File size: 14,689 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import posixpath
import uuid
from collections.abc import Iterable
from dataclasses import dataclass
from itertools import islice
from typing import TYPE_CHECKING, Optional, Union

import numpy as np
import pyarrow as pa

import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
    is_remote_filesystem,
    rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils import experimental
from datasets.utils.py_utils import convert_file_size_to_int


logger = datasets.utils.logging.get_logger(__name__)

if TYPE_CHECKING:
    import pyspark
    import pyspark.sql


@dataclass
class SparkConfig(datasets.BuilderConfig):
    """BuilderConfig for Spark."""

    features: Optional[datasets.Features] = None

    def __post_init__(self):
        super().__post_init__()


def _reorder_dataframe_by_partition(df: "pyspark.sql.DataFrame", new_partition_order: list[int]):
    df_combined = df.select("*").where(f"part_id = {new_partition_order[0]}")
    for partition_id in new_partition_order[1:]:
        partition_df = df.select("*").where(f"part_id = {partition_id}")
        df_combined = df_combined.union(partition_df)
    return df_combined


def _generate_iterable_examples(
    df: "pyspark.sql.DataFrame",
    partition_order: list[int],
    state_dict: Optional[dict] = None,
):
    import pyspark

    df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id"))
    partition_idx_start = state_dict["partition_idx"] if state_dict else 0
    partition_df = _reorder_dataframe_by_partition(df_with_partition_id, partition_order[partition_idx_start:])
    # pipeline next partition in parallel to hide latency
    rows = partition_df.toLocalIterator(prefetchPartitions=True)
    curr_partition = None
    row_id = state_dict["partition_example_idx"] if state_dict else 0
    for row in islice(rows, row_id, None):
        row_as_dict = row.asDict()
        part_id = row_as_dict["part_id"]
        row_as_dict.pop("part_id")
        if curr_partition != part_id:
            if state_dict and curr_partition is not None:
                state_dict["partition_idx"] += 1
            curr_partition = part_id
            row_id = 0
        if state_dict:
            state_dict["partition_example_idx"] = row_id + 1
        yield f"{part_id}_{row_id}", row_as_dict
        row_id += 1


class SparkExamplesIterable(_BaseExamplesIterable):
    def __init__(
        self,
        df: "pyspark.sql.DataFrame",
        partition_order=None,
    ):
        super().__init__()
        self.df = df
        self.partition_order = partition_order or range(self.df.rdd.getNumPartitions())

    def _init_state_dict(self) -> dict:
        self._state_dict = {"partition_idx": 0, "partition_example_idx": 0}
        return self._state_dict

    @experimental
    def load_state_dict(self, state_dict: dict) -> dict:
        return super().load_state_dict(state_dict)

    def __iter__(self):
        yield from _generate_iterable_examples(self.df, self.partition_order, self._state_dict)

    def shuffle_data_sources(self, generator: np.random.Generator) -> "SparkExamplesIterable":
        partition_order = list(range(self.df.rdd.getNumPartitions()))
        generator.shuffle(partition_order)
        return SparkExamplesIterable(self.df, partition_order=partition_order)

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SparkExamplesIterable":
        partition_order = self.split_shard_indices_by_worker(num_shards=num_shards, index=index, contiguous=contiguous)
        return SparkExamplesIterable(self.df, partition_order=partition_order)

    @property
    def num_shards(self) -> int:
        return len(self.partition_order)


class Spark(datasets.DatasetBuilder):
    BUILDER_CONFIG_CLASS = SparkConfig

    def __init__(
        self,
        df: "pyspark.sql.DataFrame",
        cache_dir: str = None,
        working_dir: str = None,
        **config_kwargs,
    ):
        import pyspark

        self._spark = pyspark.sql.SparkSession.builder.getOrCreate()
        self.df = df
        self._working_dir = working_dir

        super().__init__(
            cache_dir=cache_dir,
            config_name=str(self.df.semanticHash()),
            **config_kwargs,
        )

    def _validate_cache_dir(self):
        # Define this so that we don't reference self in create_cache_and_write_probe, which will result in a pickling
        # error due to pickling the SparkContext.
        cache_dir = self._cache_dir

        # Returns the path of the created file.
        def create_cache_and_write_probe(context):
            # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
            # already exist.
            os.makedirs(cache_dir, exist_ok=True)
            probe_file = os.path.join(cache_dir, "fs_test" + uuid.uuid4().hex)
            # Opening the file in append mode will create a new file unless it already exists, in which case it will not
            # change the file contents.
            open(probe_file, "a")
            return [probe_file]

        if self._spark.conf.get("spark.master", "").startswith("local"):
            return

        # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
        # accessible to the driver.
        # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
        if self._cache_dir:
            probe = (
                self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(create_cache_and_write_probe).collect()
            )
            if os.path.isfile(probe[0]):
                return

        raise ValueError(
            "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir"
        )

    def _info(self):
        return datasets.DatasetInfo(features=self.config.features)

    def _split_generators(self, dl_manager: datasets.download.download_manager.DownloadManager):
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN)]

    def _repartition_df_if_needed(self, max_shard_size):
        import pyspark

        def get_arrow_batch_size(it):
            for batch in it:
                yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]})

        df_num_rows = self.df.count()
        sample_num_rows = df_num_rows if df_num_rows <= 100 else 100
        # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
        approx_bytes_per_row = (
            self.df.limit(sample_num_rows)
            .repartition(1)
            .mapInArrow(get_arrow_batch_size, "batch_bytes: long")
            .agg(pyspark.sql.functions.sum("batch_bytes").alias("sample_bytes"))
            .collect()[0]
            .sample_bytes
            / sample_num_rows
        )
        approx_total_size = approx_bytes_per_row * df_num_rows
        if approx_total_size > max_shard_size:
            # Make sure there is at least one row per partition.
            new_num_partitions = min(df_num_rows, int(approx_total_size / max_shard_size))
            self.df = self.df.repartition(new_num_partitions)

    def _prepare_split_single(
        self,
        fpath: str,
        file_format: str,
        max_shard_size: int,
    ) -> Iterable[tuple[int, bool, Union[int, tuple]]]:
        import pyspark

        writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
        working_fpath = os.path.join(self._working_dir, os.path.basename(fpath)) if self._working_dir else fpath
        embed_local_files = file_format == "parquet"

        # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
        # pickling the SparkContext.
        features = self.config.features
        writer_batch_size = self._writer_batch_size
        storage_options = self._fs.storage_options

        def write_arrow(it):
            # Within the same SparkContext, no two task attempts will share the same attempt ID.
            task_id = pyspark.TaskContext().taskAttemptId()
            first_batch = next(it, None)
            if first_batch is None:
                # Some partitions might not receive any data.
                return pa.RecordBatch.from_arrays(
                    [[task_id], [0], [0]],
                    names=["task_id", "num_examples", "num_bytes"],
                )
            shard_id = 0
            writer = writer_class(
                features=features,
                path=working_fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
                writer_batch_size=writer_batch_size,
                storage_options=storage_options,
                embed_local_files=embed_local_files,
            )
            table = pa.Table.from_batches([first_batch])
            writer.write_table(table)
            for batch in it:
                if max_shard_size is not None and writer._num_bytes >= max_shard_size:
                    num_examples, num_bytes = writer.finalize()
                    writer.close()
                    yield pa.RecordBatch.from_arrays(
                        [[task_id], [num_examples], [num_bytes]],
                        names=["task_id", "num_examples", "num_bytes"],
                    )
                    shard_id += 1
                    writer = writer_class(
                        features=writer._features,
                        path=working_fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
                        writer_batch_size=writer_batch_size,
                        storage_options=storage_options,
                        embed_local_files=embed_local_files,
                    )
                table = pa.Table.from_batches([batch])
                writer.write_table(table)

            if writer._num_bytes > 0:
                num_examples, num_bytes = writer.finalize()
                writer.close()
                yield pa.RecordBatch.from_arrays(
                    [[task_id], [num_examples], [num_bytes]],
                    names=["task_id", "num_examples", "num_bytes"],
                )

            if working_fpath != fpath:
                for file in os.listdir(os.path.dirname(working_fpath)):
                    dest = os.path.join(os.path.dirname(fpath), os.path.basename(file))
                    shutil.move(file, dest)

        stats = (
            self.df.mapInArrow(write_arrow, "task_id: long, num_examples: long, num_bytes: long")
            .groupBy("task_id")
            .agg(
                pyspark.sql.functions.sum("num_examples").alias("total_num_examples"),
                pyspark.sql.functions.sum("num_bytes").alias("total_num_bytes"),
                pyspark.sql.functions.count("num_bytes").alias("num_shards"),
                pyspark.sql.functions.collect_list("num_examples").alias("shard_lengths"),
            )
            .collect()
        )
        for row in stats:
            yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)

    def _prepare_split(
        self,
        split_generator: "datasets.SplitGenerator",
        file_format: str = "arrow",
        max_shard_size: Optional[Union[str, int]] = None,
        num_proc: Optional[int] = None,
        **kwargs,
    ):
        self._validate_cache_dir()

        max_shard_size = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE)
        self._repartition_df_if_needed(max_shard_size)
        is_local = not is_remote_filesystem(self._fs)
        path_join = os.path.join if is_local else posixpath.join

        SUFFIX = "-TTTTT-SSSSS-of-NNNNN"
        fname = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}"
        fpath = path_join(self._output_dir, fname)

        total_num_examples = 0
        total_num_bytes = 0
        total_shards = 0
        task_id_and_num_shards = []
        all_shard_lengths = []

        for task_id, content in self._prepare_split_single(fpath, file_format, max_shard_size):
            (
                num_examples,
                num_bytes,
                num_shards,
                shard_lengths,
            ) = content
            if num_bytes > 0:
                total_num_examples += num_examples
                total_num_bytes += num_bytes
                total_shards += num_shards
                task_id_and_num_shards.append((task_id, num_shards))
                all_shard_lengths.extend(shard_lengths)

        split_generator.split_info.num_examples = total_num_examples
        split_generator.split_info.num_bytes = total_num_bytes

        # should rename everything at the end
        logger.debug(f"Renaming {total_shards} shards.")
        if total_shards > 1:
            split_generator.split_info.shard_lengths = all_shard_lengths

            # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
            # pickling error due to pickling the SparkContext.
            fs = self._fs

            # use the -SSSSS-of-NNNNN pattern
            def _rename_shard(
                task_id: int,
                shard_id: int,
                global_shard_id: int,
            ):
                rename(
                    fs,
                    fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
                    fpath.replace("TTTTT-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"),
                )

            args = []
            global_shard_id = 0
            for i in range(len(task_id_and_num_shards)):
                task_id, num_shards = task_id_and_num_shards[i]
                for shard_id in range(num_shards):
                    args.append([task_id, shard_id, global_shard_id])
                    global_shard_id += 1
            self._spark.sparkContext.parallelize(args, len(args)).map(lambda args: _rename_shard(*args)).collect()
        else:
            # don't use any pattern
            shard_id = 0
            task_id = task_id_and_num_shards[0][0]
            self._rename(
                fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
                fpath.replace(SUFFIX, ""),
            )

    def _get_examples_iterable_for_split(
        self,
        split_generator: "datasets.SplitGenerator",
    ) -> SparkExamplesIterable:
        return SparkExamplesIterable(self.df)