File size: 99,829 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 |
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Access datasets."""
import filecmp
import glob
import importlib
import inspect
import json
import os
import posixpath
import shutil
import signal
import time
import warnings
from collections import Counter
from collections.abc import Mapping, Sequence
from contextlib import nullcontext
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Optional, Union
import fsspec
import requests
import yaml
from fsspec.core import url_to_fs
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from huggingface_hub.utils import (
EntryNotFoundError,
GatedRepoError,
LocalEntryNotFoundError,
OfflineModeIsEnabled,
RepositoryNotFoundError,
RevisionNotFoundError,
get_session,
)
from . import __version__, config
from .arrow_dataset import Dataset
from .builder import BuilderConfig, DatasetBuilder
from .data_files import (
DataFilesDict,
DataFilesList,
DataFilesPatternsDict,
EmptyDatasetError,
get_data_patterns,
sanitize_patterns,
)
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download.download_config import DownloadConfig
from .download.download_manager import DownloadMode
from .download.streaming_download_manager import StreamingDownloadManager, xbasename, xglob, xjoin
from .exceptions import DataFilesNotFoundError, DatasetNotFoundError
from .features import Features
from .fingerprint import Hasher
from .info import DatasetInfo, DatasetInfosDict
from .iterable_dataset import IterableDataset
from .naming import camelcase_to_snakecase, snakecase_to_camelcase
from .packaged_modules import (
_EXTENSION_TO_MODULE,
_MODULE_TO_EXTENSIONS,
_MODULE_TO_METADATA_FILE_NAMES,
_PACKAGED_DATASETS_MODULES,
_hash_python_lines,
)
from .packaged_modules.folder_based_builder.folder_based_builder import FolderBasedBuilder
from .splits import Split
from .utils import _dataset_viewer
from .utils.file_utils import (
_raise_if_offline_mode_is_enabled,
cached_path,
get_datasets_user_agent,
init_hf_modules,
is_relative_path,
relative_to_absolute_path,
url_or_path_join,
)
from .utils.hub import hf_dataset_url
from .utils.info_utils import VerificationMode, is_small_dataset
from .utils.logging import get_logger
from .utils.metadata import MetadataConfigs
from .utils.py_utils import get_imports, lock_importable_file
from .utils.typing import PathLike
from .utils.version import Version
logger = get_logger(__name__)
ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + [".zip"]
def _raise_timeout_error(signum, frame):
raise ValueError(
"Loading this dataset requires you to execute custom code contained in the dataset repository on your local "
"machine. Please set the option `trust_remote_code=True` to permit loading of this dataset."
)
def resolve_trust_remote_code(trust_remote_code: Optional[bool], repo_id: str) -> bool:
"""
Copied and adapted from Transformers
https://github.com/huggingface/transformers/blob/2098d343cc4b4b9d2aea84b3cf1eb5a1e610deff/src/transformers/dynamic_module_utils.py#L589
"""
trust_remote_code = trust_remote_code if trust_remote_code is not None else config.HF_DATASETS_TRUST_REMOTE_CODE
if trust_remote_code is None:
if config.TIME_OUT_REMOTE_CODE > 0:
try:
signal.signal(signal.SIGALRM, _raise_timeout_error)
signal.alarm(config.TIME_OUT_REMOTE_CODE)
while trust_remote_code is None:
answer = input(
f"The repository for {repo_id} contains custom code which must be executed to correctly "
f"load the dataset. You can inspect the repository content at https://hf.co/datasets/{repo_id}.\n"
f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
f"Do you wish to run the custom code? [y/N] "
)
if answer.lower() in ["yes", "y", "1"]:
trust_remote_code = True
elif answer.lower() in ["no", "n", "0", ""]:
trust_remote_code = False
signal.alarm(0)
except Exception:
# OS which does not support signal.SIGALRM
raise ValueError(
f"The repository for {repo_id} contains custom code which must be executed to correctly "
f"load the dataset. You can inspect the repository content at https://hf.co/datasets/{repo_id}.\n"
f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
)
else:
# For the CI which might put the timeout at 0
_raise_timeout_error(None, None)
return trust_remote_code
def init_dynamic_modules(
name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None
):
"""
Create a module with name `name` in which you can add dynamic modules
such as datasets. The module can be imported using its name.
The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can
be overridden by specifying a path to another directory in `hf_modules_cache`.
"""
hf_modules_cache = init_hf_modules(hf_modules_cache)
dynamic_modules_path = os.path.join(hf_modules_cache, name)
os.makedirs(dynamic_modules_path, exist_ok=True)
if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")):
with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"):
pass
return dynamic_modules_path
def import_main_class(module_path) -> Optional[type[DatasetBuilder]]:
"""Import a module at module_path and return its main class: a DatasetBuilder"""
module = importlib.import_module(module_path)
# Find the main class in our imported module
module_main_cls = None
for name, obj in module.__dict__.items():
if inspect.isclass(obj) and issubclass(obj, DatasetBuilder):
if inspect.isabstract(obj):
continue
module_main_cls = obj
obj_module = inspect.getmodule(obj)
if obj_module is not None and module == obj_module:
break
return module_main_cls
class _InitializeConfiguredDatasetBuilder:
"""
From https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class
See also ConfiguredDatasetBuilder.__reduce__
When called with the param value as the only argument, returns an
un-initialized instance of the parameterized class. Subsequent __setstate__
will be called by pickle.
"""
def __call__(self, builder_cls, metadata_configs, default_config_name, name):
# make a simple object which has no complex __init__ (this one will do)
obj = _InitializeConfiguredDatasetBuilder()
obj.__class__ = configure_builder_class(
builder_cls, metadata_configs, default_config_name=default_config_name, dataset_name=name
)
return obj
def configure_builder_class(
builder_cls: type[DatasetBuilder],
builder_configs: list[BuilderConfig],
default_config_name: Optional[str],
dataset_name: str,
) -> type[DatasetBuilder]:
"""
Dynamically create a builder class with custom builder configs parsed from README.md file,
i.e. set BUILDER_CONFIGS class variable of a builder class to custom configs list.
"""
class ConfiguredDatasetBuilder(builder_cls):
BUILDER_CONFIGS = builder_configs
DEFAULT_CONFIG_NAME = default_config_name
__module__ = builder_cls.__module__ # so that the actual packaged builder can be imported
def __reduce__(self): # to make dynamically created class pickable, see _InitializeParameterizedDatasetBuilder
parent_builder_cls = self.__class__.__mro__[1]
return (
_InitializeConfiguredDatasetBuilder(),
(
parent_builder_cls,
self.BUILDER_CONFIGS,
self.DEFAULT_CONFIG_NAME,
self.dataset_name,
),
self.__dict__.copy(),
)
ConfiguredDatasetBuilder.__name__ = (
f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}"
)
ConfiguredDatasetBuilder.__qualname__ = (
f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}"
)
return ConfiguredDatasetBuilder
def get_dataset_builder_class(
dataset_module: "DatasetModule", dataset_name: Optional[str] = None
) -> type[DatasetBuilder]:
with (
lock_importable_file(dataset_module.importable_file_path)
if dataset_module.importable_file_path
else nullcontext()
):
builder_cls = import_main_class(dataset_module.module_path)
if dataset_module.builder_configs_parameters.builder_configs:
dataset_name = dataset_name or dataset_module.builder_kwargs.get("dataset_name")
if dataset_name is None:
raise ValueError("dataset_name should be specified but got None")
builder_cls = configure_builder_class(
builder_cls,
builder_configs=dataset_module.builder_configs_parameters.builder_configs,
default_config_name=dataset_module.builder_configs_parameters.default_config_name,
dataset_name=dataset_name,
)
return builder_cls
def files_to_hash(file_paths: list[str]) -> str:
"""
Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way.
"""
# List all python files in directories if directories are supplied as part of external imports
to_use_files: list[Union[Path, str]] = []
for file_path in file_paths:
if os.path.isdir(file_path):
to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]")))
else:
to_use_files.append(file_path)
# Get the code from all these files
lines = []
for file_path in to_use_files:
with open(file_path, encoding="utf-8") as f:
lines.extend(f.readlines())
return _hash_python_lines(lines)
def increase_load_count(name: str):
"""Update the download count of a dataset."""
if not config.HF_HUB_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS:
try:
get_session().head(
"/".join((config.S3_DATASETS_BUCKET_PREFIX, name, name + ".py")),
headers={"User-Agent": get_datasets_user_agent()},
timeout=3,
)
except Exception:
pass
def _download_additional_modules(
name: str, base_path: str, imports: tuple[str, str, str, str], download_config: Optional[DownloadConfig]
) -> tuple[list[tuple[str, str]], list[tuple[str, str]]]:
"""
Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py
The imports must have been parsed first using ``get_imports``.
If some modules need to be installed with pip, an error is raised showing how to install them.
This function return the list of downloaded modules as tuples (import_name, module_file_path).
The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``.
"""
local_imports = []
library_imports = []
download_config = download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading extra modules"
for import_type, import_name, import_path, sub_directory in imports:
if import_type == "library":
library_imports.append((import_name, import_path)) # Import from a library
continue
if import_name == name:
raise ValueError(
f"Error in the {name} script, importing relative {import_name} module "
f"but {import_name} is the name of the script. "
f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' "
f"comment pointing to the original relative import file path."
)
if import_type == "internal":
url_or_filename = url_or_path_join(base_path, import_path + ".py")
elif import_type == "external":
url_or_filename = import_path
else:
raise ValueError("Wrong import_type")
local_import_path = cached_path(
url_or_filename,
download_config=download_config,
)
if sub_directory is not None:
local_import_path = os.path.join(local_import_path, sub_directory)
local_imports.append((import_name, local_import_path))
return local_imports, library_imports
def _check_library_imports(name: str, library_imports: list[tuple[str, str]]) -> None:
# Check library imports
needs_to_be_installed = {}
for library_import_name, library_import_path in library_imports:
try:
lib = importlib.import_module(library_import_name) # noqa F841
except ImportError:
if library_import_name not in needs_to_be_installed or library_import_path != library_import_name:
needs_to_be_installed[library_import_name] = library_import_path
if needs_to_be_installed:
_dependencies_str = "dependencies" if len(needs_to_be_installed) > 1 else "dependency"
_them_str = "them" if len(needs_to_be_installed) > 1 else "it"
if "sklearn" in needs_to_be_installed.keys():
needs_to_be_installed["sklearn"] = "scikit-learn"
if "Bio" in needs_to_be_installed.keys():
needs_to_be_installed["Bio"] = "biopython"
raise ImportError(
f"To be able to use {name}, you need to install the following {_dependencies_str}: "
f"{', '.join(needs_to_be_installed)}.\nPlease install {_them_str} using 'pip install "
f"{' '.join(needs_to_be_installed.values())}' for instance."
)
def _copy_script_and_other_resources_in_importable_dir(
name: str,
importable_directory_path: str,
subdirectory_name: str,
original_local_path: str,
local_imports: list[tuple[str, str]],
additional_files: list[tuple[str, str]],
download_mode: Optional[Union[DownloadMode, str]],
) -> str:
"""Copy a script and its required imports to an importable directory
Args:
name (str): name of the resource to load
importable_directory_path (str): path to the loadable folder in the dynamic modules directory
subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script
original_local_path (str): local path to the resource script
local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy)
additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy)
download_mode (Optional[Union[DownloadMode, str]]): download mode
Return:
importable_file: path to an importable module with importlib.import_module
"""
# Define a directory with a unique name in our dataset folder
# path is: ./datasets/dataset_name/hash_from_code/script.py
# we use a hash as subdirectory_name to be able to have multiple versions of a dataset processing file together
importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name)
importable_file = os.path.join(importable_subdirectory, name + ".py")
# Prevent parallel disk operations
with lock_importable_file(importable_file):
# Create main dataset folder if needed
if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path):
shutil.rmtree(importable_directory_path)
os.makedirs(importable_directory_path, exist_ok=True)
# add an __init__ file to the main dataset folder if needed
init_file_path = os.path.join(importable_directory_path, "__init__.py")
if not os.path.exists(init_file_path):
with open(init_file_path, "w"):
pass
# Create hash dataset folder if needed
os.makedirs(importable_subdirectory, exist_ok=True)
# add an __init__ file to the hash dataset folder if needed
init_file_path = os.path.join(importable_subdirectory, "__init__.py")
if not os.path.exists(init_file_path):
with open(init_file_path, "w"):
pass
# Copy dataset.py file in hash folder if needed
if not os.path.exists(importable_file):
shutil.copyfile(original_local_path, importable_file)
# Record metadata associating original dataset path with local unique folder
# Use os.path.splitext to split extension from importable_local_file
meta_path = os.path.splitext(importable_file)[0] + ".json"
if not os.path.exists(meta_path):
meta = {"original file path": original_local_path, "local file path": importable_file}
# the filename is *.py in our case, so better rename to filename.json instead of filename.py.json
with open(meta_path, "w", encoding="utf-8") as meta_file:
json.dump(meta, meta_file)
# Copy all the additional imports
for import_name, import_path in local_imports:
if os.path.isfile(import_path):
full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py")
if not os.path.exists(full_path_local_import):
shutil.copyfile(import_path, full_path_local_import)
elif os.path.isdir(import_path):
full_path_local_import = os.path.join(importable_subdirectory, import_name)
if not os.path.exists(full_path_local_import):
shutil.copytree(import_path, full_path_local_import)
else:
raise ImportError(f"Error with local import at {import_path}")
# Copy additional files like dataset_infos.json file if needed
for file_name, original_path in additional_files:
destination_additional_path = os.path.join(importable_subdirectory, file_name)
if not os.path.exists(destination_additional_path) or not filecmp.cmp(
original_path, destination_additional_path
):
shutil.copyfile(original_path, destination_additional_path)
return importable_file
def _get_importable_file_path(
dynamic_modules_path: str,
module_namespace: str,
subdirectory_name: str,
name: str,
) -> str:
importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
return os.path.join(importable_directory_path, subdirectory_name, name.split("/")[-1] + ".py")
def _create_importable_file(
local_path: str,
local_imports: list[tuple[str, str]],
additional_files: list[tuple[str, str]],
dynamic_modules_path: str,
module_namespace: str,
subdirectory_name: str,
name: str,
download_mode: DownloadMode,
) -> None:
importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
Path(importable_directory_path).mkdir(parents=True, exist_ok=True)
(Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True)
importable_local_file = _copy_script_and_other_resources_in_importable_dir(
name=name.split("/")[-1],
importable_directory_path=importable_directory_path,
subdirectory_name=subdirectory_name,
original_local_path=local_path,
local_imports=local_imports,
additional_files=additional_files,
download_mode=download_mode,
)
logger.debug(f"Created importable dataset file at {importable_local_file}")
def _load_importable_file(
dynamic_modules_path: str,
module_namespace: str,
subdirectory_name: str,
name: str,
) -> tuple[str, str]:
module_path = ".".join(
[
os.path.basename(dynamic_modules_path),
module_namespace,
name.replace("/", "--"),
subdirectory_name,
name.split("/")[-1],
]
)
return module_path, subdirectory_name
def infer_module_for_data_files_list(
data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None
) -> tuple[Optional[str], dict]:
"""Infer module (and builder kwargs) from list of data files.
It picks the module based on the most common file extension.
In case of a draw ".parquet" is the favorite, and then alphabetical order.
Args:
data_files_list (DataFilesList): List of data files.
download_config (bool or str, optional): Mainly use `token` or `storage_options` to support different platforms and auth types.
Returns:
tuple[str, dict[str, Any]]: Tuple with
- inferred module name
- dict of builder kwargs
"""
extensions_counter = Counter(
("." + suffix.lower(), xbasename(filepath) in FolderBasedBuilder.METADATA_FILENAMES)
for filepath in data_files_list[: config.DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE]
for suffix in xbasename(filepath).split(".")[1:]
)
if extensions_counter:
def sort_key(ext_count: tuple[tuple[str, bool], int]) -> tuple[int, bool]:
"""Sort by count and set ".parquet" as the favorite in case of a draw, and ignore metadata files"""
(ext, is_metadata), count = ext_count
return (not is_metadata, count, ext == ".parquet", ext == ".jsonl", ext == ".json", ext == ".csv", ext)
for (ext, _), _ in sorted(extensions_counter.items(), key=sort_key, reverse=True):
if ext in _EXTENSION_TO_MODULE:
return _EXTENSION_TO_MODULE[ext]
elif ext == ".zip":
return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config)
return None, {}
def infer_module_for_data_files_list_in_archives(
data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None
) -> tuple[Optional[str], dict]:
"""Infer module (and builder kwargs) from list of archive data files.
Args:
data_files_list (DataFilesList): List of data files.
download_config (bool or str, optional): Mainly use `token` or `storage_options` to support different platforms and auth types.
Returns:
tuple[str, dict[str, Any]]: Tuple with
- inferred module name
- dict of builder kwargs
"""
archived_files = []
archive_files_counter = 0
for filepath in data_files_list:
if str(filepath).endswith(".zip"):
archive_files_counter += 1
if archive_files_counter > config.GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE:
break
extracted = xjoin(StreamingDownloadManager().extract(filepath), "**")
archived_files += [
f.split("::")[0]
for f in xglob(extracted, recursive=True, download_config=download_config)[
: config.ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE
]
]
extensions_counter = Counter(
"." + suffix.lower() for filepath in archived_files for suffix in xbasename(filepath).split(".")[1:]
)
if extensions_counter:
most_common = extensions_counter.most_common(1)[0][0]
if most_common in _EXTENSION_TO_MODULE:
return _EXTENSION_TO_MODULE[most_common]
return None, {}
def infer_module_for_data_files(
data_files: DataFilesDict, path: Optional[str] = None, download_config: Optional[DownloadConfig] = None
) -> tuple[Optional[str], dict[str, Any]]:
"""Infer module (and builder kwargs) from data files. Raise if module names for different splits don't match.
Args:
data_files ([`DataFilesDict`]): Dict of list of data files.
path (str, *optional*): Dataset name or path.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters to authenticate on the Hugging Face Hub for private remote files.
Returns:
tuple[str, dict[str, Any]]: Tuple with
- inferred module name
- builder kwargs
"""
split_modules = {
split: infer_module_for_data_files_list(data_files_list, download_config=download_config)
for split, data_files_list in data_files.items()
}
module_name, default_builder_kwargs = next(iter(split_modules.values()))
if any((module_name, default_builder_kwargs) != split_module for split_module in split_modules.values()):
raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}")
if not module_name:
raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else ""))
return module_name, default_builder_kwargs
def create_builder_configs_from_metadata_configs(
module_path: str,
metadata_configs: MetadataConfigs,
base_path: Optional[str] = None,
default_builder_kwargs: dict[str, Any] = None,
download_config: Optional[DownloadConfig] = None,
) -> tuple[list[BuilderConfig], str]:
builder_cls = import_main_class(module_path)
builder_config_cls = builder_cls.BUILDER_CONFIG_CLASS
default_config_name = metadata_configs.get_default_config_name()
builder_configs = []
default_builder_kwargs = {} if default_builder_kwargs is None else default_builder_kwargs
base_path = base_path if base_path is not None else ""
for config_name, config_params in metadata_configs.items():
config_data_files = config_params.get("data_files")
config_data_dir = config_params.get("data_dir")
config_base_path = xjoin(base_path, config_data_dir) if config_data_dir else base_path
try:
config_patterns = (
sanitize_patterns(config_data_files)
if config_data_files is not None
else get_data_patterns(config_base_path, download_config=download_config)
)
config_data_files_dict = DataFilesPatternsDict.from_patterns(
config_patterns,
allowed_extensions=ALL_ALLOWED_EXTENSIONS,
)
except EmptyDatasetError as e:
raise EmptyDatasetError(
f"Dataset at '{base_path}' doesn't contain data files matching the patterns for config '{config_name}',"
f" check `data_files` and `data_fir` parameters in the `configs` YAML field in README.md. "
) from e
ignored_params = [
param for param in config_params if not hasattr(builder_config_cls, param) and param != "default"
]
if ignored_params:
logger.warning(
f"Some datasets params were ignored: {ignored_params}. "
"Make sure to use only valid params for the dataset builder and to have "
"a up-to-date version of the `datasets` library."
)
builder_configs.append(
builder_config_cls(
name=config_name,
data_files=config_data_files_dict,
data_dir=config_data_dir,
**{
param: value
for param, value in {**default_builder_kwargs, **config_params}.items()
if hasattr(builder_config_cls, param) and param not in ("default", "data_files", "data_dir")
},
)
)
return builder_configs, default_config_name
@dataclass
class BuilderConfigsParameters:
"""Dataclass containing objects related to creation of builder configurations from yaml's metadata content.
Attributes:
metadata_configs (`MetadataConfigs`, *optional*):
Configs parsed from yaml's metadata.
builder_configs (`list[BuilderConfig]`, *optional*):
List of BuilderConfig objects created from metadata_configs above.
default_config_name (`str`):
Name of default config taken from yaml's metadata.
"""
metadata_configs: Optional[MetadataConfigs] = None
builder_configs: Optional[list[BuilderConfig]] = None
default_config_name: Optional[str] = None
@dataclass
class DatasetModule:
module_path: str
hash: str
builder_kwargs: dict
builder_configs_parameters: BuilderConfigsParameters = field(default_factory=BuilderConfigsParameters)
dataset_infos: Optional[DatasetInfosDict] = None
importable_file_path: Optional[str] = None
class _DatasetModuleFactory:
def get_module(self) -> DatasetModule:
raise NotImplementedError
class LocalDatasetModuleFactoryWithScript(_DatasetModuleFactory):
"""Get the module of a local dataset. The dataset script is loaded from a local script."""
def __init__(
self,
path: str,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
trust_remote_code: Optional[bool] = None,
):
self.path = path
self.name = Path(path).stem
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
self.trust_remote_code = trust_remote_code
def get_module(self) -> DatasetModule:
if config.HF_DATASETS_TRUST_REMOTE_CODE and self.trust_remote_code is None:
warnings.warn(
f"The repository for {self.name} contains custom code which must be executed to correctly "
f"load the dataset. You can inspect the repository content at {self.path}\n"
f"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n"
f"Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.",
FutureWarning,
)
# get script and other files
dataset_infos_path = Path(self.path).parent / config.DATASETDICT_INFOS_FILENAME
dataset_readme_path = Path(self.path).parent / config.REPOCARD_FILENAME
imports = get_imports(self.path)
local_imports, library_imports = _download_additional_modules(
name=self.name,
base_path=str(Path(self.path).parent),
imports=imports,
download_config=self.download_config,
)
additional_files = []
if dataset_infos_path.is_file():
additional_files.append((config.DATASETDICT_INFOS_FILENAME, str(dataset_infos_path)))
if dataset_readme_path.is_file():
additional_files.append((config.REPOCARD_FILENAME, dataset_readme_path))
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
hash = files_to_hash([self.path] + [loc[1] for loc in local_imports])
importable_file_path = _get_importable_file_path(
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
)
if not os.path.exists(importable_file_path):
trust_remote_code = resolve_trust_remote_code(self.trust_remote_code, self.name)
if trust_remote_code:
_create_importable_file(
local_path=self.path,
local_imports=local_imports,
additional_files=additional_files,
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
download_mode=self.download_mode,
)
else:
raise ValueError(
f"Loading {self.name} requires you to execute the dataset script in that"
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
_check_library_imports(name=self.name, library_imports=library_imports)
module_path, hash = _load_importable_file(
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
builder_kwargs = {"base_path": str(Path(self.path).parent)}
return DatasetModule(module_path, hash, builder_kwargs, importable_file_path=importable_file_path)
class LocalDatasetModuleFactoryWithoutScript(_DatasetModuleFactory):
"""Get the module of a dataset loaded from the user's data files. The dataset builder module to use is inferred
from the data files extensions."""
def __init__(
self,
path: str,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, list, dict]] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
):
if data_dir and os.path.isabs(data_dir):
raise ValueError(f"`data_dir` must be relative to a dataset directory's root: {path}")
self.path = Path(path).as_posix()
self.name = Path(path).stem
self.data_files = data_files
self.data_dir = data_dir
self.download_mode = download_mode
def get_module(self) -> DatasetModule:
readme_path = os.path.join(self.path, config.REPOCARD_FILENAME)
standalone_yaml_path = os.path.join(self.path, config.REPOYAML_FILENAME)
dataset_card_data = DatasetCard.load(readme_path).data if os.path.isfile(readme_path) else DatasetCardData()
if os.path.exists(standalone_yaml_path):
with open(standalone_yaml_path, encoding="utf-8") as f:
standalone_yaml_data = yaml.safe_load(f.read())
if standalone_yaml_data:
_dataset_card_data_dict = dataset_card_data.to_dict()
_dataset_card_data_dict.update(standalone_yaml_data)
dataset_card_data = DatasetCardData(**_dataset_card_data_dict)
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
# we need a set of data files to find which dataset builder to use
# because we need to infer module name by files extensions
base_path = Path(self.path, self.data_dir or "").expanduser().resolve().as_posix()
if self.data_files is not None:
patterns = sanitize_patterns(self.data_files)
elif metadata_configs and not self.data_dir and "data_files" in next(iter(metadata_configs.values())):
patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"])
else:
patterns = get_data_patterns(base_path)
data_files = DataFilesDict.from_patterns(
patterns,
base_path=base_path,
allowed_extensions=ALL_ALLOWED_EXTENSIONS,
)
module_name, default_builder_kwargs = infer_module_for_data_files(
data_files=data_files,
path=self.path,
)
data_files = data_files.filter(
extensions=_MODULE_TO_EXTENSIONS[module_name], file_names=_MODULE_TO_METADATA_FILE_NAMES[module_name]
)
module_path, _ = _PACKAGED_DATASETS_MODULES[module_name]
if metadata_configs:
builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
module_path,
metadata_configs,
base_path=base_path,
default_builder_kwargs=default_builder_kwargs,
)
else:
builder_configs: list[BuilderConfig] = [
import_main_class(module_path).BUILDER_CONFIG_CLASS(
data_files=data_files,
**default_builder_kwargs,
)
]
default_config_name = None
builder_kwargs = {
"base_path": self.path,
"dataset_name": camelcase_to_snakecase(Path(self.path).name),
}
if self.data_dir:
builder_kwargs["data_files"] = data_files
# this file is deprecated and was created automatically in old versions of push_to_hub
if os.path.isfile(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME)):
with open(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f:
legacy_dataset_infos = DatasetInfosDict(
{
config_name: DatasetInfo.from_dict(dataset_info_dict)
for config_name, dataset_info_dict in json.load(f).items()
}
)
if len(legacy_dataset_infos) == 1:
# old config e.g. named "username--dataset_name"
legacy_config_name = next(iter(legacy_dataset_infos))
legacy_dataset_infos["default"] = legacy_dataset_infos.pop(legacy_config_name)
legacy_dataset_infos.update(dataset_infos)
dataset_infos = legacy_dataset_infos
if default_config_name is None and len(dataset_infos) == 1:
default_config_name = next(iter(dataset_infos))
hash = Hasher.hash({"dataset_infos": dataset_infos, "builder_configs": builder_configs})
return DatasetModule(
module_path,
hash,
builder_kwargs,
dataset_infos=dataset_infos,
builder_configs_parameters=BuilderConfigsParameters(
metadata_configs=metadata_configs,
builder_configs=builder_configs,
default_config_name=default_config_name,
),
)
class PackagedDatasetModuleFactory(_DatasetModuleFactory):
"""Get the dataset builder module from the ones that are packaged with the library: csv, json, etc."""
def __init__(
self,
name: str,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, list, dict]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
):
self.name = name
self.data_files = data_files
self.data_dir = data_dir
self.download_config = download_config
self.download_mode = download_mode
increase_load_count(name)
def get_module(self) -> DatasetModule:
base_path = Path(self.data_dir or "").expanduser().resolve().as_posix()
patterns = (
sanitize_patterns(self.data_files)
if self.data_files is not None
else get_data_patterns(base_path, download_config=self.download_config)
)
data_files = DataFilesDict.from_patterns(
patterns,
download_config=self.download_config,
base_path=base_path,
)
module_path, hash = _PACKAGED_DATASETS_MODULES[self.name]
builder_kwargs = {
"data_files": data_files,
"dataset_name": self.name,
}
return DatasetModule(module_path, hash, builder_kwargs)
class HubDatasetModuleFactoryWithoutScript(_DatasetModuleFactory):
"""
Get the module of a dataset loaded from data files of a dataset repository.
The dataset builder module to use is inferred from the data files extensions.
"""
def __init__(
self,
name: str,
commit_hash: str,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, list, dict]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
use_exported_dataset_infos: bool = False,
):
self.name = name
self.commit_hash = commit_hash
self.data_files = data_files
self.data_dir = data_dir
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.use_exported_dataset_infos = use_exported_dataset_infos
increase_load_count(name)
def get_module(self) -> DatasetModule:
# Get the Dataset Card and fix the revision in case there are new commits in the meantime
api = HfApi(
endpoint=config.HF_ENDPOINT,
token=self.download_config.token,
library_name="datasets",
library_version=__version__,
user_agent=get_datasets_user_agent(self.download_config.user_agent),
)
try:
dataset_readme_path = api.hf_hub_download(
repo_id=self.name,
filename=config.REPOCARD_FILENAME,
repo_type="dataset",
revision=self.commit_hash,
proxies=self.download_config.proxies,
)
dataset_card_data = DatasetCard.load(dataset_readme_path).data
except EntryNotFoundError:
dataset_card_data = DatasetCardData()
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading standalone yaml"
try:
standalone_yaml_path = cached_path(
hf_dataset_url(self.name, config.REPOYAML_FILENAME, revision=self.commit_hash),
download_config=download_config,
)
with open(standalone_yaml_path, encoding="utf-8") as f:
standalone_yaml_data = yaml.safe_load(f.read())
if standalone_yaml_data:
_dataset_card_data_dict = dataset_card_data.to_dict()
_dataset_card_data_dict.update(standalone_yaml_data)
dataset_card_data = DatasetCardData(**_dataset_card_data_dict)
except FileNotFoundError:
pass
base_path = f"hf://datasets/{self.name}@{self.commit_hash}/{self.data_dir or ''}".rstrip("/")
metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
if config.USE_PARQUET_EXPORT and self.use_exported_dataset_infos:
try:
exported_dataset_infos = _dataset_viewer.get_exported_dataset_infos(
dataset=self.name, commit_hash=self.commit_hash, token=self.download_config.token
)
exported_dataset_infos = DatasetInfosDict(
{
config_name: DatasetInfo.from_dict(exported_dataset_infos[config_name])
for config_name in exported_dataset_infos
}
)
except _dataset_viewer.DatasetViewerError:
exported_dataset_infos = None
else:
exported_dataset_infos = None
if exported_dataset_infos:
exported_dataset_infos.update(dataset_infos)
dataset_infos = exported_dataset_infos
# we need a set of data files to find which dataset builder to use
# because we need to infer module name by files extensions
if self.data_files is not None:
patterns = sanitize_patterns(self.data_files)
elif metadata_configs and not self.data_dir and "data_files" in next(iter(metadata_configs.values())):
patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"])
else:
patterns = get_data_patterns(base_path, download_config=self.download_config)
data_files = DataFilesDict.from_patterns(
patterns,
base_path=base_path,
allowed_extensions=ALL_ALLOWED_EXTENSIONS,
download_config=self.download_config,
)
module_name, default_builder_kwargs = infer_module_for_data_files(
data_files=data_files,
path=self.name,
download_config=self.download_config,
)
data_files = data_files.filter(
extensions=_MODULE_TO_EXTENSIONS[module_name], file_names=_MODULE_TO_METADATA_FILE_NAMES[module_name]
)
module_path, _ = _PACKAGED_DATASETS_MODULES[module_name]
if metadata_configs:
builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
module_path,
metadata_configs,
base_path=base_path,
default_builder_kwargs=default_builder_kwargs,
download_config=self.download_config,
)
else:
builder_configs: list[BuilderConfig] = [
import_main_class(module_path).BUILDER_CONFIG_CLASS(
data_files=data_files,
**default_builder_kwargs,
)
]
default_config_name = None
builder_kwargs = {
"base_path": hf_dataset_url(self.name, "", revision=self.commit_hash).rstrip("/"),
"repo_id": self.name,
"dataset_name": camelcase_to_snakecase(Path(self.name).name),
}
if self.data_dir:
builder_kwargs["data_files"] = data_files
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading metadata"
try:
# this file is deprecated and was created automatically in old versions of push_to_hub
dataset_infos_path = cached_path(
hf_dataset_url(self.name, config.DATASETDICT_INFOS_FILENAME, revision=self.commit_hash),
download_config=download_config,
)
with open(dataset_infos_path, encoding="utf-8") as f:
legacy_dataset_infos = DatasetInfosDict(
{
config_name: DatasetInfo.from_dict(dataset_info_dict)
for config_name, dataset_info_dict in json.load(f).items()
}
)
if len(legacy_dataset_infos) == 1:
# old config e.g. named "username--dataset_name"
legacy_config_name = next(iter(legacy_dataset_infos))
legacy_dataset_infos["default"] = legacy_dataset_infos.pop(legacy_config_name)
legacy_dataset_infos.update(dataset_infos)
dataset_infos = legacy_dataset_infos
except FileNotFoundError:
pass
if default_config_name is None and len(dataset_infos) == 1:
default_config_name = next(iter(dataset_infos))
return DatasetModule(
module_path,
self.commit_hash,
builder_kwargs,
dataset_infos=dataset_infos,
builder_configs_parameters=BuilderConfigsParameters(
metadata_configs=metadata_configs,
builder_configs=builder_configs,
default_config_name=default_config_name,
),
)
class HubDatasetModuleFactoryWithParquetExport(_DatasetModuleFactory):
"""
Get the module of a dataset loaded from parquet files of a dataset repository parquet export.
"""
def __init__(
self,
name: str,
commit_hash: str,
download_config: Optional[DownloadConfig] = None,
):
self.name = name
self.commit_hash = commit_hash
self.download_config = download_config or DownloadConfig()
increase_load_count(name)
def get_module(self) -> DatasetModule:
exported_parquet_files = _dataset_viewer.get_exported_parquet_files(
dataset=self.name, commit_hash=self.commit_hash, token=self.download_config.token
)
exported_dataset_infos = _dataset_viewer.get_exported_dataset_infos(
dataset=self.name, commit_hash=self.commit_hash, token=self.download_config.token
)
dataset_infos = DatasetInfosDict(
{
config_name: DatasetInfo.from_dict(exported_dataset_infos[config_name])
for config_name in exported_dataset_infos
}
)
parquet_commit_hash = (
HfApi(
endpoint=config.HF_ENDPOINT,
token=self.download_config.token,
library_name="datasets",
library_version=__version__,
user_agent=get_datasets_user_agent(self.download_config.user_agent),
)
.dataset_info(
self.name,
revision="refs/convert/parquet",
token=self.download_config.token,
timeout=100.0,
)
.sha
) # fix the revision in case there are new commits in the meantime
metadata_configs = MetadataConfigs._from_exported_parquet_files_and_dataset_infos(
parquet_commit_hash=parquet_commit_hash,
exported_parquet_files=exported_parquet_files,
dataset_infos=dataset_infos,
)
module_path, _ = _PACKAGED_DATASETS_MODULES["parquet"]
builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
module_path,
metadata_configs,
download_config=self.download_config,
)
builder_kwargs = {
"repo_id": self.name,
"dataset_name": camelcase_to_snakecase(Path(self.name).name),
}
return DatasetModule(
module_path,
self.commit_hash,
builder_kwargs,
dataset_infos=dataset_infos,
builder_configs_parameters=BuilderConfigsParameters(
metadata_configs=metadata_configs,
builder_configs=builder_configs,
default_config_name=default_config_name,
),
)
class HubDatasetModuleFactoryWithScript(_DatasetModuleFactory):
"""
Get the module of a dataset from a dataset repository.
The dataset script comes from the script inside the dataset repository.
"""
def __init__(
self,
name: str,
commit_hash: str,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
trust_remote_code: Optional[bool] = None,
):
self.name = name
self.commit_hash = commit_hash
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
self.trust_remote_code = trust_remote_code
increase_load_count(name)
def download_loading_script(self) -> str:
file_path = hf_dataset_url(self.name, self.name.split("/")[-1] + ".py", revision=self.commit_hash)
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading builder script"
return cached_path(file_path, download_config=download_config)
def download_dataset_infos_file(self) -> str:
dataset_infos = hf_dataset_url(self.name, config.DATASETDICT_INFOS_FILENAME, revision=self.commit_hash)
# Download the dataset infos file if available
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading metadata"
try:
return cached_path(
dataset_infos,
download_config=download_config,
)
except (FileNotFoundError, ConnectionError):
return None
def download_dataset_readme_file(self) -> str:
readme_url = hf_dataset_url(self.name, config.REPOCARD_FILENAME, revision=self.commit_hash)
# Download the dataset infos file if available
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading readme"
try:
return cached_path(
readme_url,
download_config=download_config,
)
except (FileNotFoundError, ConnectionError):
return None
def get_module(self) -> DatasetModule:
if config.HF_DATASETS_TRUST_REMOTE_CODE and self.trust_remote_code is None:
warnings.warn(
f"The repository for {self.name} contains custom code which must be executed to correctly "
f"load the dataset. You can inspect the repository content at https://hf.co/datasets/{self.name}\n"
f"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n"
f"Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.",
FutureWarning,
)
# get script and other files
local_path = self.download_loading_script()
dataset_infos_path = self.download_dataset_infos_file()
dataset_readme_path = self.download_dataset_readme_file()
imports = get_imports(local_path)
local_imports, library_imports = _download_additional_modules(
name=self.name,
base_path=hf_dataset_url(self.name, "", revision=self.commit_hash),
imports=imports,
download_config=self.download_config,
)
additional_files = []
if dataset_infos_path:
additional_files.append((config.DATASETDICT_INFOS_FILENAME, dataset_infos_path))
if dataset_readme_path:
additional_files.append((config.REPOCARD_FILENAME, dataset_readme_path))
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
hash = files_to_hash([local_path] + [loc[1] for loc in local_imports])
importable_file_path = _get_importable_file_path(
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
)
if not os.path.exists(importable_file_path):
trust_remote_code = resolve_trust_remote_code(self.trust_remote_code, self.name)
if trust_remote_code:
_create_importable_file(
local_path=local_path,
local_imports=local_imports,
additional_files=additional_files,
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
download_mode=self.download_mode,
)
else:
raise ValueError(
f"Loading {self.name} requires you to execute the dataset script in that"
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
_check_library_imports(name=self.name, library_imports=library_imports)
module_path, hash = _load_importable_file(
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
builder_kwargs = {
"base_path": hf_dataset_url(self.name, "", revision=self.commit_hash).rstrip("/"),
"repo_id": self.name,
}
return DatasetModule(module_path, hash, builder_kwargs, importable_file_path=importable_file_path)
class CachedDatasetModuleFactory(_DatasetModuleFactory):
"""
Get the module of a dataset that has been loaded once already and cached.
The script that is loaded from the cache is the most recent one with a matching name.
"""
def __init__(
self,
name: str,
cache_dir: Optional[str] = None,
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.cache_dir = cache_dir
self.dynamic_modules_path = dynamic_modules_path
assert self.name.count("/") <= 1
def get_module(self) -> DatasetModule:
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
importable_directory_path = os.path.join(dynamic_modules_path, "datasets", self.name.replace("/", "--"))
hashes = (
[h for h in os.listdir(importable_directory_path) if len(h) == 64]
if os.path.isdir(importable_directory_path)
else None
)
if hashes:
# get most recent
def _get_modification_time(module_hash):
return (
(Path(importable_directory_path) / module_hash / (self.name.split("/")[-1] + ".py"))
.stat()
.st_mtime
)
hash = sorted(hashes, key=_get_modification_time)[-1]
warning_msg = (
f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
f"couldn't be found locally at {self.name}"
)
if not config.HF_HUB_OFFLINE:
warning_msg += ", or remotely on the Hugging Face Hub."
logger.warning(warning_msg)
importable_file_path = _get_importable_file_path(
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
)
module_path, hash = _load_importable_file(
dynamic_modules_path=dynamic_modules_path,
module_namespace="datasets",
subdirectory_name=hash,
name=self.name,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
builder_kwargs = {
"repo_id": self.name,
}
return DatasetModule(module_path, hash, builder_kwargs, importable_file_path=importable_file_path)
cache_dir = os.path.expanduser(str(self.cache_dir or config.HF_DATASETS_CACHE))
namespace_and_dataset_name = self.name.split("/")
namespace_and_dataset_name[-1] = camelcase_to_snakecase(namespace_and_dataset_name[-1])
cached_relative_path = "___".join(namespace_and_dataset_name)
cached_datasets_directory_path_root = os.path.join(cache_dir, cached_relative_path)
cached_directory_paths = [
cached_directory_path
for cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", "*", "*"))
if os.path.isdir(cached_directory_path)
]
if cached_directory_paths:
builder_kwargs = {
"repo_id": self.name,
"dataset_name": self.name.split("/")[-1],
}
warning_msg = f"Using the latest cached version of the dataset since {self.name} couldn't be found on the Hugging Face Hub"
if config.HF_HUB_OFFLINE:
warning_msg += " (offline mode is enabled)."
logger.warning(warning_msg)
return DatasetModule(
"datasets.packaged_modules.cache.cache",
"auto",
{**builder_kwargs, "version": "auto"},
)
raise FileNotFoundError(f"Dataset {self.name} is not cached in {self.cache_dir}")
def dataset_module_factory(
path: str,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
dynamic_modules_path: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[dict, list, str, DataFilesDict]] = None,
cache_dir: Optional[str] = None,
trust_remote_code: Optional[bool] = None,
_require_default_config_name=True,
_require_custom_configs=False,
**download_kwargs,
) -> DatasetModule:
"""
Download/extract/cache a dataset module.
Dataset codes are cached inside the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).
Args:
path (str): Path or name of the dataset.
Depending on ``path``, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.
For local datasets:
- if ``path`` is a local directory (containing data files only)
-> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
e.g. ``'./path/to/directory/with/my/csv/data'``.
- if ``path`` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory):
-> load the dataset builder from the dataset script
e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'``.
For datasets on the Hugging Face Hub (list all available datasets with ``huggingface_hub.list_datasets()``)
- if ``path`` is a dataset repository on the HF hub (containing data files only)
-> load a generic dataset builder (csv, text etc.) based on the content of the repository
e.g. ``'username/dataset_name'``, a dataset repository on the HF hub containing your data files.
- if ``path`` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
-> load the dataset builder from the dataset script in the dataset repository
e.g. ``glue``, ``squad``, ``'username/dataset_name'``, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.
revision (:class:`~utils.Version` or :obj:`str`, optional): Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
By default, the datasets are stored inside the `datasets_modules` module.
data_dir (:obj:`str`, optional): Directory with the data files. Used only if `data_files` is not specified,
in which case it's equal to pass `os.path.join(data_dir, "**")` as `data_files`.
data_files (:obj:`Union[Dict, List, str]`, optional): Defining the data_files of the dataset configuration.
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
<Added version="2.16.0"/>
trust_remote_code (`bool`, *optional*, defaults to `None`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override
the attributes in download_config if supplied.
Returns:
DatasetModule
"""
if download_config is None:
download_config = DownloadConfig(**download_kwargs)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
download_config.extract_compressed_file = True
download_config.force_extract = True
download_config.force_download = download_mode == DownloadMode.FORCE_REDOWNLOAD
filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
if not filename.endswith(".py"):
filename = filename + ".py"
combined_path = os.path.join(path, filename)
# We have several ways to get a dataset builder:
#
# - if path is the name of a packaged dataset module
# -> use the packaged module (json, csv, etc.)
#
# - if os.path.join(path, name) is a local python file
# -> use the module from the python file
# - if path is a local directory (but no python file)
# -> use a packaged module (csv, text etc.) based on content of the directory
#
# - if path has one "/" and is dataset repository on the HF hub with a python file
# -> the module from the python file in the dataset repository
# - if path has one "/" and is dataset repository on the HF hub without a python file
# -> use a packaged module (csv, text etc.) based on content of the repository
# Try packaged
if path in _PACKAGED_DATASETS_MODULES:
return PackagedDatasetModuleFactory(
path,
data_dir=data_dir,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
).get_module()
# Try locally
elif path.endswith(filename):
if os.path.isfile(path):
return LocalDatasetModuleFactoryWithScript(
path,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
trust_remote_code=trust_remote_code,
).get_module()
else:
raise FileNotFoundError(f"Couldn't find a dataset script at {relative_to_absolute_path(path)}")
elif os.path.isfile(combined_path):
return LocalDatasetModuleFactoryWithScript(
combined_path,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
trust_remote_code=trust_remote_code,
).get_module()
elif os.path.isdir(path):
return LocalDatasetModuleFactoryWithoutScript(
path, data_dir=data_dir, data_files=data_files, download_mode=download_mode
).get_module()
# Try remotely
elif is_relative_path(path) and path.count("/") <= 1:
try:
# Get the Dataset Card + get the revision + check authentication all at in one call
# We fix the commit_hash in case there are new commits in the meantime
api = HfApi(
endpoint=config.HF_ENDPOINT,
token=download_config.token,
library_name="datasets",
library_version=__version__,
user_agent=get_datasets_user_agent(download_config.user_agent),
)
try:
_raise_if_offline_mode_is_enabled()
dataset_readme_path = api.hf_hub_download(
repo_id=path,
filename=config.REPOCARD_FILENAME,
repo_type="dataset",
revision=revision,
proxies=download_config.proxies,
)
commit_hash = os.path.basename(os.path.dirname(dataset_readme_path))
except LocalEntryNotFoundError as e:
if isinstance(
e.__cause__,
(
OfflineModeIsEnabled,
requests.exceptions.Timeout,
requests.exceptions.ConnectionError,
),
):
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})") from e
else:
raise
except EntryNotFoundError:
commit_hash = api.dataset_info(
path,
revision=revision,
timeout=100.0,
).sha
except (
OfflineModeIsEnabled,
requests.exceptions.Timeout,
requests.exceptions.ConnectionError,
) as e:
raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})") from e
except GatedRepoError as e:
message = f"Dataset '{path}' is a gated dataset on the Hub."
if e.response.status_code == 401:
message += " You must be authenticated to access it."
elif e.response.status_code == 403:
message += f" Visit the dataset page at https://huggingface.co/datasets/{path} to ask for access."
raise DatasetNotFoundError(message) from e
except RevisionNotFoundError as e:
raise DatasetNotFoundError(
f"Revision '{revision}' doesn't exist for dataset '{path}' on the Hub."
) from e
except RepositoryNotFoundError as e:
raise DatasetNotFoundError(f"Dataset '{path}' doesn't exist on the Hub or cannot be accessed.") from e
try:
dataset_script_path = api.hf_hub_download(
repo_id=path,
filename=filename,
repo_type="dataset",
revision=commit_hash,
proxies=download_config.proxies,
)
if _require_custom_configs or (revision and revision != "main"):
can_load_config_from_parquet_export = False
elif _require_default_config_name:
with open(dataset_script_path, encoding="utf-8") as f:
can_load_config_from_parquet_export = "DEFAULT_CONFIG_NAME" not in f.read()
else:
can_load_config_from_parquet_export = True
if config.USE_PARQUET_EXPORT and can_load_config_from_parquet_export:
# If the parquet export is ready (parquet files + info available for the current sha), we can use it instead
# This fails when the dataset has multiple configs and a default config and
# the user didn't specify a configuration name (_require_default_config_name=True).
try:
out = HubDatasetModuleFactoryWithParquetExport(
path, download_config=download_config, commit_hash=commit_hash
).get_module()
logger.info("Loading the dataset from the Parquet export on Hugging Face.")
return out
except _dataset_viewer.DatasetViewerError:
pass
# Otherwise we must use the dataset script if the user trusts it
return HubDatasetModuleFactoryWithScript(
path,
commit_hash=commit_hash,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
trust_remote_code=trust_remote_code,
).get_module()
except EntryNotFoundError:
# Use the infos from the parquet export except in some cases:
if data_dir or data_files or (revision and revision != "main"):
use_exported_dataset_infos = False
else:
use_exported_dataset_infos = True
return HubDatasetModuleFactoryWithoutScript(
path,
commit_hash=commit_hash,
data_dir=data_dir,
data_files=data_files,
download_config=download_config,
download_mode=download_mode,
use_exported_dataset_infos=use_exported_dataset_infos,
).get_module()
except GatedRepoError as e:
message = f"Dataset '{path}' is a gated dataset on the Hub."
if e.response.status_code == 401:
message += " You must be authenticated to access it."
elif e.response.status_code == 403:
message += f" Visit the dataset page at https://huggingface.co/datasets/{path} to ask for access."
raise DatasetNotFoundError(message) from e
except RevisionNotFoundError as e:
raise DatasetNotFoundError(
f"Revision '{revision}' doesn't exist for dataset '{path}' on the Hub."
) from e
except Exception as e1:
# All the attempts failed, before raising the error we should check if the module is already cached
try:
return CachedDatasetModuleFactory(
path, dynamic_modules_path=dynamic_modules_path, cache_dir=cache_dir
).get_module()
except Exception:
# If it's not in the cache, then it doesn't exist.
if isinstance(e1, OfflineModeIsEnabled):
raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None
if isinstance(e1, (DataFilesNotFoundError, DatasetNotFoundError, EmptyDatasetError)):
raise e1 from None
if isinstance(e1, FileNotFoundError):
if trust_remote_code:
raise FileNotFoundError(
f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. "
f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
) from None
else:
raise FileNotFoundError(
f"Couldn't find any data file at {relative_to_absolute_path(path)}. "
f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
) from None
raise e1 from None
elif trust_remote_code:
raise FileNotFoundError(
f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory."
)
else:
raise FileNotFoundError(f"Couldn't find any data file at {relative_to_absolute_path(path)}.")
def load_dataset_builder(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
storage_options: Optional[dict] = None,
trust_remote_code: Optional[bool] = None,
_require_default_config_name=True,
**config_kwargs,
) -> DatasetBuilder:
"""Load a dataset builder which can be used to:
- Inspect general information that is required to build a dataset (cache directory, config, dataset info, features, data files, etc.)
- Download and prepare the dataset as Arrow files in the cache
- Get a streaming dataset without downloading or caching anything
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains some data files in generic formats (JSON, CSV, Parquet, etc.) and possibly
in a generic structure (Webdataset, ImageFolder, AudioFolder, VideoFolder, etc.)
Args:
path (`str`):
Path or name of the dataset.
- if `path` is a dataset repository on the HF hub (list all available datasets with [`huggingface_hub.list_datasets`])
-> load the dataset builder from supported files in the repository (csv, json, parquet, etc.)
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing the data files.
- if `path` is a local directory
-> load the dataset builder from supported files in the directory (csv, json, parquet, etc.)
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is the name of a dataset builder and `data_files` or `data_dir` is specified
(available builders are "json", "csv", "parquet", "arrow", "text", "xml", "webdataset", "imagefolder", "audiofolder", "videofolder")
-> load the dataset builder from the files in `data_files` or `data_dir`
e.g. `'parquet'`.
It can also point to a local dataset script but this is not recommended.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features ([`Features`], *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
trust_remote_code (`bool`, *optional*, defaults to `None`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the [`BuilderConfig`]
and used in the [`DatasetBuilder`].
Returns:
[`DatasetBuilder`]
Example:
```py
>>> from datasets import load_dataset_builder
>>> ds_builder = load_dataset_builder('cornell-movie-review-data/rotten_tomatoes')
>>> ds_builder.info.features
{'label': ClassLabel(names=['neg', 'pos'], id=None),
'text': Value(dtype='string', id=None)}
```
"""
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
if token is not None:
download_config = download_config.copy() if download_config else DownloadConfig()
download_config.token = token
if storage_options is not None:
download_config = download_config.copy() if download_config else DownloadConfig()
download_config.storage_options.update(storage_options)
dataset_module = dataset_module_factory(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
data_dir=data_dir,
data_files=data_files,
cache_dir=cache_dir,
trust_remote_code=trust_remote_code,
_require_default_config_name=_require_default_config_name,
_require_custom_configs=bool(config_kwargs),
)
# Get dataset builder class from the processing script
builder_kwargs = dataset_module.builder_kwargs
data_dir = builder_kwargs.pop("data_dir", data_dir)
data_files = builder_kwargs.pop("data_files", data_files)
config_name = builder_kwargs.pop(
"config_name", name or dataset_module.builder_configs_parameters.default_config_name
)
dataset_name = builder_kwargs.pop("dataset_name", None)
info = dataset_module.dataset_infos.get(config_name) if dataset_module.dataset_infos else None
if (
path in _PACKAGED_DATASETS_MODULES
and data_files is None
and dataset_module.builder_configs_parameters.builder_configs[0].data_files is None
):
error_msg = f"Please specify the data files or data directory to load for the {path} dataset builder."
example_extensions = [
extension for extension in _EXTENSION_TO_MODULE if _EXTENSION_TO_MODULE[extension] == path
]
if example_extensions:
error_msg += f'\nFor example `data_files={{"train": "path/to/data/train/*.{example_extensions[0]}"}}`'
raise ValueError(error_msg)
builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
# Instantiate the dataset builder
builder_instance: DatasetBuilder = builder_cls(
cache_dir=cache_dir,
dataset_name=dataset_name,
config_name=config_name,
data_dir=data_dir,
data_files=data_files,
hash=dataset_module.hash,
info=info,
features=features,
token=token,
storage_options=storage_options,
**builder_kwargs,
**config_kwargs,
)
builder_instance._use_legacy_cache_dir_if_possible(dataset_module)
return builder_instance
def load_dataset(
path: str,
name: Optional[str] = None,
data_dir: Optional[str] = None,
data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
split: Optional[Union[str, Split]] = None,
cache_dir: Optional[str] = None,
features: Optional[Features] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[Union[DownloadMode, str]] = None,
verification_mode: Optional[Union[VerificationMode, str]] = None,
keep_in_memory: Optional[bool] = None,
save_infos: bool = False,
revision: Optional[Union[str, Version]] = None,
token: Optional[Union[bool, str]] = None,
streaming: bool = False,
num_proc: Optional[int] = None,
storage_options: Optional[dict] = None,
trust_remote_code: Optional[bool] = None,
**config_kwargs,
) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]:
"""Load a dataset from the Hugging Face Hub, or a local dataset.
You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].
A dataset is a directory that contains some data files in generic formats (JSON, CSV, Parquet, etc.) and possibly
in a generic structure (Webdataset, ImageFolder, AudioFolder, VideoFolder, etc.)
This function does the following under the hood:
1. Load a dataset builder:
* Find the most common data format in the dataset and pick its associated builder (JSON, CSV, Parquet, Webdataset, ImageFolder, AudioFolder, etc.)
* Find which file goes into which split (e.g. train/test) based on file and directory names or on the YAML configuration
* It is also possible to specify `data_files` manually, and which dataset builder to use (e.g. "parquet").
2. Run the dataset builder:
In the general case:
* Download the data files from the dataset if they are not already available locally or cached.
* Process and cache the dataset in typed Arrow tables for caching.
Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types.
They can be directly accessed from disk, loaded in RAM or even streamed over the web.
In the streaming case:
* Don't download or cache anything. Instead, the dataset is lazily loaded and will be streamed on-the-fly when iterating on it.
3. Return a dataset built from the requested splits in `split` (default: all).
It can also use a custom dataset builder if the dataset contains a dataset script, but this feature is mostly for backward compatibility.
In this case the dataset script file must be named after the dataset repository or directory and end with ".py".
Args:
path (`str`):
Path or name of the dataset.
- if `path` is a dataset repository on the HF hub (list all available datasets with [`huggingface_hub.list_datasets`])
-> load the dataset from supported files in the repository (csv, json, parquet, etc.)
e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing the data files.
- if `path` is a local directory
-> load the dataset from supported files in the directory (csv, json, parquet, etc.)
e.g. `'./path/to/directory/with/my/csv/data'`.
- if `path` is the name of a dataset builder and `data_files` or `data_dir` is specified
(available builders are "json", "csv", "parquet", "arrow", "text", "xml", "webdataset", "imagefolder", "audiofolder", "videofolder")
-> load the dataset from the files in `data_files` or `data_dir`
e.g. `'parquet'`.
It can also point to a local dataset script but this is not recommended.
name (`str`, *optional*):
Defining the name of the dataset configuration.
data_dir (`str`, *optional*):
Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
data_files (`str` or `Sequence` or `Mapping`, *optional*):
Path(s) to source data file(s).
split (`Split` or `str`):
Which split of the data to load.
If `None`, will return a `dict` with all splits (typically `datasets.Split.TRAIN` and `datasets.Split.TEST`).
If given, will return a single Dataset.
Splits can be combined and specified like in tensorflow-datasets.
cache_dir (`str`, *optional*):
Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
features (`Features`, *optional*):
Set the features type to use for this dataset.
download_config ([`DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).
<Added version="2.9.1"/>
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the dataset
will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
nonzero. See more details in the [improve performance](../cache#improve-performance) section.
save_infos (`bool`, defaults to `False`):
Save the dataset information (checksums/size/splits/...).
revision ([`Version`] or `str`, *optional*):
Version of the dataset script to load.
As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
token (`str` or `bool`, *optional*):
Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
If `True`, or not specified, will get token from `"~/.huggingface"`.
streaming (`bool`, defaults to `False`):
If set to `True`, don't download the data files. Instead, it streams the data progressively while
iterating on the dataset. An [`IterableDataset`] or [`IterableDatasetDict`] is returned instead in this case.
Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example.
Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats
like rar and xz are not yet supported. The tgz format doesn't allow streaming.
num_proc (`int`, *optional*, defaults to `None`):
Number of processes when downloading and generating the dataset locally.
Multiprocessing is disabled by default.
<Added version="2.7.0"/>
storage_options (`dict`, *optional*, defaults to `None`):
**Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.
<Added version="2.11.0"/>
trust_remote_code (`bool`, *optional*, defaults to `None`):
Whether or not to allow for datasets defined on the Hub using a dataset script. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
<Added version="2.16.0"/>
<Changed version="2.20.0">
`trust_remote_code` defaults to `False` if not specified.
</Changed>
**config_kwargs (additional keyword arguments):
Keyword arguments to be passed to the `BuilderConfig`
and used in the [`DatasetBuilder`].
Returns:
[`Dataset`] or [`DatasetDict`]:
- if `split` is not `None`: the dataset requested,
- if `split` is `None`, a [`~datasets.DatasetDict`] with each split.
or [`IterableDataset`] or [`IterableDatasetDict`]: if `streaming=True`
- if `split` is not `None`, the dataset is requested
- if `split` is `None`, a [`~datasets.streaming.IterableDatasetDict`] with each split.
Example:
Load a dataset from the Hugging Face Hub:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('cornell-movie-review-data/rotten_tomatoes', split='train')
# Load a subset or dataset configuration (here 'sst2')
>>> from datasets import load_dataset
>>> ds = load_dataset('nyu-mll/glue', 'sst2', split='train')
# Manual mapping of data files to splits
>>> data_files = {'train': 'train.csv', 'test': 'test.csv'}
>>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files)
# Manual selection of a directory to load
>>> ds = load_dataset('namespace/your_dataset_name', data_dir='folder_name')
```
Load a local dataset:
```py
# Load a CSV file
>>> from datasets import load_dataset
>>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv')
# Load a JSON file
>>> from datasets import load_dataset
>>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json')
# Load from a local loading script (not recommended)
>>> from datasets import load_dataset
>>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train')
```
Load an [`~datasets.IterableDataset`]:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('cornell-movie-review-data/rotten_tomatoes', split='train', streaming=True)
```
Load an image dataset with the `ImageFolder` dataset builder:
```py
>>> from datasets import load_dataset
>>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train')
```
"""
if data_files is not None and not data_files:
raise ValueError(f"Empty 'data_files': '{data_files}'. It should be either non-empty or None (default).")
if Path(path, config.DATASET_STATE_JSON_FILENAME).exists():
raise ValueError(
"You are trying to load a dataset that was saved using `save_to_disk`. "
"Please use `load_from_disk` instead."
)
if streaming and num_proc is not None:
raise NotImplementedError(
"Loading a streaming dataset in parallel with `num_proc` is not implemented. "
"To parallelize streaming, you can wrap the dataset with a PyTorch DataLoader using `num_workers` > 1 instead."
)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
verification_mode = VerificationMode(
(verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS
)
# Create a dataset builder
builder_instance = load_dataset_builder(
path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
cache_dir=cache_dir,
features=features,
download_config=download_config,
download_mode=download_mode,
revision=revision,
token=token,
storage_options=storage_options,
trust_remote_code=trust_remote_code,
_require_default_config_name=name is None,
**config_kwargs,
)
# Return iterable dataset in case of streaming
if streaming:
return builder_instance.as_streaming_dataset(split=split)
# Download and prepare data
builder_instance.download_and_prepare(
download_config=download_config,
download_mode=download_mode,
verification_mode=verification_mode,
num_proc=num_proc,
storage_options=storage_options,
)
# Build dataset for splits
keep_in_memory = (
keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
)
ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
if save_infos:
builder_instance._save_infos()
return ds
def load_from_disk(
dataset_path: PathLike, keep_in_memory: Optional[bool] = None, storage_options: Optional[dict] = None
) -> Union[Dataset, DatasetDict]:
"""
Loads a dataset that was previously saved using [`~Dataset.save_to_disk`] from a dataset directory, or
from a filesystem using any implementation of `fsspec.spec.AbstractFileSystem`.
Args:
dataset_path (`path-like`):
Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3://my-bucket/dataset/train"`)
of the [`Dataset`] or [`DatasetDict`] directory where the dataset/dataset-dict will be
loaded from.
keep_in_memory (`bool`, defaults to `None`):
Whether to copy the dataset in-memory. If `None`, the dataset
will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
nonzero. See more details in the [improve performance](../cache#improve-performance) section.
storage_options (`dict`, *optional*):
Key/value pairs to be passed on to the file-system backend, if any.
<Added version="2.9.0"/>
Returns:
[`Dataset`] or [`DatasetDict`]:
- If `dataset_path` is a path of a dataset directory: the dataset requested.
- If `dataset_path` is a path of a dataset dict directory, a [`DatasetDict`] with each split.
Example:
```py
>>> from datasets import load_from_disk
>>> ds = load_from_disk('path/to/dataset/directory')
```
"""
fs: fsspec.AbstractFileSystem
fs, *_ = url_to_fs(dataset_path, **(storage_options or {}))
if not fs.exists(dataset_path):
raise FileNotFoundError(f"Directory {dataset_path} not found")
if fs.isfile(posixpath.join(dataset_path, config.DATASET_INFO_FILENAME)) and fs.isfile(
posixpath.join(dataset_path, config.DATASET_STATE_JSON_FILENAME)
):
return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
elif fs.isfile(posixpath.join(dataset_path, config.DATASETDICT_JSON_FILENAME)):
return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
else:
raise FileNotFoundError(
f"Directory {dataset_path} is neither a `Dataset` directory nor a `DatasetDict` directory."
)
|