example:
```
split.subsplit(10) # Equivalent to split.subsplit(k=10)
split.subsplit(datasets.percent[:-20]) # percent=datasets.percent[:-20]
split.subsplit([1, 1, 2]) # weighted=[1, 1, 2]
```
k: `int` If set, subdivide the split into `k` equal parts.
percent: `datasets.percent slice`, return a single subsplit corresponding to
a slice of the original split. For example:
`split.subsplit(datasets.percent[-20:]) # Last 20% of the dataset`.
weighted: `list[int]`, return a list of subsplits whose proportions match
the normalized sum of the list. For example:
`split.subsplit(weighted=[1, 1, 2]) # 25%, 25%, 50%`.
Returns:
A subsplit or list of subsplits extracted from this split object.
"""
# Note that the percent kwargs redefine the outer name datasets.percent. This
# is done for consistency (.subsplit(percent=datasets.percent[:40]))
if sum(bool(x) for x in (arg, k, percent, weighted)) != 1:
raise ValueError("Only one argument of subsplit should be set.")
# Auto deduce k
if isinstance(arg, int):
k = arg
elif isinstance(arg, slice):
percent = arg
elif isinstance(arg, list):
weighted = arg
if not (k or percent or weighted):
raise ValueError(
f"Invalid split argument {arg}. Only list, slice and int supported. "
"One of k, weighted or percent should be set to a non empty value."
)
def assert_slices_coverage(slices):
# Ensure that the expended slices cover all percents.
assert sum((list(range(*s.indices(100))) for s in slices), []) == list(range(100))
if k:
if not 0 < k <= 100:
raise ValueError(f"Subsplit k should be between 0 and 100, got {k}")
shift = 100 // k
slices = [slice(i * shift, (i + 1) * shift) for i in range(k)]
# Round up last element to ensure all elements are taken
slices[-1] = slice(slices[-1].start, 100)
# Internal check to ensure full coverage
assert_slices_coverage(slices)
return tuple(_SubSplit(self, s) for s in slices)
elif percent:
return _SubSplit(self, percent)
elif weighted:
# Normalize the weighted sum
total = sum(weighted)
weighted = [100 * x // total for x in weighted]
# Create the slice for each of the elements
start = 0
stop = 0
slices = []
for v in weighted:
stop += v
slices.append(slice(start, stop))
start = stop
# Round up last element to ensure all elements are taken
slices[-1] = slice(slices[-1].start, 100)
# Internal check to ensure full coverage
assert_slices_coverage(slices)
return tuple(_SubSplit(self, s) for s in slices)
else:
# Should not be possible
raise ValueError("Could not determine the split")
# 2 requirements:
# 1. datasets.percent be sliceable
# 2. datasets.percent be documented
#
# Instances are not documented, so we want datasets.percent to be a class, but to
# have it be sliceable, we need this metaclass.
class PercentSliceMeta(type):
def __getitem__(cls, slice_value):
if not isinstance(slice_value, slice):
raise ValueError(f"datasets.percent should only be called with slice, not {slice_value}")
return slice_value
class PercentSlice(metaclass=PercentSliceMeta):
# pylint: disable=line-too-long
"""Syntactic sugar for defining slice subsplits: `datasets.percent[75:-5]`.
See the
[guide on splits](../loading#slice-splits)
for more information.
"""
# pylint: enable=line-too-long
pass
percent = PercentSlice # pylint: disable=invalid-name
class _SplitMerged(SplitBase):
"""Represent two split descriptors merged together."""
def __init__(self, split1, split2):
self._split1 = split1
self._split2 = split2
def get_read_instruction(self, split_dict):
read_instruction1 = self._split1.get_read_instruction(split_dict)
read_instruction2 = self._split2.get_read_instruction(split_dict)
return read_instruction1 + read_instruction2
def __repr__(self):
return f"({repr(self._split1)} + {repr(self._split2)})"
class _SubSplit(SplitBase):
"""Represent a sub split of a split descriptor."""
def __init__(self, split, slice_value):
self._split = split
self._slice_value = slice_value
def get_read_instruction(self, split_dict):
return self._split.get_read_instruction(split_dict)[self._slice_value]
def __repr__(self):
slice_str = "{start}:{stop}"
if self._slice_value.step is not None:
slice_str += ":{step}"
slice_str = slice_str.format(
start="" if self._slice_value.start is None else self._slice_value.start,
stop="" if self._slice_value.stop is None else self._slice_value.stop,
step=self._slice_value.step,
)
return f"{repr(self._split)}(datasets.percent[{slice_str}])"
class NamedSplit(SplitBase):
"""Descriptor corresponding to a named split (train, test, ...).
Example:
Each descriptor can be composed with other using addition or slice:
```py
split = datasets.Split.TRAIN.subsplit(datasets.percent[0:25]) + datasets.Split.TEST
```
The resulting split will correspond to 25% of the train split merged with
100% of the test split.
A split cannot be added twice, so the following will fail:
```py
split = (
datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
datasets.Split.TRAIN.subsplit(datasets.percent[75:])
) # Error
split = datasets.Split.TEST + datasets.Split.ALL # Error
```
The slices can be applied only one time. So the following are valid:
```py
split = (
datasets.Split.TRAIN.subsplit(datasets.percent[:25]) +
datasets.Split.TEST.subsplit(datasets.percent[:50])
)
split = (datasets.Split.TRAIN + datasets.Split.TEST).subsplit(datasets.percent[:50])
```
But this is not valid:
```py
train = datasets.Split.TRAIN
test = datasets.Split.TEST
split = train.subsplit(datasets.percent[:25]).subsplit(datasets.percent[:25])
split = (train.subsplit(datasets.percent[:25]) + test).subsplit(datasets.percent[:50])
```
"""
def __init__(self, name):
self._name = name
split_names_from_instruction = [split_instruction.split("[")[0] for split_instruction in name.split("+")]
for split_name in split_names_from_instruction:
if not re.match(_split_re, split_name):
raise ValueError(f"Split name should match '{_split_re}' but got '{split_name}'.")
def __str__(self):
return self._name
def __repr__(self):
return f"NamedSplit({self._name!r})"
def __eq__(self, other):
"""Equality: datasets.Split.TRAIN == 'train'."""
if isinstance(other, NamedSplit):
return self._name == other._name # pylint: disable=protected-access
elif isinstance(other, SplitBase):
return False
elif isinstance(other, str): # Other should be string
return self._name == other
else:
return False
def __lt__(self, other):
return self._name < other._name # pylint: disable=protected-access
def __hash__(self):
return hash(self._name)
def get_read_instruction(self, split_dict):
return SplitReadInstruction(split_dict[self._name])
class NamedSplitAll(NamedSplit):
"""Split corresponding to the union of all defined dataset splits."""
def __init__(self):
super().__init__("all")
def __repr__(self):
return "NamedSplitAll()"
def get_read_instruction(self, split_dict):
# Merge all dataset split together
read_instructions = [SplitReadInstruction(s) for s in split_dict.values()]
return sum(read_instructions, SplitReadInstruction())
class Split:
# pylint: disable=line-too-long
"""`Enum` for dataset splits.
Datasets are typically split into different subsets to be used at various
stages of training and evaluation.
- `TRAIN`: the training data.
- `VALIDATION`: the validation data. If present, this is typically used as
evaluation data while iterating on a model (e.g. changing hyperparameters,
model architecture, etc.).
- `TEST`: the testing data. This is the data to report metrics on. Typically
you do not want to use this during model iteration as you may overfit to it.
- `ALL`: the union of all defined dataset splits.
All splits, including compositions inherit from `datasets.SplitBase`.
See the [guide](../load_hub#splits) on splits for more information.
Example:
```py
>>> datasets.SplitGenerator(
... name=datasets.Split.TRAIN,
... gen_kwargs={"split_key": "train", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
... name=datasets.Split.VALIDATION,
... gen_kwargs={"split_key": "validation", "files": dl_manager.download_and extract(url)},
... ),
... datasets.SplitGenerator(
... name=datasets.Split.TEST,
... gen_kwargs={"split_key": "test", "files": dl_manager.download_and extract(url)},
... )
```
"""
# pylint: enable=line-too-long
TRAIN = NamedSplit("train")
TEST = NamedSplit("test")
VALIDATION = NamedSplit("validation")
ALL = NamedSplitAll()
def __new__(cls, name):
"""Create a custom split with datasets.Split('custom_name')."""
return NamedSplitAll() if name == "all" else NamedSplit(name)
# Similar to SplitInfo, but contain an additional slice info
SlicedSplitInfo = collections.namedtuple(
"SlicedSplitInfo",
[
"split_info",
"slice_value",
],
) # noqa: E231
class SplitReadInstruction:
"""Object containing the reading instruction for the dataset.
Similarly to `SplitDescriptor` nodes, this object can be composed with itself,
but the resolution happens instantaneously, instead of keeping track of the
tree, such as all instructions are compiled and flattened in a single
SplitReadInstruction object containing the list of files and slice to use.
Once resolved, the instructions can be accessed with:
```
read_instructions.get_list_sliced_split_info() # List of splits to use
```
"""
def __init__(self, split_info=None):
self._splits = NonMutableDict(error_msg="Overlap between splits. Split {key} has been added with itself.")
if split_info:
self.add(SlicedSplitInfo(split_info=split_info, slice_value=None))
def add(self, sliced_split):
"""Add a SlicedSplitInfo the read instructions."""
# TODO(epot): Check that the number of examples per shard % 100 == 0
# Otherwise the slices value may be unbalanced and not exactly reflect the
# requested slice.
self._splits[sliced_split.split_info.name] = sliced_split
def __add__(self, other):
"""Merging split together."""
# Will raise error if a split has already be added (NonMutableDict)
# TODO(epot): If a split is already added but there is no overlap between
# the slices, should merge the slices (ex: [:10] + [80:])
split_instruction = SplitReadInstruction()
split_instruction._splits.update(self._splits) # pylint: disable=protected-access
split_instruction._splits.update(other._splits) # pylint: disable=protected-access
return split_instruction
def __getitem__(self, slice_value):
"""Sub-splits."""
# Will raise an error if a split has already been sliced
split_instruction = SplitReadInstruction()
for v in self._splits.values():
if v.slice_value is not None:
raise ValueError(f"Trying to slice Split {v.split_info.name} which has already been sliced")
v = v._asdict()
v["slice_value"] = slice_value
split_instruction.add(SlicedSplitInfo(**v))
return split_instruction
def get_list_sliced_split_info(self):
return list(self._splits.values())
class SplitDict(dict):
"""Split info object."""
def __init__(self, *args, dataset_name=None, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_name = dataset_name
def __getitem__(self, key: Union[SplitBase, str]):
# 1st case: The key exists: `info.splits['train']`
if str(key) in self:
return super().__getitem__(str(key))
# 2nd case: Uses instructions: `info.splits['train[50%]']`
else:
instructions = make_file_instructions(
name=self.dataset_name,
split_infos=self.values(),
instruction=key,
)
return SubSplitInfo(instructions)
def __setitem__(self, key: Union[SplitBase, str], value: SplitInfo):
if key != value.name:
raise ValueError(f"Cannot add elem. (key mismatch: '{key}' != '{value.name}')")
super().__setitem__(key, value)
def add(self, split_info: SplitInfo):
"""Add the split info."""
if split_info.name in self:
raise ValueError(f"Split {split_info.name} already present")
split_info.dataset_name = self.dataset_name
super().__setitem__(split_info.name, split_info)
@property
def total_num_examples(self):
"""Return the total number of examples."""
return sum(s.num_examples for s in self.values())
@classmethod
def from_split_dict(cls, split_infos: Union[list, dict], dataset_name: Optional[str] = None):
"""Returns a new SplitDict initialized from a Dict or List of `split_infos`."""
if isinstance(split_infos, dict):
split_infos = list(split_infos.values())
if dataset_name is None:
dataset_name = split_infos[0].get("dataset_name") if split_infos else None
split_dict = cls(dataset_name=dataset_name)
for split_info in split_infos:
if isinstance(split_info, dict):
split_info = SplitInfo(**split_info)
split_dict.add(split_info)
return split_dict
def to_split_dict(self):
"""Returns a list of SplitInfo protos that we have."""
out = []
for split_name, split_info in self.items():
split_info = copy.deepcopy(split_info)
split_info.name = split_name
out.append(split_info)
return out
def copy(self):
return SplitDict.from_split_dict(self.to_split_dict(), self.dataset_name)
def _to_yaml_list(self) -> list:
out = [asdict(s) for s in self.to_split_dict()]
# we don't need the shard lengths in YAML, since it depends on max_shard_size and num_proc
for split_info_dict in out:
split_info_dict.pop("shard_lengths", None)
# we don't need the dataset_name attribute that is deprecated
for split_info_dict in out:
split_info_dict.pop("dataset_name", None)
return out
@classmethod
def _from_yaml_list(cls, yaml_data: list) -> "SplitDict":
return cls.from_split_dict(yaml_data)
@dataclass
class SplitGenerator:
"""Defines the split information for the generator.
This should be used as returned value of
`GeneratorBasedBuilder._split_generators`.
See `GeneratorBasedBuilder._split_generators` for more info and example
of usage.
Args:
name (`str`):
Name of the `Split` for which the generator will
create the examples.
**gen_kwargs (additional keyword arguments):
Keyword arguments to forward to the `DatasetBuilder._generate_examples` method
of the builder.
Example:
```py
>>> datasets.SplitGenerator(
... name=datasets.Split.TRAIN,
... gen_kwargs={"split_key": "train", "files": dl_manager.download_and_extract(url)},
... )
```
"""
name: str
gen_kwargs: dict = dataclasses.field(default_factory=dict)
split_info: SplitInfo = dataclasses.field(init=False)
def __post_init__(self):
self.name = str(self.name) # Make sure we convert NamedSplits in strings
NamedSplit(self.name) # check that it's a valid split name
self.split_info = SplitInfo(name=self.name)
|