File size: 99,829 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Access datasets."""

import filecmp
import glob
import importlib
import inspect
import json
import os
import posixpath
import shutil
import signal
import time
import warnings
from collections import Counter
from collections.abc import Mapping, Sequence
from contextlib import nullcontext
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, Optional, Union

import fsspec
import requests
import yaml
from fsspec.core import url_to_fs
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from huggingface_hub.utils import (
    EntryNotFoundError,
    GatedRepoError,
    LocalEntryNotFoundError,
    OfflineModeIsEnabled,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    get_session,
)

from . import __version__, config
from .arrow_dataset import Dataset
from .builder import BuilderConfig, DatasetBuilder
from .data_files import (
    DataFilesDict,
    DataFilesList,
    DataFilesPatternsDict,
    EmptyDatasetError,
    get_data_patterns,
    sanitize_patterns,
)
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download.download_config import DownloadConfig
from .download.download_manager import DownloadMode
from .download.streaming_download_manager import StreamingDownloadManager, xbasename, xglob, xjoin
from .exceptions import DataFilesNotFoundError, DatasetNotFoundError
from .features import Features
from .fingerprint import Hasher
from .info import DatasetInfo, DatasetInfosDict
from .iterable_dataset import IterableDataset
from .naming import camelcase_to_snakecase, snakecase_to_camelcase
from .packaged_modules import (
    _EXTENSION_TO_MODULE,
    _MODULE_TO_EXTENSIONS,
    _MODULE_TO_METADATA_FILE_NAMES,
    _PACKAGED_DATASETS_MODULES,
    _hash_python_lines,
)
from .packaged_modules.folder_based_builder.folder_based_builder import FolderBasedBuilder
from .splits import Split
from .utils import _dataset_viewer
from .utils.file_utils import (
    _raise_if_offline_mode_is_enabled,
    cached_path,
    get_datasets_user_agent,
    init_hf_modules,
    is_relative_path,
    relative_to_absolute_path,
    url_or_path_join,
)
from .utils.hub import hf_dataset_url
from .utils.info_utils import VerificationMode, is_small_dataset
from .utils.logging import get_logger
from .utils.metadata import MetadataConfigs
from .utils.py_utils import get_imports, lock_importable_file
from .utils.typing import PathLike
from .utils.version import Version


logger = get_logger(__name__)

ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + [".zip"]


def _raise_timeout_error(signum, frame):
    raise ValueError(
        "Loading this dataset requires you to execute custom code contained in the dataset repository on your local "
        "machine. Please set the option `trust_remote_code=True` to permit loading of this dataset."
    )


def resolve_trust_remote_code(trust_remote_code: Optional[bool], repo_id: str) -> bool:
    """
    Copied and adapted from Transformers
    https://github.com/huggingface/transformers/blob/2098d343cc4b4b9d2aea84b3cf1eb5a1e610deff/src/transformers/dynamic_module_utils.py#L589
    """
    trust_remote_code = trust_remote_code if trust_remote_code is not None else config.HF_DATASETS_TRUST_REMOTE_CODE
    if trust_remote_code is None:
        if config.TIME_OUT_REMOTE_CODE > 0:
            try:
                signal.signal(signal.SIGALRM, _raise_timeout_error)
                signal.alarm(config.TIME_OUT_REMOTE_CODE)
                while trust_remote_code is None:
                    answer = input(
                        f"The repository for {repo_id} contains custom code which must be executed to correctly "
                        f"load the dataset. You can inspect the repository content at https://hf.co/datasets/{repo_id}.\n"
                        f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
                        f"Do you wish to run the custom code? [y/N] "
                    )
                    if answer.lower() in ["yes", "y", "1"]:
                        trust_remote_code = True
                    elif answer.lower() in ["no", "n", "0", ""]:
                        trust_remote_code = False
                signal.alarm(0)
            except Exception:
                # OS which does not support signal.SIGALRM
                raise ValueError(
                    f"The repository for {repo_id} contains custom code which must be executed to correctly "
                    f"load the dataset. You can inspect the repository content at https://hf.co/datasets/{repo_id}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )
        else:
            # For the CI which might put the timeout at 0
            _raise_timeout_error(None, None)
    return trust_remote_code


def init_dynamic_modules(
    name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None
):
    """
    Create a module with name `name` in which you can add dynamic modules
    such as datasets. The module can be imported using its name.
    The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can
    be overridden by specifying a path to another directory in `hf_modules_cache`.
    """
    hf_modules_cache = init_hf_modules(hf_modules_cache)
    dynamic_modules_path = os.path.join(hf_modules_cache, name)
    os.makedirs(dynamic_modules_path, exist_ok=True)
    if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")):
        with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"):
            pass
    return dynamic_modules_path


def import_main_class(module_path) -> Optional[type[DatasetBuilder]]:
    """Import a module at module_path and return its main class: a DatasetBuilder"""
    module = importlib.import_module(module_path)
    # Find the main class in our imported module
    module_main_cls = None
    for name, obj in module.__dict__.items():
        if inspect.isclass(obj) and issubclass(obj, DatasetBuilder):
            if inspect.isabstract(obj):
                continue
            module_main_cls = obj
            obj_module = inspect.getmodule(obj)
            if obj_module is not None and module == obj_module:
                break

    return module_main_cls


class _InitializeConfiguredDatasetBuilder:
    """
    From https://stackoverflow.com/questions/4647566/pickle-a-dynamically-parameterized-sub-class
    See also ConfiguredDatasetBuilder.__reduce__
    When called with the param value as the only argument, returns an
    un-initialized instance of the parameterized class. Subsequent __setstate__
    will be called by pickle.
    """

    def __call__(self, builder_cls, metadata_configs, default_config_name, name):
        # make a simple object which has no complex __init__ (this one will do)
        obj = _InitializeConfiguredDatasetBuilder()
        obj.__class__ = configure_builder_class(
            builder_cls, metadata_configs, default_config_name=default_config_name, dataset_name=name
        )
        return obj


def configure_builder_class(
    builder_cls: type[DatasetBuilder],
    builder_configs: list[BuilderConfig],
    default_config_name: Optional[str],
    dataset_name: str,
) -> type[DatasetBuilder]:
    """
    Dynamically create a builder class with custom builder configs parsed from README.md file,
    i.e. set BUILDER_CONFIGS class variable of a builder class to custom configs list.
    """

    class ConfiguredDatasetBuilder(builder_cls):
        BUILDER_CONFIGS = builder_configs
        DEFAULT_CONFIG_NAME = default_config_name

        __module__ = builder_cls.__module__  # so that the actual packaged builder can be imported

        def __reduce__(self):  # to make dynamically created class pickable, see _InitializeParameterizedDatasetBuilder
            parent_builder_cls = self.__class__.__mro__[1]
            return (
                _InitializeConfiguredDatasetBuilder(),
                (
                    parent_builder_cls,
                    self.BUILDER_CONFIGS,
                    self.DEFAULT_CONFIG_NAME,
                    self.dataset_name,
                ),
                self.__dict__.copy(),
            )

    ConfiguredDatasetBuilder.__name__ = (
        f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}"
    )
    ConfiguredDatasetBuilder.__qualname__ = (
        f"{builder_cls.__name__.lower().capitalize()}{snakecase_to_camelcase(dataset_name)}"
    )

    return ConfiguredDatasetBuilder


def get_dataset_builder_class(
    dataset_module: "DatasetModule", dataset_name: Optional[str] = None
) -> type[DatasetBuilder]:
    with (
        lock_importable_file(dataset_module.importable_file_path)
        if dataset_module.importable_file_path
        else nullcontext()
    ):
        builder_cls = import_main_class(dataset_module.module_path)
    if dataset_module.builder_configs_parameters.builder_configs:
        dataset_name = dataset_name or dataset_module.builder_kwargs.get("dataset_name")
        if dataset_name is None:
            raise ValueError("dataset_name should be specified but got None")
        builder_cls = configure_builder_class(
            builder_cls,
            builder_configs=dataset_module.builder_configs_parameters.builder_configs,
            default_config_name=dataset_module.builder_configs_parameters.default_config_name,
            dataset_name=dataset_name,
        )
    return builder_cls


def files_to_hash(file_paths: list[str]) -> str:
    """
    Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way.
    """
    # List all python files in directories if directories are supplied as part of external imports
    to_use_files: list[Union[Path, str]] = []
    for file_path in file_paths:
        if os.path.isdir(file_path):
            to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]")))
        else:
            to_use_files.append(file_path)

    # Get the code from all these files
    lines = []
    for file_path in to_use_files:
        with open(file_path, encoding="utf-8") as f:
            lines.extend(f.readlines())
    return _hash_python_lines(lines)


def increase_load_count(name: str):
    """Update the download count of a dataset."""
    if not config.HF_HUB_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS:
        try:
            get_session().head(
                "/".join((config.S3_DATASETS_BUCKET_PREFIX, name, name + ".py")),
                headers={"User-Agent": get_datasets_user_agent()},
                timeout=3,
            )
        except Exception:
            pass


def _download_additional_modules(
    name: str, base_path: str, imports: tuple[str, str, str, str], download_config: Optional[DownloadConfig]
) -> tuple[list[tuple[str, str]], list[tuple[str, str]]]:
    """
    Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py
    The imports must have been parsed first using ``get_imports``.

    If some modules need to be installed with pip, an error is raised showing how to install them.
    This function return the list of downloaded modules as tuples (import_name, module_file_path).

    The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``.
    """
    local_imports = []
    library_imports = []
    download_config = download_config.copy()
    if download_config.download_desc is None:
        download_config.download_desc = "Downloading extra modules"
    for import_type, import_name, import_path, sub_directory in imports:
        if import_type == "library":
            library_imports.append((import_name, import_path))  # Import from a library
            continue

        if import_name == name:
            raise ValueError(
                f"Error in the {name} script, importing relative {import_name} module "
                f"but {import_name} is the name of the script. "
                f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' "
                f"comment pointing to the original relative import file path."
            )
        if import_type == "internal":
            url_or_filename = url_or_path_join(base_path, import_path + ".py")
        elif import_type == "external":
            url_or_filename = import_path
        else:
            raise ValueError("Wrong import_type")

        local_import_path = cached_path(
            url_or_filename,
            download_config=download_config,
        )
        if sub_directory is not None:
            local_import_path = os.path.join(local_import_path, sub_directory)
        local_imports.append((import_name, local_import_path))

    return local_imports, library_imports


def _check_library_imports(name: str, library_imports: list[tuple[str, str]]) -> None:
    # Check library imports
    needs_to_be_installed = {}
    for library_import_name, library_import_path in library_imports:
        try:
            lib = importlib.import_module(library_import_name)  # noqa F841
        except ImportError:
            if library_import_name not in needs_to_be_installed or library_import_path != library_import_name:
                needs_to_be_installed[library_import_name] = library_import_path
    if needs_to_be_installed:
        _dependencies_str = "dependencies" if len(needs_to_be_installed) > 1 else "dependency"
        _them_str = "them" if len(needs_to_be_installed) > 1 else "it"
        if "sklearn" in needs_to_be_installed.keys():
            needs_to_be_installed["sklearn"] = "scikit-learn"
        if "Bio" in needs_to_be_installed.keys():
            needs_to_be_installed["Bio"] = "biopython"
        raise ImportError(
            f"To be able to use {name}, you need to install the following {_dependencies_str}: "
            f"{', '.join(needs_to_be_installed)}.\nPlease install {_them_str} using 'pip install "
            f"{' '.join(needs_to_be_installed.values())}' for instance."
        )


def _copy_script_and_other_resources_in_importable_dir(
    name: str,
    importable_directory_path: str,
    subdirectory_name: str,
    original_local_path: str,
    local_imports: list[tuple[str, str]],
    additional_files: list[tuple[str, str]],
    download_mode: Optional[Union[DownloadMode, str]],
) -> str:
    """Copy a script and its required imports to an importable directory

    Args:
        name (str): name of the resource to load
        importable_directory_path (str): path to the loadable folder in the dynamic modules directory
        subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script
        original_local_path (str): local path to the resource script
        local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy)
        additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy)
        download_mode (Optional[Union[DownloadMode, str]]): download mode

    Return:
        importable_file: path to an importable module with importlib.import_module
    """
    # Define a directory with a unique name in our dataset folder
    # path is: ./datasets/dataset_name/hash_from_code/script.py
    # we use a hash as subdirectory_name to be able to have multiple versions of a dataset processing file together
    importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name)
    importable_file = os.path.join(importable_subdirectory, name + ".py")
    # Prevent parallel disk operations
    with lock_importable_file(importable_file):
        # Create main dataset folder if needed
        if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path):
            shutil.rmtree(importable_directory_path)
        os.makedirs(importable_directory_path, exist_ok=True)

        # add an __init__ file to the main dataset folder if needed
        init_file_path = os.path.join(importable_directory_path, "__init__.py")
        if not os.path.exists(init_file_path):
            with open(init_file_path, "w"):
                pass

        # Create hash dataset folder if needed
        os.makedirs(importable_subdirectory, exist_ok=True)
        # add an __init__ file to the hash dataset folder if needed
        init_file_path = os.path.join(importable_subdirectory, "__init__.py")
        if not os.path.exists(init_file_path):
            with open(init_file_path, "w"):
                pass

        # Copy dataset.py file in hash folder if needed
        if not os.path.exists(importable_file):
            shutil.copyfile(original_local_path, importable_file)
        # Record metadata associating original dataset path with local unique folder
        # Use os.path.splitext to split extension from importable_local_file
        meta_path = os.path.splitext(importable_file)[0] + ".json"
        if not os.path.exists(meta_path):
            meta = {"original file path": original_local_path, "local file path": importable_file}
            # the filename is *.py in our case, so better rename to filename.json instead of filename.py.json
            with open(meta_path, "w", encoding="utf-8") as meta_file:
                json.dump(meta, meta_file)

        # Copy all the additional imports
        for import_name, import_path in local_imports:
            if os.path.isfile(import_path):
                full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py")
                if not os.path.exists(full_path_local_import):
                    shutil.copyfile(import_path, full_path_local_import)
            elif os.path.isdir(import_path):
                full_path_local_import = os.path.join(importable_subdirectory, import_name)
                if not os.path.exists(full_path_local_import):
                    shutil.copytree(import_path, full_path_local_import)
            else:
                raise ImportError(f"Error with local import at {import_path}")

        # Copy additional files like dataset_infos.json file if needed
        for file_name, original_path in additional_files:
            destination_additional_path = os.path.join(importable_subdirectory, file_name)
            if not os.path.exists(destination_additional_path) or not filecmp.cmp(
                original_path, destination_additional_path
            ):
                shutil.copyfile(original_path, destination_additional_path)
        return importable_file


def _get_importable_file_path(
    dynamic_modules_path: str,
    module_namespace: str,
    subdirectory_name: str,
    name: str,
) -> str:
    importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
    return os.path.join(importable_directory_path, subdirectory_name, name.split("/")[-1] + ".py")


def _create_importable_file(
    local_path: str,
    local_imports: list[tuple[str, str]],
    additional_files: list[tuple[str, str]],
    dynamic_modules_path: str,
    module_namespace: str,
    subdirectory_name: str,
    name: str,
    download_mode: DownloadMode,
) -> None:
    importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
    Path(importable_directory_path).mkdir(parents=True, exist_ok=True)
    (Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True)
    importable_local_file = _copy_script_and_other_resources_in_importable_dir(
        name=name.split("/")[-1],
        importable_directory_path=importable_directory_path,
        subdirectory_name=subdirectory_name,
        original_local_path=local_path,
        local_imports=local_imports,
        additional_files=additional_files,
        download_mode=download_mode,
    )
    logger.debug(f"Created importable dataset file at {importable_local_file}")


def _load_importable_file(
    dynamic_modules_path: str,
    module_namespace: str,
    subdirectory_name: str,
    name: str,
) -> tuple[str, str]:
    module_path = ".".join(
        [
            os.path.basename(dynamic_modules_path),
            module_namespace,
            name.replace("/", "--"),
            subdirectory_name,
            name.split("/")[-1],
        ]
    )
    return module_path, subdirectory_name


def infer_module_for_data_files_list(
    data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None
) -> tuple[Optional[str], dict]:
    """Infer module (and builder kwargs) from list of data files.

    It picks the module based on the most common file extension.
    In case of a draw ".parquet" is the favorite, and then alphabetical order.

    Args:
        data_files_list (DataFilesList): List of data files.
        download_config (bool or str, optional): Mainly use `token` or `storage_options` to support different platforms and auth types.

    Returns:
        tuple[str, dict[str, Any]]: Tuple with
            - inferred module name
            - dict of builder kwargs
    """
    extensions_counter = Counter(
        ("." + suffix.lower(), xbasename(filepath) in FolderBasedBuilder.METADATA_FILENAMES)
        for filepath in data_files_list[: config.DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE]
        for suffix in xbasename(filepath).split(".")[1:]
    )
    if extensions_counter:

        def sort_key(ext_count: tuple[tuple[str, bool], int]) -> tuple[int, bool]:
            """Sort by count and set ".parquet" as the favorite in case of a draw, and ignore metadata files"""
            (ext, is_metadata), count = ext_count
            return (not is_metadata, count, ext == ".parquet", ext == ".jsonl", ext == ".json", ext == ".csv", ext)

        for (ext, _), _ in sorted(extensions_counter.items(), key=sort_key, reverse=True):
            if ext in _EXTENSION_TO_MODULE:
                return _EXTENSION_TO_MODULE[ext]
            elif ext == ".zip":
                return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config)
    return None, {}


def infer_module_for_data_files_list_in_archives(
    data_files_list: DataFilesList, download_config: Optional[DownloadConfig] = None
) -> tuple[Optional[str], dict]:
    """Infer module (and builder kwargs) from list of archive data files.

    Args:
        data_files_list (DataFilesList): List of data files.
        download_config (bool or str, optional): Mainly use `token` or `storage_options` to support different platforms and auth types.

    Returns:
        tuple[str, dict[str, Any]]: Tuple with
            - inferred module name
            - dict of builder kwargs
    """
    archived_files = []
    archive_files_counter = 0
    for filepath in data_files_list:
        if str(filepath).endswith(".zip"):
            archive_files_counter += 1
            if archive_files_counter > config.GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE:
                break
            extracted = xjoin(StreamingDownloadManager().extract(filepath), "**")
            archived_files += [
                f.split("::")[0]
                for f in xglob(extracted, recursive=True, download_config=download_config)[
                    : config.ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE
                ]
            ]
    extensions_counter = Counter(
        "." + suffix.lower() for filepath in archived_files for suffix in xbasename(filepath).split(".")[1:]
    )
    if extensions_counter:
        most_common = extensions_counter.most_common(1)[0][0]
        if most_common in _EXTENSION_TO_MODULE:
            return _EXTENSION_TO_MODULE[most_common]
    return None, {}


def infer_module_for_data_files(
    data_files: DataFilesDict, path: Optional[str] = None, download_config: Optional[DownloadConfig] = None
) -> tuple[Optional[str], dict[str, Any]]:
    """Infer module (and builder kwargs) from data files. Raise if module names for different splits don't match.

    Args:
        data_files ([`DataFilesDict`]): Dict of list of data files.
        path (str, *optional*): Dataset name or path.
        download_config ([`DownloadConfig`], *optional*):
            Specific download configuration parameters to authenticate on the Hugging Face Hub for private remote files.

    Returns:
        tuple[str, dict[str, Any]]: Tuple with
            - inferred module name
            - builder kwargs
    """
    split_modules = {
        split: infer_module_for_data_files_list(data_files_list, download_config=download_config)
        for split, data_files_list in data_files.items()
    }
    module_name, default_builder_kwargs = next(iter(split_modules.values()))
    if any((module_name, default_builder_kwargs) != split_module for split_module in split_modules.values()):
        raise ValueError(f"Couldn't infer the same data file format for all splits. Got {split_modules}")
    if not module_name:
        raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else ""))
    return module_name, default_builder_kwargs


def create_builder_configs_from_metadata_configs(
    module_path: str,
    metadata_configs: MetadataConfigs,
    base_path: Optional[str] = None,
    default_builder_kwargs: dict[str, Any] = None,
    download_config: Optional[DownloadConfig] = None,
) -> tuple[list[BuilderConfig], str]:
    builder_cls = import_main_class(module_path)
    builder_config_cls = builder_cls.BUILDER_CONFIG_CLASS
    default_config_name = metadata_configs.get_default_config_name()
    builder_configs = []
    default_builder_kwargs = {} if default_builder_kwargs is None else default_builder_kwargs

    base_path = base_path if base_path is not None else ""
    for config_name, config_params in metadata_configs.items():
        config_data_files = config_params.get("data_files")
        config_data_dir = config_params.get("data_dir")
        config_base_path = xjoin(base_path, config_data_dir) if config_data_dir else base_path
        try:
            config_patterns = (
                sanitize_patterns(config_data_files)
                if config_data_files is not None
                else get_data_patterns(config_base_path, download_config=download_config)
            )
            config_data_files_dict = DataFilesPatternsDict.from_patterns(
                config_patterns,
                allowed_extensions=ALL_ALLOWED_EXTENSIONS,
            )
        except EmptyDatasetError as e:
            raise EmptyDatasetError(
                f"Dataset at '{base_path}' doesn't contain data files matching the patterns for config '{config_name}',"
                f" check `data_files` and `data_fir` parameters in the `configs` YAML field in README.md. "
            ) from e
        ignored_params = [
            param for param in config_params if not hasattr(builder_config_cls, param) and param != "default"
        ]
        if ignored_params:
            logger.warning(
                f"Some datasets params were ignored: {ignored_params}. "
                "Make sure to use only valid params for the dataset builder and to have "
                "a up-to-date version of the `datasets` library."
            )
        builder_configs.append(
            builder_config_cls(
                name=config_name,
                data_files=config_data_files_dict,
                data_dir=config_data_dir,
                **{
                    param: value
                    for param, value in {**default_builder_kwargs, **config_params}.items()
                    if hasattr(builder_config_cls, param) and param not in ("default", "data_files", "data_dir")
                },
            )
        )
    return builder_configs, default_config_name


@dataclass
class BuilderConfigsParameters:
    """Dataclass containing objects related to creation of builder configurations from yaml's metadata content.

    Attributes:
        metadata_configs (`MetadataConfigs`, *optional*):
            Configs parsed from yaml's metadata.
        builder_configs (`list[BuilderConfig]`, *optional*):
            List of BuilderConfig objects created from metadata_configs above.
        default_config_name (`str`):
            Name of default config taken from yaml's metadata.
    """

    metadata_configs: Optional[MetadataConfigs] = None
    builder_configs: Optional[list[BuilderConfig]] = None
    default_config_name: Optional[str] = None


@dataclass
class DatasetModule:
    module_path: str
    hash: str
    builder_kwargs: dict
    builder_configs_parameters: BuilderConfigsParameters = field(default_factory=BuilderConfigsParameters)
    dataset_infos: Optional[DatasetInfosDict] = None
    importable_file_path: Optional[str] = None


class _DatasetModuleFactory:
    def get_module(self) -> DatasetModule:
        raise NotImplementedError


class LocalDatasetModuleFactoryWithScript(_DatasetModuleFactory):
    """Get the module of a local dataset. The dataset script is loaded from a local script."""

    def __init__(
        self,
        path: str,
        download_config: Optional[DownloadConfig] = None,
        download_mode: Optional[Union[DownloadMode, str]] = None,
        dynamic_modules_path: Optional[str] = None,
        trust_remote_code: Optional[bool] = None,
    ):
        self.path = path
        self.name = Path(path).stem
        self.download_config = download_config or DownloadConfig()
        self.download_mode = download_mode
        self.dynamic_modules_path = dynamic_modules_path
        self.trust_remote_code = trust_remote_code

    def get_module(self) -> DatasetModule:
        if config.HF_DATASETS_TRUST_REMOTE_CODE and self.trust_remote_code is None:
            warnings.warn(
                f"The repository for {self.name} contains custom code which must be executed to correctly "
                f"load the dataset. You can inspect the repository content at {self.path}\n"
                f"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n"
                f"Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.",
                FutureWarning,
            )
        # get script and other files
        dataset_infos_path = Path(self.path).parent / config.DATASETDICT_INFOS_FILENAME
        dataset_readme_path = Path(self.path).parent / config.REPOCARD_FILENAME
        imports = get_imports(self.path)
        local_imports, library_imports = _download_additional_modules(
            name=self.name,
            base_path=str(Path(self.path).parent),
            imports=imports,
            download_config=self.download_config,
        )
        additional_files = []
        if dataset_infos_path.is_file():
            additional_files.append((config.DATASETDICT_INFOS_FILENAME, str(dataset_infos_path)))
        if dataset_readme_path.is_file():
            additional_files.append((config.REPOCARD_FILENAME, dataset_readme_path))
        # copy the script and the files in an importable directory
        dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
        hash = files_to_hash([self.path] + [loc[1] for loc in local_imports])
        importable_file_path = _get_importable_file_path(
            dynamic_modules_path=dynamic_modules_path,
            module_namespace="datasets",
            subdirectory_name=hash,
            name=self.name,
        )
        if not os.path.exists(importable_file_path):
            trust_remote_code = resolve_trust_remote_code(self.trust_remote_code, self.name)
            if trust_remote_code:
                _create_importable_file(
                    local_path=self.path,
                    local_imports=local_imports,
                    additional_files=additional_files,
                    dynamic_modules_path=dynamic_modules_path,
                    module_namespace="datasets",
                    subdirectory_name=hash,
                    name=self.name,
                    download_mode=self.download_mode,
                )
            else:
                raise ValueError(
                    f"Loading {self.name} requires you to execute the dataset script in that"
                    " repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
                    " set the option `trust_remote_code=True` to remove this error."
                )
        _check_library_imports(name=self.name, library_imports=library_imports)
        module_path, hash = _load_importable_file(
            dynamic_modules_path=dynamic_modules_path,
            module_namespace="datasets",
            subdirectory_name=hash,
            name=self.name,
        )

        # make the new module to be noticed by the import system
        importlib.invalidate_caches()
        builder_kwargs = {"base_path": str(Path(self.path).parent)}
        return DatasetModule(module_path, hash, builder_kwargs, importable_file_path=importable_file_path)


class LocalDatasetModuleFactoryWithoutScript(_DatasetModuleFactory):
    """Get the module of a dataset loaded from the user's data files. The dataset builder module to use is inferred
    from the data files extensions."""

    def __init__(
        self,
        path: str,
        data_dir: Optional[str] = None,
        data_files: Optional[Union[str, list, dict]] = None,
        download_mode: Optional[Union[DownloadMode, str]] = None,
    ):
        if data_dir and os.path.isabs(data_dir):
            raise ValueError(f"`data_dir` must be relative to a dataset directory's root: {path}")

        self.path = Path(path).as_posix()
        self.name = Path(path).stem
        self.data_files = data_files
        self.data_dir = data_dir
        self.download_mode = download_mode

    def get_module(self) -> DatasetModule:
        readme_path = os.path.join(self.path, config.REPOCARD_FILENAME)
        standalone_yaml_path = os.path.join(self.path, config.REPOYAML_FILENAME)
        dataset_card_data = DatasetCard.load(readme_path).data if os.path.isfile(readme_path) else DatasetCardData()
        if os.path.exists(standalone_yaml_path):
            with open(standalone_yaml_path, encoding="utf-8") as f:
                standalone_yaml_data = yaml.safe_load(f.read())
                if standalone_yaml_data:
                    _dataset_card_data_dict = dataset_card_data.to_dict()
                    _dataset_card_data_dict.update(standalone_yaml_data)
                    dataset_card_data = DatasetCardData(**_dataset_card_data_dict)
        metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
        dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
        # we need a set of data files to find which dataset builder to use
        # because we need to infer module name by files extensions
        base_path = Path(self.path, self.data_dir or "").expanduser().resolve().as_posix()
        if self.data_files is not None:
            patterns = sanitize_patterns(self.data_files)
        elif metadata_configs and not self.data_dir and "data_files" in next(iter(metadata_configs.values())):
            patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"])
        else:
            patterns = get_data_patterns(base_path)
        data_files = DataFilesDict.from_patterns(
            patterns,
            base_path=base_path,
            allowed_extensions=ALL_ALLOWED_EXTENSIONS,
        )
        module_name, default_builder_kwargs = infer_module_for_data_files(
            data_files=data_files,
            path=self.path,
        )
        data_files = data_files.filter(
            extensions=_MODULE_TO_EXTENSIONS[module_name], file_names=_MODULE_TO_METADATA_FILE_NAMES[module_name]
        )
        module_path, _ = _PACKAGED_DATASETS_MODULES[module_name]
        if metadata_configs:
            builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
                module_path,
                metadata_configs,
                base_path=base_path,
                default_builder_kwargs=default_builder_kwargs,
            )
        else:
            builder_configs: list[BuilderConfig] = [
                import_main_class(module_path).BUILDER_CONFIG_CLASS(
                    data_files=data_files,
                    **default_builder_kwargs,
                )
            ]
            default_config_name = None
        builder_kwargs = {
            "base_path": self.path,
            "dataset_name": camelcase_to_snakecase(Path(self.path).name),
        }
        if self.data_dir:
            builder_kwargs["data_files"] = data_files
        # this file is deprecated and was created automatically in old versions of push_to_hub
        if os.path.isfile(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME)):
            with open(os.path.join(self.path, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f:
                legacy_dataset_infos = DatasetInfosDict(
                    {
                        config_name: DatasetInfo.from_dict(dataset_info_dict)
                        for config_name, dataset_info_dict in json.load(f).items()
                    }
                )
                if len(legacy_dataset_infos) == 1:
                    # old config e.g. named "username--dataset_name"
                    legacy_config_name = next(iter(legacy_dataset_infos))
                    legacy_dataset_infos["default"] = legacy_dataset_infos.pop(legacy_config_name)
            legacy_dataset_infos.update(dataset_infos)
            dataset_infos = legacy_dataset_infos
        if default_config_name is None and len(dataset_infos) == 1:
            default_config_name = next(iter(dataset_infos))

        hash = Hasher.hash({"dataset_infos": dataset_infos, "builder_configs": builder_configs})
        return DatasetModule(
            module_path,
            hash,
            builder_kwargs,
            dataset_infos=dataset_infos,
            builder_configs_parameters=BuilderConfigsParameters(
                metadata_configs=metadata_configs,
                builder_configs=builder_configs,
                default_config_name=default_config_name,
            ),
        )


class PackagedDatasetModuleFactory(_DatasetModuleFactory):
    """Get the dataset builder module from the ones that are packaged with the library: csv, json, etc."""

    def __init__(
        self,
        name: str,
        data_dir: Optional[str] = None,
        data_files: Optional[Union[str, list, dict]] = None,
        download_config: Optional[DownloadConfig] = None,
        download_mode: Optional[Union[DownloadMode, str]] = None,
    ):
        self.name = name
        self.data_files = data_files
        self.data_dir = data_dir
        self.download_config = download_config
        self.download_mode = download_mode
        increase_load_count(name)

    def get_module(self) -> DatasetModule:
        base_path = Path(self.data_dir or "").expanduser().resolve().as_posix()
        patterns = (
            sanitize_patterns(self.data_files)
            if self.data_files is not None
            else get_data_patterns(base_path, download_config=self.download_config)
        )
        data_files = DataFilesDict.from_patterns(
            patterns,
            download_config=self.download_config,
            base_path=base_path,
        )

        module_path, hash = _PACKAGED_DATASETS_MODULES[self.name]

        builder_kwargs = {
            "data_files": data_files,
            "dataset_name": self.name,
        }

        return DatasetModule(module_path, hash, builder_kwargs)


class HubDatasetModuleFactoryWithoutScript(_DatasetModuleFactory):
    """
    Get the module of a dataset loaded from data files of a dataset repository.
    The dataset builder module to use is inferred from the data files extensions.
    """

    def __init__(
        self,
        name: str,
        commit_hash: str,
        data_dir: Optional[str] = None,
        data_files: Optional[Union[str, list, dict]] = None,
        download_config: Optional[DownloadConfig] = None,
        download_mode: Optional[Union[DownloadMode, str]] = None,
        use_exported_dataset_infos: bool = False,
    ):
        self.name = name
        self.commit_hash = commit_hash
        self.data_files = data_files
        self.data_dir = data_dir
        self.download_config = download_config or DownloadConfig()
        self.download_mode = download_mode
        self.use_exported_dataset_infos = use_exported_dataset_infos
        increase_load_count(name)

    def get_module(self) -> DatasetModule:
        # Get the Dataset Card and fix the revision in case there are new commits in the meantime
        api = HfApi(
            endpoint=config.HF_ENDPOINT,
            token=self.download_config.token,
            library_name="datasets",
            library_version=__version__,
            user_agent=get_datasets_user_agent(self.download_config.user_agent),
        )
        try:
            dataset_readme_path = api.hf_hub_download(
                repo_id=self.name,
                filename=config.REPOCARD_FILENAME,
                repo_type="dataset",
                revision=self.commit_hash,
                proxies=self.download_config.proxies,
            )
            dataset_card_data = DatasetCard.load(dataset_readme_path).data
        except EntryNotFoundError:
            dataset_card_data = DatasetCardData()
        download_config = self.download_config.copy()
        if download_config.download_desc is None:
            download_config.download_desc = "Downloading standalone yaml"
        try:
            standalone_yaml_path = cached_path(
                hf_dataset_url(self.name, config.REPOYAML_FILENAME, revision=self.commit_hash),
                download_config=download_config,
            )
            with open(standalone_yaml_path, encoding="utf-8") as f:
                standalone_yaml_data = yaml.safe_load(f.read())
                if standalone_yaml_data:
                    _dataset_card_data_dict = dataset_card_data.to_dict()
                    _dataset_card_data_dict.update(standalone_yaml_data)
                    dataset_card_data = DatasetCardData(**_dataset_card_data_dict)
        except FileNotFoundError:
            pass
        base_path = f"hf://datasets/{self.name}@{self.commit_hash}/{self.data_dir or ''}".rstrip("/")
        metadata_configs = MetadataConfigs.from_dataset_card_data(dataset_card_data)
        dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
        if config.USE_PARQUET_EXPORT and self.use_exported_dataset_infos:
            try:
                exported_dataset_infos = _dataset_viewer.get_exported_dataset_infos(
                    dataset=self.name, commit_hash=self.commit_hash, token=self.download_config.token
                )
                exported_dataset_infos = DatasetInfosDict(
                    {
                        config_name: DatasetInfo.from_dict(exported_dataset_infos[config_name])
                        for config_name in exported_dataset_infos
                    }
                )
            except _dataset_viewer.DatasetViewerError:
                exported_dataset_infos = None
        else:
            exported_dataset_infos = None
        if exported_dataset_infos:
            exported_dataset_infos.update(dataset_infos)
            dataset_infos = exported_dataset_infos
        # we need a set of data files to find which dataset builder to use
        # because we need to infer module name by files extensions
        if self.data_files is not None:
            patterns = sanitize_patterns(self.data_files)
        elif metadata_configs and not self.data_dir and "data_files" in next(iter(metadata_configs.values())):
            patterns = sanitize_patterns(next(iter(metadata_configs.values()))["data_files"])
        else:
            patterns = get_data_patterns(base_path, download_config=self.download_config)
        data_files = DataFilesDict.from_patterns(
            patterns,
            base_path=base_path,
            allowed_extensions=ALL_ALLOWED_EXTENSIONS,
            download_config=self.download_config,
        )
        module_name, default_builder_kwargs = infer_module_for_data_files(
            data_files=data_files,
            path=self.name,
            download_config=self.download_config,
        )
        data_files = data_files.filter(
            extensions=_MODULE_TO_EXTENSIONS[module_name], file_names=_MODULE_TO_METADATA_FILE_NAMES[module_name]
        )
        module_path, _ = _PACKAGED_DATASETS_MODULES[module_name]
        if metadata_configs:
            builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
                module_path,
                metadata_configs,
                base_path=base_path,
                default_builder_kwargs=default_builder_kwargs,
                download_config=self.download_config,
            )
        else:
            builder_configs: list[BuilderConfig] = [
                import_main_class(module_path).BUILDER_CONFIG_CLASS(
                    data_files=data_files,
                    **default_builder_kwargs,
                )
            ]
            default_config_name = None
        builder_kwargs = {
            "base_path": hf_dataset_url(self.name, "", revision=self.commit_hash).rstrip("/"),
            "repo_id": self.name,
            "dataset_name": camelcase_to_snakecase(Path(self.name).name),
        }
        if self.data_dir:
            builder_kwargs["data_files"] = data_files
        download_config = self.download_config.copy()
        if download_config.download_desc is None:
            download_config.download_desc = "Downloading metadata"
        try:
            # this file is deprecated and was created automatically in old versions of push_to_hub
            dataset_infos_path = cached_path(
                hf_dataset_url(self.name, config.DATASETDICT_INFOS_FILENAME, revision=self.commit_hash),
                download_config=download_config,
            )
            with open(dataset_infos_path, encoding="utf-8") as f:
                legacy_dataset_infos = DatasetInfosDict(
                    {
                        config_name: DatasetInfo.from_dict(dataset_info_dict)
                        for config_name, dataset_info_dict in json.load(f).items()
                    }
                )
                if len(legacy_dataset_infos) == 1:
                    # old config e.g. named "username--dataset_name"
                    legacy_config_name = next(iter(legacy_dataset_infos))
                    legacy_dataset_infos["default"] = legacy_dataset_infos.pop(legacy_config_name)
            legacy_dataset_infos.update(dataset_infos)
            dataset_infos = legacy_dataset_infos
        except FileNotFoundError:
            pass
        if default_config_name is None and len(dataset_infos) == 1:
            default_config_name = next(iter(dataset_infos))

        return DatasetModule(
            module_path,
            self.commit_hash,
            builder_kwargs,
            dataset_infos=dataset_infos,
            builder_configs_parameters=BuilderConfigsParameters(
                metadata_configs=metadata_configs,
                builder_configs=builder_configs,
                default_config_name=default_config_name,
            ),
        )


class HubDatasetModuleFactoryWithParquetExport(_DatasetModuleFactory):
    """
    Get the module of a dataset loaded from parquet files of a dataset repository parquet export.
    """

    def __init__(
        self,
        name: str,
        commit_hash: str,
        download_config: Optional[DownloadConfig] = None,
    ):
        self.name = name
        self.commit_hash = commit_hash
        self.download_config = download_config or DownloadConfig()
        increase_load_count(name)

    def get_module(self) -> DatasetModule:
        exported_parquet_files = _dataset_viewer.get_exported_parquet_files(
            dataset=self.name, commit_hash=self.commit_hash, token=self.download_config.token
        )
        exported_dataset_infos = _dataset_viewer.get_exported_dataset_infos(
            dataset=self.name, commit_hash=self.commit_hash, token=self.download_config.token
        )
        dataset_infos = DatasetInfosDict(
            {
                config_name: DatasetInfo.from_dict(exported_dataset_infos[config_name])
                for config_name in exported_dataset_infos
            }
        )
        parquet_commit_hash = (
            HfApi(
                endpoint=config.HF_ENDPOINT,
                token=self.download_config.token,
                library_name="datasets",
                library_version=__version__,
                user_agent=get_datasets_user_agent(self.download_config.user_agent),
            )
            .dataset_info(
                self.name,
                revision="refs/convert/parquet",
                token=self.download_config.token,
                timeout=100.0,
            )
            .sha
        )  # fix the revision in case there are new commits in the meantime
        metadata_configs = MetadataConfigs._from_exported_parquet_files_and_dataset_infos(
            parquet_commit_hash=parquet_commit_hash,
            exported_parquet_files=exported_parquet_files,
            dataset_infos=dataset_infos,
        )
        module_path, _ = _PACKAGED_DATASETS_MODULES["parquet"]
        builder_configs, default_config_name = create_builder_configs_from_metadata_configs(
            module_path,
            metadata_configs,
            download_config=self.download_config,
        )
        builder_kwargs = {
            "repo_id": self.name,
            "dataset_name": camelcase_to_snakecase(Path(self.name).name),
        }

        return DatasetModule(
            module_path,
            self.commit_hash,
            builder_kwargs,
            dataset_infos=dataset_infos,
            builder_configs_parameters=BuilderConfigsParameters(
                metadata_configs=metadata_configs,
                builder_configs=builder_configs,
                default_config_name=default_config_name,
            ),
        )


class HubDatasetModuleFactoryWithScript(_DatasetModuleFactory):
    """
    Get the module of a dataset from a dataset repository.
    The dataset script comes from the script inside the dataset repository.
    """

    def __init__(
        self,
        name: str,
        commit_hash: str,
        download_config: Optional[DownloadConfig] = None,
        download_mode: Optional[Union[DownloadMode, str]] = None,
        dynamic_modules_path: Optional[str] = None,
        trust_remote_code: Optional[bool] = None,
    ):
        self.name = name
        self.commit_hash = commit_hash
        self.download_config = download_config or DownloadConfig()
        self.download_mode = download_mode
        self.dynamic_modules_path = dynamic_modules_path
        self.trust_remote_code = trust_remote_code
        increase_load_count(name)

    def download_loading_script(self) -> str:
        file_path = hf_dataset_url(self.name, self.name.split("/")[-1] + ".py", revision=self.commit_hash)
        download_config = self.download_config.copy()
        if download_config.download_desc is None:
            download_config.download_desc = "Downloading builder script"
        return cached_path(file_path, download_config=download_config)

    def download_dataset_infos_file(self) -> str:
        dataset_infos = hf_dataset_url(self.name, config.DATASETDICT_INFOS_FILENAME, revision=self.commit_hash)
        # Download the dataset infos file if available
        download_config = self.download_config.copy()
        if download_config.download_desc is None:
            download_config.download_desc = "Downloading metadata"
        try:
            return cached_path(
                dataset_infos,
                download_config=download_config,
            )
        except (FileNotFoundError, ConnectionError):
            return None

    def download_dataset_readme_file(self) -> str:
        readme_url = hf_dataset_url(self.name, config.REPOCARD_FILENAME, revision=self.commit_hash)
        # Download the dataset infos file if available
        download_config = self.download_config.copy()
        if download_config.download_desc is None:
            download_config.download_desc = "Downloading readme"
        try:
            return cached_path(
                readme_url,
                download_config=download_config,
            )
        except (FileNotFoundError, ConnectionError):
            return None

    def get_module(self) -> DatasetModule:
        if config.HF_DATASETS_TRUST_REMOTE_CODE and self.trust_remote_code is None:
            warnings.warn(
                f"The repository for {self.name} contains custom code which must be executed to correctly "
                f"load the dataset. You can inspect the repository content at https://hf.co/datasets/{self.name}\n"
                f"You can avoid this message in future by passing the argument `trust_remote_code=True`.\n"
                f"Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.",
                FutureWarning,
            )
        # get script and other files
        local_path = self.download_loading_script()
        dataset_infos_path = self.download_dataset_infos_file()
        dataset_readme_path = self.download_dataset_readme_file()
        imports = get_imports(local_path)
        local_imports, library_imports = _download_additional_modules(
            name=self.name,
            base_path=hf_dataset_url(self.name, "", revision=self.commit_hash),
            imports=imports,
            download_config=self.download_config,
        )
        additional_files = []
        if dataset_infos_path:
            additional_files.append((config.DATASETDICT_INFOS_FILENAME, dataset_infos_path))
        if dataset_readme_path:
            additional_files.append((config.REPOCARD_FILENAME, dataset_readme_path))
        # copy the script and the files in an importable directory
        dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
        hash = files_to_hash([local_path] + [loc[1] for loc in local_imports])
        importable_file_path = _get_importable_file_path(
            dynamic_modules_path=dynamic_modules_path,
            module_namespace="datasets",
            subdirectory_name=hash,
            name=self.name,
        )
        if not os.path.exists(importable_file_path):
            trust_remote_code = resolve_trust_remote_code(self.trust_remote_code, self.name)
            if trust_remote_code:
                _create_importable_file(
                    local_path=local_path,
                    local_imports=local_imports,
                    additional_files=additional_files,
                    dynamic_modules_path=dynamic_modules_path,
                    module_namespace="datasets",
                    subdirectory_name=hash,
                    name=self.name,
                    download_mode=self.download_mode,
                )
            else:
                raise ValueError(
                    f"Loading {self.name} requires you to execute the dataset script in that"
                    " repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
                    " set the option `trust_remote_code=True` to remove this error."
                )
        _check_library_imports(name=self.name, library_imports=library_imports)
        module_path, hash = _load_importable_file(
            dynamic_modules_path=dynamic_modules_path,
            module_namespace="datasets",
            subdirectory_name=hash,
            name=self.name,
        )
        # make the new module to be noticed by the import system
        importlib.invalidate_caches()
        builder_kwargs = {
            "base_path": hf_dataset_url(self.name, "", revision=self.commit_hash).rstrip("/"),
            "repo_id": self.name,
        }
        return DatasetModule(module_path, hash, builder_kwargs, importable_file_path=importable_file_path)


class CachedDatasetModuleFactory(_DatasetModuleFactory):
    """
    Get the module of a dataset that has been loaded once already and cached.
    The script that is loaded from the cache is the most recent one with a matching name.
    """

    def __init__(
        self,
        name: str,
        cache_dir: Optional[str] = None,
        dynamic_modules_path: Optional[str] = None,
    ):
        self.name = name
        self.cache_dir = cache_dir
        self.dynamic_modules_path = dynamic_modules_path
        assert self.name.count("/") <= 1

    def get_module(self) -> DatasetModule:
        dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
        importable_directory_path = os.path.join(dynamic_modules_path, "datasets", self.name.replace("/", "--"))
        hashes = (
            [h for h in os.listdir(importable_directory_path) if len(h) == 64]
            if os.path.isdir(importable_directory_path)
            else None
        )
        if hashes:
            # get most recent
            def _get_modification_time(module_hash):
                return (
                    (Path(importable_directory_path) / module_hash / (self.name.split("/")[-1] + ".py"))
                    .stat()
                    .st_mtime
                )

            hash = sorted(hashes, key=_get_modification_time)[-1]
            warning_msg = (
                f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
                f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
                f"couldn't be found locally at {self.name}"
            )
            if not config.HF_HUB_OFFLINE:
                warning_msg += ", or remotely on the Hugging Face Hub."
            logger.warning(warning_msg)
            importable_file_path = _get_importable_file_path(
                dynamic_modules_path=dynamic_modules_path,
                module_namespace="datasets",
                subdirectory_name=hash,
                name=self.name,
            )
            module_path, hash = _load_importable_file(
                dynamic_modules_path=dynamic_modules_path,
                module_namespace="datasets",
                subdirectory_name=hash,
                name=self.name,
            )
            # make the new module to be noticed by the import system
            importlib.invalidate_caches()
            builder_kwargs = {
                "repo_id": self.name,
            }
            return DatasetModule(module_path, hash, builder_kwargs, importable_file_path=importable_file_path)
        cache_dir = os.path.expanduser(str(self.cache_dir or config.HF_DATASETS_CACHE))
        namespace_and_dataset_name = self.name.split("/")
        namespace_and_dataset_name[-1] = camelcase_to_snakecase(namespace_and_dataset_name[-1])
        cached_relative_path = "___".join(namespace_and_dataset_name)
        cached_datasets_directory_path_root = os.path.join(cache_dir, cached_relative_path)
        cached_directory_paths = [
            cached_directory_path
            for cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", "*", "*"))
            if os.path.isdir(cached_directory_path)
        ]
        if cached_directory_paths:
            builder_kwargs = {
                "repo_id": self.name,
                "dataset_name": self.name.split("/")[-1],
            }
            warning_msg = f"Using the latest cached version of the dataset since {self.name} couldn't be found on the Hugging Face Hub"
            if config.HF_HUB_OFFLINE:
                warning_msg += " (offline mode is enabled)."
            logger.warning(warning_msg)
            return DatasetModule(
                "datasets.packaged_modules.cache.cache",
                "auto",
                {**builder_kwargs, "version": "auto"},
            )
        raise FileNotFoundError(f"Dataset {self.name} is not cached in {self.cache_dir}")


def dataset_module_factory(
    path: str,
    revision: Optional[Union[str, Version]] = None,
    download_config: Optional[DownloadConfig] = None,
    download_mode: Optional[Union[DownloadMode, str]] = None,
    dynamic_modules_path: Optional[str] = None,
    data_dir: Optional[str] = None,
    data_files: Optional[Union[dict, list, str, DataFilesDict]] = None,
    cache_dir: Optional[str] = None,
    trust_remote_code: Optional[bool] = None,
    _require_default_config_name=True,
    _require_custom_configs=False,
    **download_kwargs,
) -> DatasetModule:
    """
    Download/extract/cache a dataset module.

    Dataset codes are cached inside the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).

    Args:

        path (str): Path or name of the dataset.
            Depending on ``path``, the dataset builder that is used comes from a generic dataset script (JSON, CSV, Parquet, text etc.) or from the dataset script (a python file) inside the dataset directory.

            For local datasets:

            - if ``path`` is a local directory (containing data files only)
              -> load a generic dataset builder (csv, json, text etc.) based on the content of the directory
              e.g. ``'./path/to/directory/with/my/csv/data'``.
            - if ``path`` is a local dataset script or a directory containing a local dataset script (if the script has the same name as the directory):
              -> load the dataset builder from the dataset script
              e.g. ``'./dataset/squad'`` or ``'./dataset/squad/squad.py'``.

            For datasets on the Hugging Face Hub (list all available datasets with ``huggingface_hub.list_datasets()``)

            - if ``path`` is a dataset repository on the HF hub (containing data files only)
              -> load a generic dataset builder (csv, text etc.) based on the content of the repository
              e.g. ``'username/dataset_name'``, a dataset repository on the HF hub containing your data files.
            - if ``path`` is a dataset repository on the HF hub with a dataset script (if the script has the same name as the directory)
              -> load the dataset builder from the dataset script in the dataset repository
              e.g. ``glue``, ``squad``, ``'username/dataset_name'``, a dataset repository on the HF hub containing a dataset script `'dataset_name.py'`.

        revision (:class:`~utils.Version` or :obj:`str`, optional): Version of the dataset script to load.
            As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
            You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
        download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
        download_mode (:class:`DownloadMode` or :obj:`str`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
        dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
            Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
            By default, the datasets are stored inside the `datasets_modules` module.
        data_dir (:obj:`str`, optional): Directory with the data files. Used only if `data_files` is not specified,
            in which case it's equal to pass `os.path.join(data_dir, "**")` as `data_files`.
        data_files (:obj:`Union[Dict, List, str]`, optional): Defining the data_files of the dataset configuration.
        cache_dir (`str`, *optional*):
            Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.

            <Added version="2.16.0"/>
        trust_remote_code (`bool`, *optional*, defaults to `None`):
            Whether or not to allow for datasets defined on the Hub using a dataset script. This option
            should only be set to `True` for repositories you trust and in which you have read the code, as it will
            execute code present on the Hub on your local machine.

            <Added version="2.16.0"/>

            <Changed version="2.20.0">

            `trust_remote_code` defaults to `False` if not specified.

            </Changed>

        **download_kwargs (additional keyword arguments): optional attributes for DownloadConfig() which will override
            the attributes in download_config if supplied.

    Returns:
        DatasetModule
    """
    if download_config is None:
        download_config = DownloadConfig(**download_kwargs)
    download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
    download_config.extract_compressed_file = True
    download_config.force_extract = True
    download_config.force_download = download_mode == DownloadMode.FORCE_REDOWNLOAD

    filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
    if not filename.endswith(".py"):
        filename = filename + ".py"
    combined_path = os.path.join(path, filename)

    # We have several ways to get a dataset builder:
    #
    # - if path is the name of a packaged dataset module
    #   -> use the packaged module (json, csv, etc.)
    #
    # - if os.path.join(path, name) is a local python file
    #   -> use the module from the python file
    # - if path is a local directory (but no python file)
    #   -> use a packaged module (csv, text etc.) based on content of the directory
    #
    # - if path has one "/" and is dataset repository on the HF hub with a python file
    #   -> the module from the python file in the dataset repository
    # - if path has one "/" and is dataset repository on the HF hub without a python file
    #   -> use a packaged module (csv, text etc.) based on content of the repository

    # Try packaged
    if path in _PACKAGED_DATASETS_MODULES:
        return PackagedDatasetModuleFactory(
            path,
            data_dir=data_dir,
            data_files=data_files,
            download_config=download_config,
            download_mode=download_mode,
        ).get_module()
    # Try locally
    elif path.endswith(filename):
        if os.path.isfile(path):
            return LocalDatasetModuleFactoryWithScript(
                path,
                download_mode=download_mode,
                dynamic_modules_path=dynamic_modules_path,
                trust_remote_code=trust_remote_code,
            ).get_module()
        else:
            raise FileNotFoundError(f"Couldn't find a dataset script at {relative_to_absolute_path(path)}")
    elif os.path.isfile(combined_path):
        return LocalDatasetModuleFactoryWithScript(
            combined_path,
            download_mode=download_mode,
            dynamic_modules_path=dynamic_modules_path,
            trust_remote_code=trust_remote_code,
        ).get_module()
    elif os.path.isdir(path):
        return LocalDatasetModuleFactoryWithoutScript(
            path, data_dir=data_dir, data_files=data_files, download_mode=download_mode
        ).get_module()
    # Try remotely
    elif is_relative_path(path) and path.count("/") <= 1:
        try:
            # Get the Dataset Card + get the revision + check authentication all at in one call
            # We fix the commit_hash in case there are new commits in the meantime
            api = HfApi(
                endpoint=config.HF_ENDPOINT,
                token=download_config.token,
                library_name="datasets",
                library_version=__version__,
                user_agent=get_datasets_user_agent(download_config.user_agent),
            )
            try:
                _raise_if_offline_mode_is_enabled()
                dataset_readme_path = api.hf_hub_download(
                    repo_id=path,
                    filename=config.REPOCARD_FILENAME,
                    repo_type="dataset",
                    revision=revision,
                    proxies=download_config.proxies,
                )
                commit_hash = os.path.basename(os.path.dirname(dataset_readme_path))
            except LocalEntryNotFoundError as e:
                if isinstance(
                    e.__cause__,
                    (
                        OfflineModeIsEnabled,
                        requests.exceptions.Timeout,
                        requests.exceptions.ConnectionError,
                    ),
                ):
                    raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})") from e
                else:
                    raise
            except EntryNotFoundError:
                commit_hash = api.dataset_info(
                    path,
                    revision=revision,
                    timeout=100.0,
                ).sha
            except (
                OfflineModeIsEnabled,
                requests.exceptions.Timeout,
                requests.exceptions.ConnectionError,
            ) as e:
                raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({e.__class__.__name__})") from e
            except GatedRepoError as e:
                message = f"Dataset '{path}' is a gated dataset on the Hub."
                if e.response.status_code == 401:
                    message += " You must be authenticated to access it."
                elif e.response.status_code == 403:
                    message += f" Visit the dataset page at https://huggingface.co/datasets/{path} to ask for access."
                raise DatasetNotFoundError(message) from e
            except RevisionNotFoundError as e:
                raise DatasetNotFoundError(
                    f"Revision '{revision}' doesn't exist for dataset '{path}' on the Hub."
                ) from e
            except RepositoryNotFoundError as e:
                raise DatasetNotFoundError(f"Dataset '{path}' doesn't exist on the Hub or cannot be accessed.") from e
            try:
                dataset_script_path = api.hf_hub_download(
                    repo_id=path,
                    filename=filename,
                    repo_type="dataset",
                    revision=commit_hash,
                    proxies=download_config.proxies,
                )
                if _require_custom_configs or (revision and revision != "main"):
                    can_load_config_from_parquet_export = False
                elif _require_default_config_name:
                    with open(dataset_script_path, encoding="utf-8") as f:
                        can_load_config_from_parquet_export = "DEFAULT_CONFIG_NAME" not in f.read()
                else:
                    can_load_config_from_parquet_export = True
                if config.USE_PARQUET_EXPORT and can_load_config_from_parquet_export:
                    # If the parquet export is ready (parquet files + info available for the current sha), we can use it instead
                    # This fails when the dataset has multiple configs and a default config and
                    # the user didn't specify a configuration name (_require_default_config_name=True).
                    try:
                        out = HubDatasetModuleFactoryWithParquetExport(
                            path, download_config=download_config, commit_hash=commit_hash
                        ).get_module()
                        logger.info("Loading the dataset from the Parquet export on Hugging Face.")
                        return out
                    except _dataset_viewer.DatasetViewerError:
                        pass
                # Otherwise we must use the dataset script if the user trusts it
                return HubDatasetModuleFactoryWithScript(
                    path,
                    commit_hash=commit_hash,
                    download_config=download_config,
                    download_mode=download_mode,
                    dynamic_modules_path=dynamic_modules_path,
                    trust_remote_code=trust_remote_code,
                ).get_module()
            except EntryNotFoundError:
                # Use the infos from the parquet export except in some cases:
                if data_dir or data_files or (revision and revision != "main"):
                    use_exported_dataset_infos = False
                else:
                    use_exported_dataset_infos = True
                return HubDatasetModuleFactoryWithoutScript(
                    path,
                    commit_hash=commit_hash,
                    data_dir=data_dir,
                    data_files=data_files,
                    download_config=download_config,
                    download_mode=download_mode,
                    use_exported_dataset_infos=use_exported_dataset_infos,
                ).get_module()
            except GatedRepoError as e:
                message = f"Dataset '{path}' is a gated dataset on the Hub."
                if e.response.status_code == 401:
                    message += " You must be authenticated to access it."
                elif e.response.status_code == 403:
                    message += f" Visit the dataset page at https://huggingface.co/datasets/{path} to ask for access."
                raise DatasetNotFoundError(message) from e
            except RevisionNotFoundError as e:
                raise DatasetNotFoundError(
                    f"Revision '{revision}' doesn't exist for dataset '{path}' on the Hub."
                ) from e
        except Exception as e1:
            # All the attempts failed, before raising the error we should check if the module is already cached
            try:
                return CachedDatasetModuleFactory(
                    path, dynamic_modules_path=dynamic_modules_path, cache_dir=cache_dir
                ).get_module()
            except Exception:
                # If it's not in the cache, then it doesn't exist.
                if isinstance(e1, OfflineModeIsEnabled):
                    raise ConnectionError(f"Couldn't reach the Hugging Face Hub for dataset '{path}': {e1}") from None
                if isinstance(e1, (DataFilesNotFoundError, DatasetNotFoundError, EmptyDatasetError)):
                    raise e1 from None
                if isinstance(e1, FileNotFoundError):
                    if trust_remote_code:
                        raise FileNotFoundError(
                            f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. "
                            f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
                        ) from None
                    else:
                        raise FileNotFoundError(
                            f"Couldn't find any data file at {relative_to_absolute_path(path)}. "
                            f"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}"
                        ) from None
                raise e1 from None
    elif trust_remote_code:
        raise FileNotFoundError(
            f"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory."
        )
    else:
        raise FileNotFoundError(f"Couldn't find any data file at {relative_to_absolute_path(path)}.")


def load_dataset_builder(
    path: str,
    name: Optional[str] = None,
    data_dir: Optional[str] = None,
    data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
    cache_dir: Optional[str] = None,
    features: Optional[Features] = None,
    download_config: Optional[DownloadConfig] = None,
    download_mode: Optional[Union[DownloadMode, str]] = None,
    revision: Optional[Union[str, Version]] = None,
    token: Optional[Union[bool, str]] = None,
    storage_options: Optional[dict] = None,
    trust_remote_code: Optional[bool] = None,
    _require_default_config_name=True,
    **config_kwargs,
) -> DatasetBuilder:
    """Load a dataset builder which can be used to:

    - Inspect general information that is required to build a dataset (cache directory, config, dataset info, features, data files, etc.)
    - Download and prepare the dataset as Arrow files in the cache
    - Get a streaming dataset without downloading or caching anything

    You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].

    A dataset is a directory that contains some data files in generic formats (JSON, CSV, Parquet, etc.) and possibly
    in a generic structure (Webdataset, ImageFolder, AudioFolder, VideoFolder, etc.)

    Args:

        path (`str`):
            Path or name of the dataset.

            - if `path` is a dataset repository on the HF hub (list all available datasets with [`huggingface_hub.list_datasets`])
              -> load the dataset builder from supported files in the repository (csv, json, parquet, etc.)
              e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing the data files.

            - if `path` is a local directory
              -> load the dataset builder from supported files in the directory (csv, json, parquet, etc.)
              e.g. `'./path/to/directory/with/my/csv/data'`.

            - if `path` is the name of a dataset builder and `data_files` or `data_dir` is specified
              (available builders are "json", "csv", "parquet", "arrow", "text", "xml", "webdataset", "imagefolder", "audiofolder", "videofolder")
              -> load the dataset builder from the files in `data_files` or `data_dir`
              e.g. `'parquet'`.

            It can also point to a local dataset script but this is not recommended.
        name (`str`, *optional*):
            Defining the name of the dataset configuration.
        data_dir (`str`, *optional*):
            Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
            the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
        data_files (`str` or `Sequence` or `Mapping`, *optional*):
            Path(s) to source data file(s).
        cache_dir (`str`, *optional*):
            Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
        features ([`Features`], *optional*):
            Set the features type to use for this dataset.
        download_config ([`DownloadConfig`], *optional*):
            Specific download configuration parameters.
        download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
            Download/generate mode.
        revision ([`Version`] or `str`, *optional*):
            Version of the dataset script to load.
            As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
            You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
        token (`str` or `bool`, *optional*):
            Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
            If `True`, or not specified, will get token from `"~/.huggingface"`.
        storage_options (`dict`, *optional*, defaults to `None`):
            **Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.

            <Added version="2.11.0"/>
        trust_remote_code (`bool`, *optional*, defaults to `None`):
            Whether or not to allow for datasets defined on the Hub using a dataset script. This option
            should only be set to `True` for repositories you trust and in which you have read the code, as it will
            execute code present on the Hub on your local machine.

            <Added version="2.16.0"/>

            <Changed version="2.20.0">

            `trust_remote_code` defaults to `False` if not specified.

            </Changed>

        **config_kwargs (additional keyword arguments):
            Keyword arguments to be passed to the [`BuilderConfig`]
            and used in the [`DatasetBuilder`].

    Returns:
        [`DatasetBuilder`]

    Example:

    ```py
    >>> from datasets import load_dataset_builder
    >>> ds_builder = load_dataset_builder('cornell-movie-review-data/rotten_tomatoes')
    >>> ds_builder.info.features
    {'label': ClassLabel(names=['neg', 'pos'], id=None),
     'text': Value(dtype='string', id=None)}
    ```
    """
    download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
    if token is not None:
        download_config = download_config.copy() if download_config else DownloadConfig()
        download_config.token = token
    if storage_options is not None:
        download_config = download_config.copy() if download_config else DownloadConfig()
        download_config.storage_options.update(storage_options)
    dataset_module = dataset_module_factory(
        path,
        revision=revision,
        download_config=download_config,
        download_mode=download_mode,
        data_dir=data_dir,
        data_files=data_files,
        cache_dir=cache_dir,
        trust_remote_code=trust_remote_code,
        _require_default_config_name=_require_default_config_name,
        _require_custom_configs=bool(config_kwargs),
    )
    # Get dataset builder class from the processing script
    builder_kwargs = dataset_module.builder_kwargs
    data_dir = builder_kwargs.pop("data_dir", data_dir)
    data_files = builder_kwargs.pop("data_files", data_files)
    config_name = builder_kwargs.pop(
        "config_name", name or dataset_module.builder_configs_parameters.default_config_name
    )
    dataset_name = builder_kwargs.pop("dataset_name", None)
    info = dataset_module.dataset_infos.get(config_name) if dataset_module.dataset_infos else None

    if (
        path in _PACKAGED_DATASETS_MODULES
        and data_files is None
        and dataset_module.builder_configs_parameters.builder_configs[0].data_files is None
    ):
        error_msg = f"Please specify the data files or data directory to load for the {path} dataset builder."
        example_extensions = [
            extension for extension in _EXTENSION_TO_MODULE if _EXTENSION_TO_MODULE[extension] == path
        ]
        if example_extensions:
            error_msg += f'\nFor example `data_files={{"train": "path/to/data/train/*.{example_extensions[0]}"}}`'
        raise ValueError(error_msg)

    builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
    # Instantiate the dataset builder
    builder_instance: DatasetBuilder = builder_cls(
        cache_dir=cache_dir,
        dataset_name=dataset_name,
        config_name=config_name,
        data_dir=data_dir,
        data_files=data_files,
        hash=dataset_module.hash,
        info=info,
        features=features,
        token=token,
        storage_options=storage_options,
        **builder_kwargs,
        **config_kwargs,
    )
    builder_instance._use_legacy_cache_dir_if_possible(dataset_module)

    return builder_instance


def load_dataset(
    path: str,
    name: Optional[str] = None,
    data_dir: Optional[str] = None,
    data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None,
    split: Optional[Union[str, Split]] = None,
    cache_dir: Optional[str] = None,
    features: Optional[Features] = None,
    download_config: Optional[DownloadConfig] = None,
    download_mode: Optional[Union[DownloadMode, str]] = None,
    verification_mode: Optional[Union[VerificationMode, str]] = None,
    keep_in_memory: Optional[bool] = None,
    save_infos: bool = False,
    revision: Optional[Union[str, Version]] = None,
    token: Optional[Union[bool, str]] = None,
    streaming: bool = False,
    num_proc: Optional[int] = None,
    storage_options: Optional[dict] = None,
    trust_remote_code: Optional[bool] = None,
    **config_kwargs,
) -> Union[DatasetDict, Dataset, IterableDatasetDict, IterableDataset]:
    """Load a dataset from the Hugging Face Hub, or a local dataset.

    You can find the list of datasets on the [Hub](https://huggingface.co/datasets) or with [`huggingface_hub.list_datasets`].

    A dataset is a directory that contains some data files in generic formats (JSON, CSV, Parquet, etc.) and possibly
    in a generic structure (Webdataset, ImageFolder, AudioFolder, VideoFolder, etc.)

    This function does the following under the hood:

        1. Load a dataset builder:

            * Find the most common data format in the dataset and pick its associated builder (JSON, CSV, Parquet, Webdataset, ImageFolder, AudioFolder, etc.)
            * Find which file goes into which split (e.g. train/test) based on file and directory names or on the YAML configuration
            * It is also possible to specify `data_files` manually, and which dataset builder to use (e.g. "parquet").

        2. Run the dataset builder:

            In the general case:

            * Download the data files from the dataset if they are not already available locally or cached.
            * Process and cache the dataset in typed Arrow tables for caching.

                Arrow table are arbitrarily long, typed tables which can store nested objects and be mapped to numpy/pandas/python generic types.
                They can be directly accessed from disk, loaded in RAM or even streamed over the web.

            In the streaming case:

            * Don't download or cache anything. Instead, the dataset is lazily loaded and will be streamed on-the-fly when iterating on it.

        3. Return a dataset built from the requested splits in `split` (default: all).

    It can also use a custom dataset builder if the dataset contains a dataset script, but this feature is mostly for backward compatibility.
    In this case the dataset script file must be named after the dataset repository or directory and end with ".py".

    Args:

        path (`str`):
            Path or name of the dataset.

            - if `path` is a dataset repository on the HF hub (list all available datasets with [`huggingface_hub.list_datasets`])
              -> load the dataset from supported files in the repository (csv, json, parquet, etc.)
              e.g. `'username/dataset_name'`, a dataset repository on the HF hub containing the data files.

            - if `path` is a local directory
              -> load the dataset from supported files in the directory (csv, json, parquet, etc.)
              e.g. `'./path/to/directory/with/my/csv/data'`.

            - if `path` is the name of a dataset builder and `data_files` or `data_dir` is specified
              (available builders are "json", "csv", "parquet", "arrow", "text", "xml", "webdataset", "imagefolder", "audiofolder", "videofolder")
              -> load the dataset from the files in `data_files` or `data_dir`
              e.g. `'parquet'`.

            It can also point to a local dataset script but this is not recommended.
        name (`str`, *optional*):
            Defining the name of the dataset configuration.
        data_dir (`str`, *optional*):
            Defining the `data_dir` of the dataset configuration. If specified for the generic builders (csv, text etc.) or the Hub datasets and `data_files` is `None`,
            the behavior is equal to passing `os.path.join(data_dir, **)` as `data_files` to reference all the files in a directory.
        data_files (`str` or `Sequence` or `Mapping`, *optional*):
            Path(s) to source data file(s).
        split (`Split` or `str`):
            Which split of the data to load.
            If `None`, will return a `dict` with all splits (typically `datasets.Split.TRAIN` and `datasets.Split.TEST`).
            If given, will return a single Dataset.
            Splits can be combined and specified like in tensorflow-datasets.
        cache_dir (`str`, *optional*):
            Directory to read/write data. Defaults to `"~/.cache/huggingface/datasets"`.
        features (`Features`, *optional*):
            Set the features type to use for this dataset.
        download_config ([`DownloadConfig`], *optional*):
            Specific download configuration parameters.
        download_mode ([`DownloadMode`] or `str`, defaults to `REUSE_DATASET_IF_EXISTS`):
            Download/generate mode.
        verification_mode ([`VerificationMode`] or `str`, defaults to `BASIC_CHECKS`):
            Verification mode determining the checks to run on the downloaded/processed dataset information (checksums/size/splits/...).

            <Added version="2.9.1"/>
        keep_in_memory (`bool`, defaults to `None`):
            Whether to copy the dataset in-memory. If `None`, the dataset
            will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
            nonzero. See more details in the [improve performance](../cache#improve-performance) section.
        save_infos (`bool`, defaults to `False`):
            Save the dataset information (checksums/size/splits/...).
        revision ([`Version`] or `str`, *optional*):
            Version of the dataset script to load.
            As datasets have their own git repository on the Datasets Hub, the default version "main" corresponds to their "main" branch.
            You can specify a different version than the default "main" by using a commit SHA or a git tag of the dataset repository.
        token (`str` or `bool`, *optional*):
            Optional string or boolean to use as Bearer token for remote files on the Datasets Hub.
            If `True`, or not specified, will get token from `"~/.huggingface"`.
        streaming (`bool`, defaults to `False`):
            If set to `True`, don't download the data files. Instead, it streams the data progressively while
            iterating on the dataset. An [`IterableDataset`] or [`IterableDatasetDict`] is returned instead in this case.

            Note that streaming works for datasets that use data formats that support being iterated over like txt, csv, jsonl for example.
            Json files may be downloaded completely. Also streaming from remote zip or gzip files is supported but other compressed formats
            like rar and xz are not yet supported. The tgz format doesn't allow streaming.
        num_proc (`int`, *optional*, defaults to `None`):
            Number of processes when downloading and generating the dataset locally.
            Multiprocessing is disabled by default.

            <Added version="2.7.0"/>
        storage_options (`dict`, *optional*, defaults to `None`):
            **Experimental**. Key/value pairs to be passed on to the dataset file-system backend, if any.

            <Added version="2.11.0"/>
        trust_remote_code (`bool`, *optional*, defaults to `None`):
            Whether or not to allow for datasets defined on the Hub using a dataset script. This option
            should only be set to `True` for repositories you trust and in which you have read the code, as it will
            execute code present on the Hub on your local machine.

            <Added version="2.16.0"/>

            <Changed version="2.20.0">

            `trust_remote_code` defaults to `False` if not specified.

            </Changed>

        **config_kwargs (additional keyword arguments):
            Keyword arguments to be passed to the `BuilderConfig`
            and used in the [`DatasetBuilder`].

    Returns:
        [`Dataset`] or [`DatasetDict`]:
        - if `split` is not `None`: the dataset requested,
        - if `split` is `None`, a [`~datasets.DatasetDict`] with each split.

        or [`IterableDataset`] or [`IterableDatasetDict`]: if `streaming=True`

        - if `split` is not `None`, the dataset is requested
        - if `split` is `None`, a [`~datasets.streaming.IterableDatasetDict`] with each split.

    Example:

    Load a dataset from the Hugging Face Hub:

    ```py
    >>> from datasets import load_dataset
    >>> ds = load_dataset('cornell-movie-review-data/rotten_tomatoes', split='train')

    # Load a subset or dataset configuration (here 'sst2')
    >>> from datasets import load_dataset
    >>> ds = load_dataset('nyu-mll/glue', 'sst2', split='train')

    # Manual mapping of data files to splits
    >>> data_files = {'train': 'train.csv', 'test': 'test.csv'}
    >>> ds = load_dataset('namespace/your_dataset_name', data_files=data_files)

    # Manual selection of a directory to load
    >>> ds = load_dataset('namespace/your_dataset_name', data_dir='folder_name')
    ```

    Load a local dataset:

    ```py
    # Load a CSV file
    >>> from datasets import load_dataset
    >>> ds = load_dataset('csv', data_files='path/to/local/my_dataset.csv')

    # Load a JSON file
    >>> from datasets import load_dataset
    >>> ds = load_dataset('json', data_files='path/to/local/my_dataset.json')

    # Load from a local loading script (not recommended)
    >>> from datasets import load_dataset
    >>> ds = load_dataset('path/to/local/loading_script/loading_script.py', split='train')
    ```

    Load an [`~datasets.IterableDataset`]:

    ```py
    >>> from datasets import load_dataset
    >>> ds = load_dataset('cornell-movie-review-data/rotten_tomatoes', split='train', streaming=True)
    ```

    Load an image dataset with the `ImageFolder` dataset builder:

    ```py
    >>> from datasets import load_dataset
    >>> ds = load_dataset('imagefolder', data_dir='/path/to/images', split='train')
    ```
    """
    if data_files is not None and not data_files:
        raise ValueError(f"Empty 'data_files': '{data_files}'. It should be either non-empty or None (default).")
    if Path(path, config.DATASET_STATE_JSON_FILENAME).exists():
        raise ValueError(
            "You are trying to load a dataset that was saved using `save_to_disk`. "
            "Please use `load_from_disk` instead."
        )

    if streaming and num_proc is not None:
        raise NotImplementedError(
            "Loading a streaming dataset in parallel with `num_proc` is not implemented. "
            "To parallelize streaming, you can wrap the dataset with a PyTorch DataLoader using `num_workers` > 1 instead."
        )

    download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
    verification_mode = VerificationMode(
        (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS
    )

    # Create a dataset builder
    builder_instance = load_dataset_builder(
        path=path,
        name=name,
        data_dir=data_dir,
        data_files=data_files,
        cache_dir=cache_dir,
        features=features,
        download_config=download_config,
        download_mode=download_mode,
        revision=revision,
        token=token,
        storage_options=storage_options,
        trust_remote_code=trust_remote_code,
        _require_default_config_name=name is None,
        **config_kwargs,
    )

    # Return iterable dataset in case of streaming
    if streaming:
        return builder_instance.as_streaming_dataset(split=split)

    # Download and prepare data
    builder_instance.download_and_prepare(
        download_config=download_config,
        download_mode=download_mode,
        verification_mode=verification_mode,
        num_proc=num_proc,
        storage_options=storage_options,
    )

    # Build dataset for splits
    keep_in_memory = (
        keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
    )
    ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory)
    if save_infos:
        builder_instance._save_infos()

    return ds


def load_from_disk(
    dataset_path: PathLike, keep_in_memory: Optional[bool] = None, storage_options: Optional[dict] = None
) -> Union[Dataset, DatasetDict]:
    """
    Loads a dataset that was previously saved using [`~Dataset.save_to_disk`] from a dataset directory, or
    from a filesystem using any implementation of `fsspec.spec.AbstractFileSystem`.

    Args:
        dataset_path (`path-like`):
            Path (e.g. `"dataset/train"`) or remote URI (e.g. `"s3://my-bucket/dataset/train"`)
            of the [`Dataset`] or [`DatasetDict`] directory where the dataset/dataset-dict will be
            loaded from.
        keep_in_memory (`bool`, defaults to `None`):
            Whether to copy the dataset in-memory. If `None`, the dataset
            will not be copied in-memory unless explicitly enabled by setting `datasets.config.IN_MEMORY_MAX_SIZE` to
            nonzero. See more details in the [improve performance](../cache#improve-performance) section.

        storage_options (`dict`, *optional*):
            Key/value pairs to be passed on to the file-system backend, if any.

            <Added version="2.9.0"/>

    Returns:
        [`Dataset`] or [`DatasetDict`]:
        - If `dataset_path` is a path of a dataset directory: the dataset requested.
        - If `dataset_path` is a path of a dataset dict directory, a [`DatasetDict`] with each split.

    Example:

    ```py
    >>> from datasets import load_from_disk
    >>> ds = load_from_disk('path/to/dataset/directory')
    ```
    """
    fs: fsspec.AbstractFileSystem
    fs, *_ = url_to_fs(dataset_path, **(storage_options or {}))
    if not fs.exists(dataset_path):
        raise FileNotFoundError(f"Directory {dataset_path} not found")
    if fs.isfile(posixpath.join(dataset_path, config.DATASET_INFO_FILENAME)) and fs.isfile(
        posixpath.join(dataset_path, config.DATASET_STATE_JSON_FILENAME)
    ):
        return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
    elif fs.isfile(posixpath.join(dataset_path, config.DATASETDICT_JSON_FILENAME)):
        return DatasetDict.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options)
    else:
        raise FileNotFoundError(
            f"Directory {dataset_path} is neither a `Dataset` directory nor a `DatasetDict` directory."
        )