File size: 159,017 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
import asyncio
import copy
import inspect
import itertools
import multiprocessing.pool
import sys
from collections import Counter
from collections.abc import Iterable, Iterator
from copy import deepcopy
from dataclasses import dataclass
from functools import partial
from itertools import cycle, islice
from typing import TYPE_CHECKING, Any, Callable, Optional, Union

import fsspec.asyn
import numpy as np
import pandas as pd
import pyarrow as pa

from . import config
from .arrow_dataset import Dataset, DatasetInfoMixin
from .features import Features
from .features.features import (
    FeatureType,
    Value,
    _align_features,
    _check_if_features_can_be_aligned,
    _visit,
    cast_to_python_objects,
)
from .formatting import (
    ArrowFormatter,
    PythonFormatter,
    TableFormatter,
    TensorFormatter,
    get_format_type_from_alias,
    get_formatter,
)
from .info import DatasetInfo
from .splits import NamedSplit, Split
from .table import cast_table_to_features, read_schema_from_file, table_cast
from .utils.logging import get_logger
from .utils.py_utils import Literal
from .utils.sharding import _merge_gen_kwargs, _number_of_shards_in_gen_kwargs, _shuffle_gen_kwargs, _split_gen_kwargs


if TYPE_CHECKING:
    import torch

logger = get_logger(__name__)

Key = Union[int, str]


def identity_func(x):
    return x


def _rename_columns_fn(example: dict, column_mapping: dict[str, str]):
    if any(col not in example for col in column_mapping):
        raise ValueError(
            f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(column_mapping) - set(example)} are not in the dataset."
        )
    if any(col in example for col in column_mapping.values()):
        raise ValueError(
            f"Error when renaming {list(column_mapping)} to {list(column_mapping.values())}: columns {set(example) - set(column_mapping.values())} are already in the dataset."
        )
    return {
        new_column_name: example[original_column_name]
        for original_column_name, new_column_name in column_mapping.items()
    }


def add_column_fn(example: dict, idx: int, name: str, column: list[dict]):
    if name in example:
        raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
    return {name: column[idx]}


def _infer_features_from_batch(batch: dict[str, list], try_features: Optional[Features] = None) -> Features:
    pa_table = pa.Table.from_pydict(batch)
    if try_features is not None:
        try:
            pa_table = table_cast(pa_table, pa.schema(try_features.type))
        except (TypeError, pa.ArrowInvalid, pa.ArrowNotImplementedError):
            pass
    return Features.from_arrow_schema(pa_table.schema)


def _examples_to_batch(examples: list[dict[str, Any]]) -> dict[str, list]:
    # we order the columns by order of appearance
    # to do so, we use a dict as an ordered set
    cols = {col: None for example in examples for col in example}
    # when an example is missing a column, we set the value to None with .get()
    arrays = [[example.get(col) for example in examples] for col in cols]
    return dict(zip(cols, arrays))


def _batch_to_examples(batch: dict[str, list]) -> Iterator[dict[str, Any]]:
    """Convert a batch (dict of examples) to examples list"""
    n_examples = 0 if len(batch) == 0 else len(batch[next(iter(batch))])
    for i in range(n_examples):
        yield {col: array[i] for col, array in batch.items()}


def _convert_to_arrow(
    iterable: Iterable[tuple[Key, dict]],
    batch_size: int,
    drop_last_batch: bool = False,
) -> Iterator[tuple[Key, pa.Table]]:
    """Convert and group examples in Arrow tables of size `batch_size`.

    Args:
        iterable (`Iterable[Tuple[Key, dict]]`):
            An examples iterable containing tuples (example_key, example) of type (int/str, dict)
        batch_size (`Optional[int]`):
            Size of each sub-table to yield. If None or <= 0, yields the full table.
        drop_last_batch (`bool`, defaults to `False`):
            Drop the last batch if it is smaller than `batch_size`.
    """
    if batch_size is None or batch_size <= 0:
        yield (
            "all",
            pa.Table.from_pylist(cast_to_python_objects([example for _, example in iterable], only_1d_for_numpy=True)),
        )
        return
    iterator = iter(iterable)
    for key, example in iterator:
        iterator_batch = islice(iterator, batch_size - 1)
        key_examples_list = [(key, example)] + list(iterator_batch)
        if len(key_examples_list) < batch_size and drop_last_batch:
            return
        keys, examples = zip(*key_examples_list)
        new_key = "_".join(str(key) for key in keys)
        yield new_key, pa.Table.from_pylist(cast_to_python_objects(examples, only_1d_for_numpy=True))


class _BaseExamplesIterable:
    """Base class for the examples iterable used by an IterableDataset"""

    def __init__(self) -> None:
        self._state_dict: Optional[Union[list, dict]] = None

    def __iter__(self) -> Iterator[tuple[Key, dict]]:
        """An examples iterable should yield tuples (example_key, example) of type (int/str, dict)"""
        raise NotImplementedError(f"{type(self)} doesn't implement __iter__ yet")

    @property
    def iter_arrow(self) -> Optional[Callable[[], Iterator[tuple[Key, pa.Table]]]]:
        return None

    @property
    def is_typed(self) -> bool:
        return False

    @property
    def features(self) -> Optional[Features]:
        return None

    def shuffle_data_sources(self, generator: np.random.Generator) -> "_BaseExamplesIterable":
        """
        Either shuffle the shards/sources of the dataset, or propagate the shuffling to the underlying iterable.
        If the order of the shards must stay fixed (when using .skip or .take for example), then this method returns self.
        """
        raise NotImplementedError(f"{type(self)} doesn't implement shuffle_data_sources yet")

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "_BaseExamplesIterable":
        """Either keep only the requested shard, or propagate the request to the underlying iterable."""
        raise NotImplementedError(f"{type(self)} doesn't implement shard_data_sources yet")

    def split_shard_indices_by_worker(self, num_shards: int, index: int, contiguous=True) -> list[int]:
        if contiguous:
            div = self.num_shards // num_shards
            mod = self.num_shards % num_shards
            start = div * index + min(index, mod)
            end = start + div + (1 if index < mod else 0)
            return list(range(start, end))
        else:
            return list(range(index, self.num_shards, num_shards))

    @property
    def num_shards(self) -> int:
        raise NotImplementedError(f"{type(self)} doesn't implement num_shards yet")

    def _init_state_dict(self) -> dict:
        raise NotImplementedError(f"{type(self)} doesn't implement _init_state_dict yet")

    def load_state_dict(self, state_dict: dict) -> dict:
        def _inner_load_state_dict(state, new_state):
            if new_state is not None and isinstance(state, dict):
                for key in new_state:
                    state[key] = _inner_load_state_dict(state[key], new_state[key])
                return state
            elif new_state is not None and isinstance(state, list):
                for i in range(len(state)):
                    state[i] = _inner_load_state_dict(state[i], new_state[i])
                return state
            return new_state

        return _inner_load_state_dict(self._state_dict, state_dict)

    def state_dict(self) -> dict:
        if self._state_dict:
            return copy.deepcopy(self._state_dict)
        raise RuntimeError("State dict is not initialized, please call ex_iterable._init_state_dict() first.")


class ExamplesIterable(_BaseExamplesIterable):
    def __init__(self, generate_examples_fn: Callable[..., tuple[Key, dict]], kwargs: dict):
        super().__init__()
        self.generate_examples_fn = generate_examples_fn
        self.kwargs = kwargs

    def _init_state_dict(self) -> dict:
        self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__}
        return self._state_dict

    def __iter__(self):
        shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0
        for gen_kwags in islice(_split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards), shard_idx_start, None):
            shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0
            for key_example in islice(self.generate_examples_fn(**gen_kwags), shard_example_idx_start, None):
                if self._state_dict:
                    self._state_dict["shard_example_idx"] += 1
                yield key_example
            if self._state_dict:
                self._state_dict["shard_idx"] += 1
                self._state_dict["shard_example_idx"] = 0

    def shuffle_data_sources(self, generator: np.random.Generator) -> "ExamplesIterable":
        return ShuffledDataSourcesExamplesIterable(self.generate_examples_fn, self.kwargs, generator)

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ExamplesIterable":
        """Keep only the requested shard."""
        gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards)
        shard_indices = self.split_shard_indices_by_worker(num_shards, index, contiguous=contiguous)
        requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
        return ExamplesIterable(self.generate_examples_fn, requested_gen_kwargs)

    @property
    def num_shards(self) -> int:
        return _number_of_shards_in_gen_kwargs(self.kwargs)


class ShuffledDataSourcesExamplesIterable(ExamplesIterable):
    def __init__(
        self, generate_examples_fn: Callable[..., tuple[Key, dict]], kwargs: dict, generator: np.random.Generator
    ):
        super().__init__(generate_examples_fn, kwargs)
        self.generator = deepcopy(generator)

    def _init_state_dict(self) -> dict:
        self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__}
        return self._state_dict

    def __iter__(self):
        """Shuffle the kwargs order to shuffle shards"""
        rng = deepcopy(self.generator)
        kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
        shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0
        for gen_kwags in islice(
            _split_gen_kwargs(kwargs_with_shuffled_shards, max_num_jobs=self.num_shards), shard_idx_start, None
        ):
            shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0
            for key_example in islice(self.generate_examples_fn(**gen_kwags), shard_example_idx_start, None):
                if self._state_dict:
                    self._state_dict["shard_example_idx"] += 1
                yield key_example
            if self._state_dict:
                self._state_dict["shard_idx"] += 1
                self._state_dict["shard_example_idx"] = 0

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ExamplesIterable":
        """Keep only the requested shard."""
        rng = deepcopy(self.generator)
        kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
        return ExamplesIterable(self.generate_examples_fn, kwargs_with_shuffled_shards).shard_data_sources(
            num_shards, index, contiguous=contiguous
        )


class ArrowExamplesIterable(_BaseExamplesIterable):
    def __init__(self, generate_tables_fn: Callable[..., tuple[Key, pa.Table]], kwargs: dict):
        super().__init__()
        self.generate_tables_fn = generate_tables_fn
        self.kwargs = kwargs

    @property
    def iter_arrow(self):
        return self._iter_arrow

    def _init_state_dict(self) -> dict:
        self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__}
        return self._state_dict

    def __iter__(self):
        formatter = PythonFormatter()
        shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0
        for gen_kwags in islice(_split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards), shard_idx_start, None):
            shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0
            shard_example_idx = 0
            for key, pa_table in self.generate_tables_fn(**gen_kwags):
                if shard_example_idx + len(pa_table) <= shard_example_idx_start:
                    shard_example_idx += len(pa_table)
                    continue
                for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):
                    formatted_batch = formatter.format_batch(pa_subtable)
                    for example in _batch_to_examples(formatted_batch):
                        if shard_example_idx >= shard_example_idx_start:
                            if self._state_dict:
                                self._state_dict["shard_example_idx"] += 1
                            yield key, example
                        shard_example_idx += 1
            if self._state_dict:
                self._state_dict["shard_idx"] += 1
                self._state_dict["shard_example_idx"] = 0

    def _iter_arrow(self):
        shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0
        for gen_kwags in islice(_split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards), shard_idx_start, None):
            shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0
            shard_example_idx = 0
            for key, pa_table in self.generate_tables_fn(**gen_kwags):
                shard_example_idx += len(pa_table)
                if shard_example_idx <= shard_example_idx_start:
                    continue
                if self._state_dict:
                    self._state_dict["shard_example_idx"] += len(pa_table)
                yield key, pa_table
            if self._state_dict:
                self._state_dict["shard_idx"] += 1
                self._state_dict["shard_example_idx"] = 0

    def shuffle_data_sources(self, generator: np.random.Generator) -> "ArrowExamplesIterable":
        return ShuffledDataSourcesArrowExamplesIterable(self.generate_tables_fn, self.kwargs, generator)

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ArrowExamplesIterable":
        """Keep only the requested shard."""
        gen_kwargs_list = _split_gen_kwargs(self.kwargs, max_num_jobs=self.num_shards)
        shard_indices = self.split_shard_indices_by_worker(num_shards, index, contiguous=contiguous)
        requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])
        return ArrowExamplesIterable(self.generate_tables_fn, requested_gen_kwargs)

    @property
    def num_shards(self) -> int:
        return _number_of_shards_in_gen_kwargs(self.kwargs)


class ShuffledDataSourcesArrowExamplesIterable(ArrowExamplesIterable):
    def __init__(
        self,
        generate_tables_fn: Callable[..., tuple[Key, pa.Table]],
        kwargs: dict,
        generator: np.random.Generator,
    ):
        super().__init__(generate_tables_fn, kwargs)
        self.generator = deepcopy(generator)

    def _init_state_dict(self) -> dict:
        self._state_dict = {"shard_idx": 0, "shard_example_idx": 0, "type": self.__class__.__name__}
        return self._state_dict

    def __iter__(self):
        """Shuffle the kwargs order to shuffle shards"""
        rng = deepcopy(self.generator)
        kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
        formatter = PythonFormatter()
        shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0
        for gen_kwags in islice(
            _split_gen_kwargs(kwargs_with_shuffled_shards, max_num_jobs=self.num_shards), shard_idx_start, None
        ):
            shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0
            shard_example_idx = 0
            for key, pa_table in self.generate_tables_fn(**gen_kwags):
                if shard_example_idx + len(pa_table) <= shard_example_idx_start:
                    shard_example_idx += len(pa_table)
                    continue
                for pa_subtable in pa_table.to_reader(max_chunksize=config.ARROW_READER_BATCH_SIZE_IN_DATASET_ITER):
                    formatted_batch = formatter.format_batch(pa_subtable)
                    for example in _batch_to_examples(formatted_batch):
                        if shard_example_idx >= shard_example_idx_start:
                            if self._state_dict:
                                self._state_dict["shard_example_idx"] += 1
                            yield key, example
                        shard_example_idx += 1
            if self._state_dict:
                self._state_dict["shard_idx"] += 1
                self._state_dict["shard_example_idx"] = 0

    def _iter_arrow(self):
        rng = deepcopy(self.generator)
        kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
        shard_idx_start = self._state_dict["shard_idx"] if self._state_dict else 0
        for gen_kwags in islice(
            _split_gen_kwargs(kwargs_with_shuffled_shards, max_num_jobs=self.num_shards), shard_idx_start, None
        ):
            shard_example_idx_start = self._state_dict["shard_example_idx"] if self._state_dict else 0
            shard_example_idx = 0
            for key, pa_table in self.generate_tables_fn(**gen_kwags):
                shard_example_idx += len(pa_table)
                if shard_example_idx <= shard_example_idx_start:
                    continue
                if self._state_dict:
                    self._state_dict["shard_example_idx"] += len(pa_table)
                yield key, pa_table
            if self._state_dict:
                self._state_dict["shard_idx"] += 1
                self._state_dict["shard_example_idx"] = 0

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "ArrowExamplesIterable":
        """Keep only the requested shard."""
        rng = deepcopy(self.generator)
        kwargs_with_shuffled_shards = _shuffle_gen_kwargs(rng, self.kwargs)
        return ArrowExamplesIterable(self.generate_tables_fn, kwargs_with_shuffled_shards).shard_data_sources(
            num_shards, index, contiguous=contiguous
        )


class RebatchedArrowExamplesIterable(_BaseExamplesIterable):
    def __init__(self, ex_iterable: _BaseExamplesIterable, batch_size: Optional[int], drop_last_batch: bool = False):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.batch_size = batch_size
        self.drop_last_batch = drop_last_batch

    @property
    def iter_arrow(self):
        return self._iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed

    @property
    def features(self):
        return self.ex_iterable.features

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "examples_iterable": self.ex_iterable._init_state_dict(),
            "previous_state": None,
            "batch_idx": 0,
            "num_chunks_since_previous_state": 0,
            "cropped_chunk_length": 0,
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        yield from self.ex_iterable

    def _iter_arrow(self) -> Iterator[tuple[Key, pa.Table]]:
        """Iterate over sub-tables of size `batch_size`."""
        if self._state_dict and self._state_dict["previous_state"]:
            self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
        if self.ex_iterable.iter_arrow:
            iterator = self.ex_iterable.iter_arrow()
        else:
            iterator = _convert_to_arrow(self.ex_iterable, batch_size=1)
        if self.batch_size is None or self.batch_size <= 0:
            if self._state_dict and self._state_dict["batch_idx"] > 0:
                return
            all_pa_table = pa.concat_tables([pa_table for _, pa_table in iterator])
            if self._state_dict:
                self._state_dict["batch_idx"] = 1
            yield "all", all_pa_table
            return
        keys_buffer = []
        chunks_buffer = []
        chunks_buffer_size = 0
        num_chunks_to_skip = self._state_dict["num_chunks_since_previous_state"] if self._state_dict else 0
        chunk_length_to_crop = self._state_dict["cropped_chunk_length"] if self._state_dict else 0
        if self._state_dict:
            previous_state = self.ex_iterable.state_dict()
            self._state_dict["previous_state"] = previous_state
        for key, pa_table in iterator:
            for num_chunks_since_previous_state, chunk in enumerate(pa_table.to_reader(max_chunksize=self.batch_size)):
                if num_chunks_to_skip > 1:
                    num_chunks_to_skip -= 1
                    continue
                elif num_chunks_to_skip == 1 and chunk_length_to_crop == 0:
                    num_chunks_to_skip -= 1
                    continue
                elif num_chunks_to_skip == 1 and chunk_length_to_crop > 0:
                    chunk = chunk.slice(chunk_length_to_crop, len(chunk) - chunk_length_to_crop)
                    num_chunks_to_skip = 0
                    chunk_length_to_crop = 0
                if len(chunk) == 0:
                    continue

                if chunks_buffer_size + len(chunk) < self.batch_size:
                    keys_buffer.append(key)
                    chunks_buffer.append(chunk)
                    chunks_buffer_size += len(chunk)
                    continue
                elif chunks_buffer_size + len(chunk) == self.batch_size:
                    keys_buffer.append(key)
                    chunks_buffer.append(chunk)
                    new_key = "_".join(str(_key) for _key in keys_buffer)
                    if self._state_dict:
                        self._state_dict["batch_idx"] += 1
                        self._state_dict["num_chunks_since_previous_state"] += len(chunks_buffer)
                        self._state_dict["cropped_chunk_length"] = 0
                    yield new_key, pa.Table.from_batches(chunks_buffer)
                    keys_buffer = []
                    chunks_buffer = []
                    chunks_buffer_size = 0
                    if self._state_dict:
                        self._state_dict["previous_state"] = previous_state
                        self._state_dict["num_chunks_since_previous_state"] = num_chunks_since_previous_state + 1
                else:
                    cropped_chunk_length = self.batch_size - chunks_buffer_size
                    keys_buffer.append(f"{key}[:{cropped_chunk_length}]")
                    chunks_buffer.append(chunk.slice(0, cropped_chunk_length))
                    new_key = "_".join(str(_key) for _key in keys_buffer)
                    if self._state_dict:
                        self._state_dict["batch_idx"] += 1
                        self._state_dict["num_chunks_since_previous_state"] += len(chunks_buffer)
                        self._state_dict["cropped_chunk_length"] = cropped_chunk_length
                    yield new_key, pa.Table.from_batches(chunks_buffer)
                    keys_buffer = [f"{key}[{cropped_chunk_length}:]"]
                    chunks_buffer = [chunk.slice(cropped_chunk_length, len(chunk) - cropped_chunk_length)]
                    chunks_buffer_size = len(chunk) - cropped_chunk_length
                    if self._state_dict:
                        self._state_dict["previous_state"] = previous_state
                        self._state_dict["num_chunks_since_previous_state"] = num_chunks_since_previous_state
            if self._state_dict:
                previous_state = self.ex_iterable.state_dict()
        if not self.drop_last_batch and chunks_buffer:
            new_key = "_".join(str(_key) for _key in keys_buffer)
            if self._state_dict:
                self._state_dict["previous_state"] = previous_state
                self._state_dict["batch_idx"] += 1
                self._state_dict["num_chunks_since_previous_state"] = 0
                self._state_dict["cropped_chunk_length"] = 0
            yield new_key, pa.Table.from_batches(chunks_buffer)

    def shuffle_data_sources(self, generator: np.random.Generator) -> "RebatchedArrowExamplesIterable":
        return RebatchedArrowExamplesIterable(
            self.ex_iterable.shuffle_data_sources(generator), self.batch_size, self.drop_last_batch
        )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "RebatchedArrowExamplesIterable":
        return RebatchedArrowExamplesIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
            self.batch_size,
            self.drop_last_batch,
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


class SelectColumnsIterable(_BaseExamplesIterable):
    def __init__(self, ex_iterable: _BaseExamplesIterable, column_names: list[str]):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.column_names = column_names

    @property
    def iter_arrow(self):
        if self.ex_iterable.iter_arrow:
            return self._iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed

    @property
    def features(self):
        return self.ex_iterable.features

    def _init_state_dict(self) -> dict:
        self._state_dict = self.ex_iterable._init_state_dict()
        return self._state_dict

    def __iter__(self):
        for idx, row in self.ex_iterable:
            yield idx, {c: row[c] for c in self.column_names}

    def _iter_arrow(self) -> Iterator[tuple[Key, pa.Table]]:
        for idx, pa_table in self.ex_iterable.iter_arrow():
            if len(pa_table) > 0:  # empty tables have no schema
                yield idx, pa_table.select(self.column_names)

    def shuffle_data_sources(self, generator: np.random.Generator) -> "SelectColumnsIterable":
        return SelectColumnsIterable(self.ex_iterable.shuffle_data_sources(generator), self.column_names)

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SelectColumnsIterable":
        return SelectColumnsIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous), self.column_names
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


class StepExamplesIterable(_BaseExamplesIterable):
    def __init__(self, ex_iterable: _BaseExamplesIterable, step: int, offset: int):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.step = step
        self.offset = offset
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed

    @property
    def features(self):
        return self.ex_iterable.features

    def _init_state_dict(self) -> dict:
        self._state_dict = self.ex_iterable._init_state_dict()
        return self._state_dict

    def __iter__(self):
        ex_iterator = iter(self.ex_iterable)
        while True:
            batch = list(islice(ex_iterator, self.step))
            if len(batch) > self.offset:
                yield batch[self.offset]
            else:
                break

    def shuffle_data_sources(self, generator: np.random.Generator) -> "StepExamplesIterable":
        return StepExamplesIterable(
            self.ex_iterable.shuffle_data_sources(generator), step=self.step, offset=self.offset
        )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "StepExamplesIterable":
        return StepExamplesIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
            step=self.step,
            offset=self.offset,
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


class CyclingMultiSourcesExamplesIterable(_BaseExamplesIterable):
    def __init__(
        self,
        ex_iterables: list[_BaseExamplesIterable],
        stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
    ):
        super().__init__()
        self.ex_iterables = ex_iterables
        self.stopping_strategy = stopping_strategy

        # if undersampling ("first_exhausted"), we stop as soon as one dataset is exhausted
        # if oversampling ("all_exhausted"), we stop as soons as every dataset is exhausted, i.e as soon as every samples of every dataset has been visited at least once
        self.bool_strategy_func = np.all if (stopping_strategy == "all_exhausted") else np.any
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterables[0].is_typed

    @property
    def features(self):
        return self.ex_iterables[0].features

    def _get_indices_iterator(self):
        # this is an infinite iterator to keep track of which iterator we want to pick examples from
        ex_iterable_idx = self._state_dict["ex_iterable_idx"] if self._state_dict else 0
        for next_ex_iterable_idx in islice(cycle(range(len(self.ex_iterables))), ex_iterable_idx + 1, None):
            if self._state_dict:
                self._state_dict["ex_iterable_idx"] = next_ex_iterable_idx
            yield ex_iterable_idx
            ex_iterable_idx = next_ex_iterable_idx

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "ex_iterable_idx": 0,
            "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
            "previous_states": [None] * len(self.ex_iterables),
            "is_exhausted": [False] * len(self.ex_iterables),
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        # we use this to buffer one example of each iterator to know if an iterator is exhausted
        nexts = [None] * len(self.ex_iterables)
        # because of that, we need to rewind 1 example when reloading the state dict
        if self._state_dict:
            for i in range(len(self.ex_iterables)):
                if self._state_dict["previous_states"][i] is not None:
                    self.ex_iterables[i].load_state_dict(self._state_dict["previous_states"][i])
        iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables]

        indices_iterator = self._get_indices_iterator()

        is_exhausted = (
            np.array(self._state_dict["is_exhausted"]) if self._state_dict else np.full(len(self.ex_iterables), False)
        )
        for i in indices_iterator:
            # if the stopping criteria is met, break the main for loop
            if self.bool_strategy_func(is_exhausted):
                break
            # let's pick one example from the iterator at index i
            if nexts[i] is None:
                nexts[i] = next(iterators[i], False)
            result = nexts[i]
            if self._state_dict:
                self._state_dict["previous_states"][i] = deepcopy(self._state_dict["ex_iterables"][i])
            nexts[i] = next(iterators[i], False)

            # the iterator is exhausted
            if nexts[i] is False:
                is_exhausted[i] = True
                if self._state_dict:
                    self._state_dict["is_exhausted"][i] = True
                # we reset it in case the stopping crtieria isn't met yet
                nexts[i] = None
                if self._state_dict:
                    self._state_dict["ex_iterables"][i] = self.ex_iterables[i]._init_state_dict()
                    self._state_dict["previous_states"][i] = None
                iterators[i] = iter(self.ex_iterables[i])

            if result is not False:
                yield result

    def shuffle_data_sources(self, generator: np.random.Generator) -> "CyclingMultiSourcesExamplesIterable":
        """Shuffle each underlying examples iterable."""
        ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
        return CyclingMultiSourcesExamplesIterable(ex_iterables, self.stopping_strategy)

    @property
    def num_shards(self) -> int:
        return min(ex_iterable.num_shards for ex_iterable in self.ex_iterables)

    def shard_data_sources(
        self, num_shards: int, index: int, contiguous=True
    ) -> "CyclingMultiSourcesExamplesIterable":
        """Either keep only the requested shard, or propagate the request to the underlying iterable."""
        return CyclingMultiSourcesExamplesIterable(
            [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables],
            stopping_strategy=self.stopping_strategy,
        )


class VerticallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
    """
    VerticallyConcatenatedMultiSourcesExamplesIterable simply chains the input iterables.
    It doesn't require the examples iterables to always yield the same columns.
    Instead, this is handled by the `IterableDataset` class or `FormattedExamplesIterable`.

    For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
    We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.

    Then for each example, `IterableDataset` and `FormattedExamplesIterable` automatically fill missing columns with None.
    This is done with `_apply_feature_types_on_example`.
    """

    def __init__(self, ex_iterables: list[_BaseExamplesIterable]):
        super().__init__()
        self.ex_iterables = ex_iterables

    @property
    def is_typed(self):
        return self.ex_iterables[0].is_typed

    @property
    def features(self):
        return self.ex_iterables[0].features

    @property
    def iter_arrow(self):
        if all(ex_iterable.iter_arrow is not None for ex_iterable in self.ex_iterables):
            return self._iter_arrow

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "ex_iterable_idx": 0,
            "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        ex_iterable_idx_start = self._state_dict["ex_iterable_idx"] if self._state_dict else 0
        for ex_iterable in islice(self.ex_iterables, ex_iterable_idx_start, None):
            yield from ex_iterable
            if self._state_dict:
                self._state_dict["ex_iterable_idx"] += 1

    def _iter_arrow(self):
        ex_iterable_idx_start = self._state_dict["ex_iterable_idx"] if self._state_dict else 0
        for ex_iterable in islice(self.ex_iterables, ex_iterable_idx_start, None):
            yield from ex_iterable.iter_arrow()
            if self._state_dict:
                self._state_dict["ex_iterable_idx"] += 1

    def shuffle_data_sources(
        self, generator: np.random.Generator
    ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
        """Shuffle the list of examples iterable, as well as each underlying examples iterable."""
        rng = deepcopy(generator)
        ex_iterables = list(self.ex_iterables)
        rng.shuffle(ex_iterables)
        ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in ex_iterables]
        return VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)

    @property
    def num_shards(self) -> int:
        return min(ex_iterable.num_shards for ex_iterable in self.ex_iterables)

    def shard_data_sources(
        self, num_shards: int, index: int, contiguous=True
    ) -> "VerticallyConcatenatedMultiSourcesExamplesIterable":
        """Either keep only the requested shard, or propagate the request to the underlying iterable."""
        return VerticallyConcatenatedMultiSourcesExamplesIterable(
            [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables]
        )


def _check_column_names(column_names: list[str]):
    """Check the column names to make sure they don't contain duplicates."""
    counter = Counter(column_names)
    if not all(count == 1 for count in counter.values()):
        duplicated_columns = [col for col in counter if counter[col] > 1]
        raise ValueError(
            f"The examples iterables can't have duplicated columns but columns {duplicated_columns} are duplicated."
        )


class HorizontallyConcatenatedMultiSourcesExamplesIterable(_BaseExamplesIterable):
    """
    HorizontallyConcatenatedMultiSourcesExamplesIterable merges examples together for the input list of iterables.
    It also checks that there are no duplicate columns (otherwise we don't know which one to keep).
    This check is done once when yielding the first example.

    However it doesn't fill missing columns with None.
    Instead, this is handled by the `IterableDataset` class or `FormattedExamplesIterable`.

    For information, `IterableDataset` merges the features of all the datasets to concatenate into one.
    We use `IterableDataset._resolve_features` to obtain the features of all the datasets to concatenate.

    Then for each example, `IterableDataset` and `FormattedExamplesIterable` automatically fill missing columns with None.
    This is done with `_apply_feature_types_on_example`.
    """

    def __init__(self, ex_iterables: list[_BaseExamplesIterable]):
        super().__init__()
        self.ex_iterables = ex_iterables
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterables[0].is_typed

    @property
    def features(self):
        return self.ex_iterables[0].features

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        ex_iterators = [iter(ex_iterable) for ex_iterable in self.ex_iterables]
        for i in itertools.count():
            keys = []
            examples = []
            for ex_iterator in list(ex_iterators):
                try:
                    key, example = next(ex_iterator)
                    keys.append(key)
                    examples.append(example)
                except StopIteration:
                    ex_iterators.remove(ex_iterator)
            if ex_iterators:
                if i == 0:
                    _check_column_names([column_name for example in examples for column_name in example])
                new_example = {}
                for example in examples:
                    new_example.update(example)
                new_key = "_".join(str(key) for key in keys)
                yield new_key, new_example
            else:
                break

    def shuffle_data_sources(
        self, generator: np.random.Generator
    ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
        """Doesn't shuffle the wrapped examples iterable since it would break the alignment between them."""
        return self

    @property
    def num_shards(self) -> int:
        return 1

    def shard_data_sources(
        self, num_shards: int, index: int, contiguous=True
    ) -> "HorizontallyConcatenatedMultiSourcesExamplesIterable":
        """Either keep only the requested shard, or propagate the request to the underlying iterable."""
        return HorizontallyConcatenatedMultiSourcesExamplesIterable(
            [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables]
        )


class RandomlyCyclingMultiSourcesExamplesIterable(CyclingMultiSourcesExamplesIterable):
    def __init__(
        self,
        ex_iterables: list[_BaseExamplesIterable],
        generator: np.random.Generator,
        probabilities: Optional[list[float]] = None,
        stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
    ):
        super().__init__(ex_iterables, stopping_strategy)
        self.generator = deepcopy(generator)
        self.probabilities = probabilities
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterables[0].is_typed

    @property
    def features(self):
        return self.ex_iterables[0].features

    def _get_indices_iterator(self):
        rng = deepcopy(self.generator)
        num_sources = len(self.ex_iterables)
        random_batch_size = 1000
        # this is an infinite iterator that randomly samples the index of the source to pick examples from
        index_offset = self._state_dict["bit_generator_index_offset"] if self._state_dict else 0
        if self._state_dict:
            rng.bit_generator.state = self._state_dict["bit_generator_state"]
        if self.probabilities is None:
            while True:
                for i in islice(rng.integers(0, num_sources, size=random_batch_size), index_offset, None):
                    index_offset = (index_offset + 1) % random_batch_size
                    if self._state_dict:
                        self._state_dict["bit_generator_index_offset"] = index_offset
                        if index_offset == 0:
                            self._state_dict["bit_generator_state"] = rng.bit_generator.state
                    yield int(i)
        else:
            while True:
                for i in islice(
                    rng.choice(num_sources, size=random_batch_size, p=self.probabilities), index_offset, None
                ):
                    index_offset = (index_offset + 1) % random_batch_size
                    if self._state_dict:
                        self._state_dict["bit_generator_index_offset"] = index_offset
                        if index_offset == 0:
                            self._state_dict["bit_generator_state"] = rng.bit_generator.state
                    yield int(i)

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "bit_generator_state": self.generator.bit_generator.state,
            "bit_generator_index_offset": 0,
            "ex_iterables": [ex_iterable._init_state_dict() for ex_iterable in self.ex_iterables],
            "previous_states": [None] * len(self.ex_iterables),
            "is_exhausted": [False] * len(self.ex_iterables),
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def shuffle_data_sources(self, generator: np.random.Generator) -> "RandomlyCyclingMultiSourcesExamplesIterable":
        """Shuffle the data sources of each wrapped examples iterable."""
        ex_iterables = [ex_iterable.shuffle_data_sources(generator) for ex_iterable in self.ex_iterables]
        return RandomlyCyclingMultiSourcesExamplesIterable(
            ex_iterables,
            generator=generator,
            probabilities=self.probabilities,
            stopping_strategy=self.stopping_strategy,
        )

    def shard_data_sources(
        self, num_shards: int, index: int, contiguous=True
    ) -> "RandomlyCyclingMultiSourcesExamplesIterable":
        """Either keep only the requested shard, or propagate the request to the underlying iterable."""
        return RandomlyCyclingMultiSourcesExamplesIterable(
            [iterable.shard_data_sources(num_shards, index, contiguous=contiguous) for iterable in self.ex_iterables],
            self.generator,
            self.probabilities,
            self.stopping_strategy,
        )


def _table_output_to_arrow(output) -> pa.Table:
    if isinstance(output, pa.Table):
        return output
    if isinstance(output, (pd.DataFrame, pd.Series)):
        return pa.Table.from_pandas(output)
    if config.POLARS_AVAILABLE and "polars" in sys.modules:
        import polars as pl

        if isinstance(output, (pl.DataFrame, pl.Series)):
            return output.to_arrow()
    return output


class MappedExamplesIterable(_BaseExamplesIterable):
    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        function: Callable,
        with_indices: bool = False,
        input_columns: Optional[list[str]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        drop_last_batch: bool = False,
        remove_columns: Optional[list[str]] = None,
        fn_kwargs: Optional[dict] = None,
        formatting: Optional["FormattingConfig"] = None,
        features: Optional[Features] = None,
        max_num_running_async_map_functions_in_parallel: Optional[int] = None,
    ):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.function = function
        self.batched = batched
        self.batch_size = batch_size
        self.drop_last_batch = drop_last_batch
        self.remove_columns = remove_columns
        self.with_indices = with_indices
        self.input_columns = input_columns
        self.fn_kwargs = fn_kwargs or {}
        self.formatting = formatting  # required for iter_arrow
        self._features = features
        self.max_num_running_async_map_functions_in_parallel = (
            max_num_running_async_map_functions_in_parallel or config.MAX_NUM_RUNNING_ASYNC_MAP_FUNCTIONS_IN_PARALLEL
        )
        # sanity checks
        if formatting and formatting.is_table:
            # batch_size should match for iter_arrow
            if not isinstance(ex_iterable, RebatchedArrowExamplesIterable):
                raise ValueError(
                    f"The {formatting.format_type.capitalize()}-formatted {type(self).__name__} has underlying iterable"
                    f"that is a {type(ex_iterable).__name__} instead of a RebatchedArrowExamplesIterable."
                )
            elif ex_iterable.batch_size != (batch_size if batched else 1):
                raise ValueError(
                    f"The {formatting.format_type.capitalize()}-formatted {type(self).__name__} has batch_size={batch_size if batched else 1} which is"
                    f"different from {ex_iterable.batch_size=} from its underlying iterable."
                )
        # to enable graceful ends
        self._owned_loops_and_tasks: list[tuple[asyncio.AbstractEventLoop, list[asyncio.Task]]] = []

    @property
    def iter_arrow(self):
        if self.formatting and self.formatting.is_table:
            return self._iter_arrow

    @property
    def is_typed(self):
        return self.features is not None  # user has extracted features

    @property
    def features(self):
        return self._features

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "examples_iterable": self.ex_iterable._init_state_dict(),
            "previous_state": None,
            "num_examples_since_previous_state": 0,
            "previous_state_example_idx": 0,
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        if self.formatting and self.formatting.is_table:
            formatter = PythonFormatter()
            for key, pa_table in self._iter_arrow(max_chunksize=1):
                yield key, formatter.format_row(pa_table)
        else:
            yield from self._iter()

    def _iter(self):
        current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0
        if self._state_dict and self._state_dict["previous_state"]:
            self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
            num_examples_to_skip = self._state_dict["num_examples_since_previous_state"]
        else:
            num_examples_to_skip = 0
        iterator = iter(self.ex_iterable)

        # We use the same logic as in Dataset.map, but with less features/formatting
        # since they're handled by FormattedExamplesIterable

        if self.formatting:
            formatter = get_formatter(self.formatting.format_type)
            format_dict = formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else None
        else:
            format_dict = None

        def iter_batched_inputs():
            nonlocal current_idx
            for key, example in iterator:
                # If `batched`, first build the batch, if `batch_size` is None or <=0, then the batch is the whole dataset
                iterator_batch = (
                    iterator
                    if self.batch_size is None or self.batch_size <= 0
                    else islice(iterator, self.batch_size - 1)
                )
                key_examples_list = [(key, example)] + list(iterator_batch)
                keys, examples = zip(*key_examples_list)
                # the new key is the concatenation of the examples keys from the batch
                key = "_".join(str(key) for key in keys)
                if (
                    self.drop_last_batch
                    and self.batch_size is not None
                    and self.batch_size > 0
                    and len(examples) < self.batch_size
                ):  # ignore last batch
                    return
                batch = _examples_to_batch(examples)
                # we need to format here in case we need to stack tensors together
                batch = format_dict(batch) if format_dict else batch
                indices = [current_idx + i for i in range(len(key_examples_list))]
                current_idx += len(indices)
                yield indices, (key, batch)

        def iter_inputs():
            nonlocal current_idx
            for key, example in iterator:
                # If not batched, we can apply the transform and yield the example directly
                # first copy the example, since we might drop some keys
                example = dict(example)
                # no need to do formatting here
                current_idx += 1
                yield current_idx - 1, (key, example)

        def validate_function_output(processed_inputs):
            if self.batched and processed_inputs:
                first_col = next(iter(processed_inputs))
                bad_cols = [
                    col for col in processed_inputs if len(processed_inputs[col]) != len(processed_inputs[first_col])
                ]
                if bad_cols:
                    raise ValueError(
                        f"Column lengths mismatch: columns {bad_cols} have length {[len(processed_inputs[col]) for col in bad_cols]} "
                        f"while {first_col} has length {len(processed_inputs[first_col])}."
                    )

        def prepare_inputs(key_example, indices):
            key, example = key_example
            fn_args = [example] if self.input_columns is None else [example[col] for col in self.input_columns]
            additional_args = ()
            if self.with_indices:
                fn_args += (indices,)
            inputs = dict(example)
            return inputs, fn_args, additional_args, self.fn_kwargs

        def prepare_outputs(key_example, inputs, processed_inputs):
            validate_function_output(processed_inputs)
            # this logic mimics the one in Dataset.map
            if self.remove_columns:
                for c in self.remove_columns:
                    if c in inputs:
                        del inputs[c]
                    if processed_inputs is key_example[1] and c in processed_inputs:
                        del processed_inputs[c]
            transformed_inputs = {**inputs, **processed_inputs}
            # no need to do features decoding here
            return transformed_inputs

        def apply_function(key_example, indices):
            """Utility to apply the function on a selection of columns."""
            inputs, fn_args, additional_args, fn_kwargs = prepare_inputs(key_example, indices)
            processed_inputs = self.function(*fn_args, *additional_args, **fn_kwargs)
            return prepare_outputs(key_example, inputs, processed_inputs)

        async def async_apply_function(key_example, indices):
            """Utility to apply the function on a selection of columns. Same code but async"""
            inputs, fn_args, additional_args, fn_kwargs = prepare_inputs(key_example, indices)
            processed_inputs = await self.function(*fn_args, *additional_args, **fn_kwargs)
            return prepare_outputs(key_example, inputs, processed_inputs)

        tasks: list[asyncio.Task] = []
        if inspect.iscoroutinefunction(self.function):
            try:
                loop = asyncio.get_running_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
            self._owned_loops_and_tasks.append((loop, tasks))
        else:
            loop = None

        def iter_outputs():
            nonlocal tasks, loop
            inputs_iterator = iter_batched_inputs() if self.batched else iter_inputs()
            if inspect.iscoroutinefunction(self.function):
                if self._state_dict:
                    previous_state = self.ex_iterable.state_dict()
                    self._state_dict["previous_state"] = previous_state
                    previous_state_task = None
                    previous_state_example_idx = self._state_dict["previous_state_example_idx"]
                indices: Union[list[int], list[list[int]]] = []
                for i, key_example in inputs_iterator:
                    indices.append(i)
                    tasks.append(loop.create_task(async_apply_function(key_example, i)))
                    # keep the total active tasks under a certain number
                    if len(tasks) >= self.max_num_running_async_map_functions_in_parallel:
                        done, pending = loop.run_until_complete(
                            asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)
                        )
                        while tasks and len(pending) >= self.max_num_running_async_map_functions_in_parallel:
                            done, pending = loop.run_until_complete(
                                asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)
                            )
                    if len(tasks) >= 10 * self.max_num_running_async_map_functions_in_parallel:
                        loop.run_until_complete(tasks[0])
                    # yield finished tasks
                    while tasks and tasks[0].done():
                        i, task = indices.pop(0), tasks.pop(0)
                        yield i, task.result()
                        if self._state_dict and task is previous_state_task:
                            self._state_dict["previous_state"] = previous_state
                            self._state_dict["num_examples_since_previous_state"] = 0
                            self._state_dict["previous_state_example_idx"] = previous_state_example_idx
                            previous_state, previous_state_task = None, None
                    # checkpoint
                    if self._state_dict and previous_state_task is None and tasks:
                        previous_state = self.ex_iterable.state_dict()
                        previous_state_task = tasks[-1]
                        previous_state_example_idx = current_idx
                while tasks:
                    yield indices[0], loop.run_until_complete(tasks[0])
                    indices.pop(0), tasks.pop(0)
            else:
                if self._state_dict:
                    if self.batched:
                        self._state_dict["previous_state"] = self.ex_iterable.state_dict()
                        self._state_dict["num_examples_since_previous_state"] = 0
                        self._state_dict["previous_state_example_idx"] = current_idx
                for i, key_example in inputs_iterator:
                    if self._state_dict:
                        if not self.batched:
                            self._state_dict["previous_state_example_idx"] = current_idx
                    yield i, apply_function(key_example, i)
                    if self._state_dict:
                        if self.batched:
                            self._state_dict["previous_state"] = self.ex_iterable.state_dict()
                            self._state_dict["num_examples_since_previous_state"] = 0
                            self._state_dict["previous_state_example_idx"] = current_idx

        try:
            outputs = iter_outputs()
            if self.batched:
                outputs = (
                    (key, transformed_example)
                    for key, transformed_batch in outputs
                    for transformed_example in _batch_to_examples(transformed_batch)
                )
            for key, transformed_example in outputs:
                if self._state_dict and self._state_dict["previous_state"] is not None:
                    self._state_dict["num_examples_since_previous_state"] += 1
                if num_examples_to_skip > 0:
                    num_examples_to_skip -= 1
                    continue
                yield key, transformed_example
        except (Exception, KeyboardInterrupt):
            if loop:
                logger.debug(f"Canceling {len(tasks)} async tasks.")
                for task in tasks:
                    task.cancel(msg="KeyboardInterrupt")
                try:
                    loop.run_until_complete(asyncio.gather(*tasks))
                except (asyncio.CancelledError, ValueError):
                    logger.debug("Tasks canceled.")
            raise

    def _iter_arrow(self, max_chunksize: Optional[int] = None) -> Iterator[tuple[Key, pa.Table]]:
        formatter: TableFormatter = get_formatter(self.formatting.format_type) if self.formatting else ArrowFormatter()
        if self.ex_iterable.iter_arrow:
            iterator = self.ex_iterable.iter_arrow()
        else:
            iterator = _convert_to_arrow(
                self.ex_iterable,
                batch_size=self.batch_size if self.batched else 1,
                drop_last_batch=self.drop_last_batch,
            )
        if self._state_dict and self._state_dict["previous_state"]:
            self.ex_iterable.load_state_dict(self._state_dict["previous_state"])
            num_examples_to_skip = self._state_dict["num_examples_since_previous_state"]
        else:
            num_examples_to_skip = 0
        if self._state_dict and max_chunksize is not None:
            self._state_dict["previous_state"] = self.ex_iterable.state_dict()
            self._state_dict["num_examples_since_previous_state"] = 0
        current_idx = self._state_dict["previous_state_example_idx"] if self._state_dict else 0
        for key, pa_table in iterator:
            if (
                self.batched
                and self.batch_size is not None
                and len(pa_table) < self.batch_size
                and self.drop_last_batch
            ):
                return
            # first build the batch
            function_args = (
                [formatter.format_batch(pa_table)]
                if self.input_columns is None
                else [pa_table[col] for col in self.input_columns]
            )
            if self.with_indices:
                if self.batched:
                    function_args.append([current_idx + i for i in range(len(pa_table))])
                else:
                    function_args.append(current_idx)
            # then apply the transform
            output = self.function(*function_args, **self.fn_kwargs)
            output_table = _table_output_to_arrow(output)
            if not isinstance(output_table, pa.Table):
                raise TypeError(
                    f"Provided `function` which is applied to {formatter.table_type} returns a variable of type "
                    f"{type(output)}. Make sure provided `function` returns a {formatter.table_type} to update the dataset."
                )
            # we don't need to merge results for consistency with Dataset.map which merges iif both input and output are dicts
            # then remove the unwanted columns
            if self.remove_columns:
                for column in self.remove_columns:
                    if column in output_table.column_names:
                        output_table = output_table.remove_column(output_table.column_names.index(column))
            # return output
            if max_chunksize is None:
                current_idx += len(pa_table)
                if self._state_dict:
                    self._state_dict["previous_state_example_idx"] += len(pa_table)
                yield key, output_table
            else:
                for i, pa_subtable in enumerate(output_table.to_reader(max_chunksize=max_chunksize)):
                    current_idx += 1
                    if self._state_dict:
                        self._state_dict["num_examples_since_previous_state"] += 1
                    if num_examples_to_skip > 0:
                        num_examples_to_skip -= 1
                        continue
                    yield f"{key}_{i}", pa_subtable
                if self._state_dict:
                    self._state_dict["previous_state"] = self.ex_iterable.state_dict()
                    self._state_dict["num_examples_since_previous_state"] = 0
                    self._state_dict["previous_state_example_idx"] += len(pa_table)

    def shuffle_data_sources(self, generator: np.random.Generator) -> "MappedExamplesIterable":
        """Shuffle the wrapped examples iterable."""
        return MappedExamplesIterable(
            self.ex_iterable.shuffle_data_sources(generator),
            function=self.function,
            with_indices=self.with_indices,
            input_columns=self.input_columns,
            batched=self.batched,
            batch_size=self.batch_size,
            drop_last_batch=self.drop_last_batch,
            remove_columns=self.remove_columns,
            fn_kwargs=self.fn_kwargs,
            formatting=self.formatting,
            features=self.features,
            max_num_running_async_map_functions_in_parallel=self.max_num_running_async_map_functions_in_parallel,
        )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "MappedExamplesIterable":
        """Keep only the requested shard."""
        return MappedExamplesIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
            function=self.function,
            with_indices=self.with_indices,
            input_columns=self.input_columns,
            batched=self.batched,
            batch_size=self.batch_size,
            drop_last_batch=self.drop_last_batch,
            remove_columns=self.remove_columns,
            fn_kwargs=self.fn_kwargs,
            formatting=self.formatting,
            features=self.features,
            max_num_running_async_map_functions_in_parallel=self.max_num_running_async_map_functions_in_parallel,
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


def _add_mask(
    input: Union[dict, pa.Table],
    mask: Union[bool, list, pa.Array, pa.ChunkedArray, pa.BooleanScalar],
    mask_column_name: str,
):
    if isinstance(input, pa.Table):
        if not isinstance(mask, (list, pa.Array, pa.ChunkedArray)):
            mask = pa.array([mask], type=pa.bool_())
        return input.append_column(mask_column_name, mask)
    else:
        return {mask_column_name: mask}


def add_mask(mask_function: Callable, input: Union[dict, pa.Table], *args, mask_column_name: str, **kwargs):
    mask = mask_function(input, *args, **kwargs)
    return _add_mask(input, mask, mask_column_name)


async def async_add_mask(
    mask_function: Callable, input: Union[dict, pa.Table], *args, mask_column_name: str, **kwargs
):
    mask = await mask_function(input, *args, **kwargs)
    return _add_mask(input, mask, mask_column_name)


class FilteredExamplesIterable(MappedExamplesIterable):
    mask_column_name = "===MASK==="

    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        function: Callable,
        with_indices: bool = False,
        input_columns: Optional[list[str]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        fn_kwargs: Optional[dict] = None,
        formatting: Optional["FormattingConfig"] = None,
    ):
        self.mask_function = function
        if ex_iterable.is_typed:
            features = Features({**ex_iterable.features, self.mask_column_name: Value("bool")})
        else:
            features = None
        super().__init__(
            ex_iterable=ex_iterable,
            function=partial(
                async_add_mask if inspect.iscoroutinefunction(function) else add_mask,
                function,
                mask_column_name=self.mask_column_name,
            ),
            with_indices=with_indices,
            input_columns=input_columns,
            batched=batched,
            batch_size=batch_size,
            fn_kwargs=fn_kwargs,
            formatting=formatting,
            features=features,
        )

    def _iter(self):
        for key, example in super()._iter():
            example = dict(example)
            if example.pop(self.mask_column_name):
                yield key, example

    def _iter_arrow(self, max_chunksize: Optional[int] = None):
        for key, pa_table in super()._iter_arrow(max_chunksize=max_chunksize):
            mask = pa_table[self.mask_column_name]
            yield key, pa_table.drop(self.mask_column_name).filter(mask)

    def shuffle_data_sources(self, seed: Optional[int]) -> "FilteredExamplesIterable":
        """Shuffle the wrapped examples iterable."""
        return FilteredExamplesIterable(
            self.ex_iterable.shuffle_data_sources(seed),
            function=self.mask_function,
            with_indices=self.with_indices,
            input_columns=self.input_columns,
            batched=self.batched,
            batch_size=self.batch_size,
            fn_kwargs=self.fn_kwargs,
            formatting=self.formatting,
        )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "FilteredExamplesIterable":
        """Keep only the requested shard."""
        return FilteredExamplesIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
            function=self.mask_function,
            with_indices=self.with_indices,
            input_columns=self.input_columns,
            batched=self.batched,
            batch_size=self.batch_size,
            fn_kwargs=self.fn_kwargs,
            formatting=self.formatting,
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


class BufferShuffledExamplesIterable(_BaseExamplesIterable):
    def __init__(self, ex_iterable: _BaseExamplesIterable, buffer_size: int, generator: np.random.Generator):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.buffer_size = buffer_size
        self.generator = generator
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed

    @property
    def features(self):
        return self.ex_iterable.features

    def _init_state_dict(self) -> dict:
        self._state_dict = self.ex_iterable._init_state_dict()
        self._original_state_dict = self.state_dict()
        return self._state_dict

    def load_state_dict(self, state_dict: dict) -> dict:
        if self._state_dict:
            if state_dict != self._original_state_dict:
                logger.warning(
                    "Loading a state dict of a shuffle buffer of a dataset without the buffer content."
                    "The shuffle buffer will be refilled before starting to yield new examples."
                )
        return super().load_state_dict(state_dict)

    @staticmethod
    def _iter_random_indices(rng: np.random.Generator, buffer_size: int, random_batch_size=1000) -> Iterator[int]:
        while True:
            yield from (int(i) for i in rng.integers(0, buffer_size, size=random_batch_size))

    def __iter__(self):
        buffer_size = self.buffer_size
        rng = deepcopy(self.generator)
        indices_iterator = self._iter_random_indices(rng, buffer_size)
        # this is the shuffle buffer that we keep in memory
        mem_buffer = []
        for x in self.ex_iterable:
            if len(mem_buffer) == buffer_size:  # if the buffer is full, pick and example from it
                i = next(indices_iterator)
                yield mem_buffer[i]
                mem_buffer[i] = x  # replace the picked example by a new one
            else:  # otherwise, keep filling the buffer
                mem_buffer.append(x)
        # when we run out of examples, we shuffle the remaining examples in the buffer and yield them
        rng.shuffle(mem_buffer)
        yield from mem_buffer

    def shuffle_data_sources(self, generator: np.random.Generator) -> "BufferShuffledExamplesIterable":
        """Shuffle the wrapped examples iterable as well as the shuffling buffer."""
        return BufferShuffledExamplesIterable(
            self.ex_iterable.shuffle_data_sources(generator), buffer_size=self.buffer_size, generator=generator
        )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "BufferShuffledExamplesIterable":
        """Keep only the requested shard."""
        return BufferShuffledExamplesIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
            buffer_size=self.buffer_size,
            generator=self.generator,
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


class SkipExamplesIterable(_BaseExamplesIterable):
    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        n: int,
        block_sources_order_when_shuffling: bool = True,
        split_when_sharding: bool = True,
    ):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.n = n
        self.block_sources_order_when_shuffling = block_sources_order_when_shuffling
        self.split_when_sharding = split_when_sharding
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed

    @property
    def features(self):
        return self.ex_iterable.features

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "skipped": False,
            "examples_iterable": self.ex_iterable._init_state_dict(),
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        ex_iterable_idx_start = 0 if self._state_dict and self._state_dict["skipped"] else self.n
        if self._state_dict:
            self._state_dict["skipped"] = True
        yield from islice(self.ex_iterable, ex_iterable_idx_start, None)

    @staticmethod
    def split_number(num, n):
        quotient = num // n
        remainder = num % n
        result = [quotient] * n
        for i in range(remainder):
            result[i] += 1
        return result

    def shuffle_data_sources(self, generator: np.random.Generator) -> "SkipExamplesIterable":
        """May not shuffle the wrapped examples iterable since it would skip examples from other shards instead."""
        if self.block_sources_order_when_shuffling:
            return self
        else:
            return SkipExamplesIterable(
                self.ex_iterable.shuffle_data_sources(generator),
                n=self.n,
                block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
                split_when_sharding=self.split_when_sharding,
            )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "SkipExamplesIterable":
        """Keep only the requested shard."""
        if self.split_when_sharding:
            return SkipExamplesIterable(
                self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
                n=self.split_number(self.n, num_shards)[index],
                block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
                split_when_sharding=self.split_when_sharding,
            )
        else:
            return self

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


class RepeatExamplesIterable(_BaseExamplesIterable):
    """
    Iterable that repeats the underlying iterable a given number of times.
    """

    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        num_times: Optional[int],
    ):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.num_times = num_times

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "repeat_index": 0,
            "examples_iterable": self.ex_iterable._init_state_dict(),
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        repeat_index = self._state_dict["repeat_index"] if self._state_dict else 0
        while True:
            if self.num_times is not None and repeat_index >= max(self.num_times, 0):
                break
            yield from self.ex_iterable
            repeat_index += 1
            if self._state_dict:
                self._state_dict["repeat_index"] = repeat_index
                self._state_dict["examples_iterable"] = self.ex_iterable._init_state_dict()

    def shuffle_data_sources(self, generator: np.random.Generator) -> "RepeatExamplesIterable":
        """Shuffle the underlying iterable, then repeat."""
        return RepeatExamplesIterable(self.ex_iterable.shuffle_data_sources(generator), num_times=self.num_times)

    def shard_data_sources(self, worker_id: int, num_workers: int) -> "RepeatExamplesIterable":
        """Shard, then repeat shards."""
        return RepeatExamplesIterable(
            self.ex_iterable.shard_data_sources(worker_id, num_workers),
            num_times=self.num_times,
        )

    @property
    def n_shards(self) -> int:
        return self.ex_iterable.n_shards


class TakeExamplesIterable(_BaseExamplesIterable):
    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        n: int,
        block_sources_order_when_shuffling: bool = True,
        split_when_sharding: bool = True,
    ):
        super().__init__()
        self.ex_iterable = ex_iterable
        self.n = n
        self.block_sources_order_when_shuffling = block_sources_order_when_shuffling
        self.split_when_sharding = split_when_sharding
        # TODO(QL): implement iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed

    @property
    def features(self):
        return self.ex_iterable.features

    def _init_state_dict(self) -> dict:
        self._state_dict = {
            "num_taken": 0,
            "examples_iterable": self.ex_iterable._init_state_dict(),
            "type": self.__class__.__name__,
        }
        return self._state_dict

    def __iter__(self):
        ex_iterable_num_taken = self._state_dict["num_taken"] if self._state_dict else 0
        for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken):
            if self._state_dict:
                self._state_dict["num_taken"] += 1
            yield key_example

    @staticmethod
    def split_number(num, n):
        quotient = num // n
        remainder = num % n
        result = [quotient] * n
        for i in range(remainder):
            result[i] += 1
        return result

    def shuffle_data_sources(self, generator: np.random.Generator) -> "TakeExamplesIterable":
        """May not shuffle the wrapped examples iterable since it would take examples from other shards instead."""
        if self.block_sources_order_when_shuffling:
            return self
        else:
            return TakeExamplesIterable(
                self.ex_iterable.shuffle_data_sources(generator),
                n=self.n,
                block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
                split_when_sharding=self.split_when_sharding,
            )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "TakeExamplesIterable":
        """Keep only the requested shard."""
        if self.split_when_sharding:
            return TakeExamplesIterable(
                self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
                n=self.split_number(self.n, num_shards)[index],
                block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
                split_when_sharding=self.split_when_sharding,
            )
        else:
            return TakeExamplesIterable(
                self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
                n=self.n,
                block_sources_order_when_shuffling=self.block_sources_order_when_shuffling,
                split_when_sharding=self.split_when_sharding,
            )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


def _apply_feature_types_on_example(
    example: dict, features: Features, token_per_repo_id: dict[str, Union[str, bool, None]]
) -> dict:
    example = dict(example)
    # add missing columns
    for column_name in features:
        if column_name not in example:
            example[column_name] = None
    # we encode the example for ClassLabel feature types for example
    encoded_example = features.encode_example(example)
    # Decode example for Audio feature, e.g.
    decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id)
    return decoded_example


def _apply_feature_types_on_batch(
    batch: dict, features: Features, token_per_repo_id: dict[str, Union[str, bool, None]]
) -> dict:
    batch = dict(batch)
    # add missing columns
    n_examples = len(batch[next(iter(batch))])
    for column_name in features:
        if column_name not in batch:
            batch[column_name] = [None] * n_examples
    # we encode the batch for ClassLabel feature types for example
    encoded_batch = features.encode_batch(batch)
    # Decode batch for Audio feature, e.g.
    decoded_batch = features.decode_batch(encoded_batch, token_per_repo_id=token_per_repo_id)
    return decoded_batch


@dataclass
class FormattingConfig:
    format_type: Optional[str]

    @property
    def is_table(self) -> bool:
        return isinstance(get_formatter(self.format_type), TableFormatter)

    @property
    def is_tensor(self) -> bool:
        return isinstance(get_formatter(self.format_type), TensorFormatter)


class FormattedExamplesIterable(_BaseExamplesIterable):
    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        formatting: Optional[FormattingConfig],
        features: Optional[Features],
        token_per_repo_id: dict[str, Union[str, bool, None]],
    ):
        super().__init__()
        self.ex_iterable = ex_iterable
        self._features = features
        self.formatting = formatting
        self.token_per_repo_id = token_per_repo_id

    @property
    def iter_arrow(self):
        if self.ex_iterable.iter_arrow and (not self.formatting or self.formatting.is_table):
            return self._iter_arrow

    @property
    def is_typed(self):
        return self.ex_iterable.is_typed or self._features is not None

    @property
    def features(self):
        return self._features

    def _init_state_dict(self) -> dict:
        self._state_dict = self.ex_iterable._init_state_dict()
        return self._state_dict

    def __iter__(self):
        if not self.formatting or self.formatting.is_table:
            formatter = PythonFormatter(features=self._features if not self.ex_iterable.is_typed else None)
        else:
            formatter = get_formatter(
                self.formatting.format_type,
                features=self._features if not self.ex_iterable.is_typed else None,
                token_per_repo_id=self.token_per_repo_id,
            )
        if self.ex_iterable.iter_arrow:
            # feature casting (inc column addition) handled within self._iter_arrow()
            for key, pa_table in self._iter_arrow():
                batch = formatter.format_batch(pa_table)
                for example in _batch_to_examples(batch):
                    yield key, example
        else:
            format_dict = (
                formatter.recursive_tensorize
                if isinstance(formatter, TensorFormatter)
                else None  # cast in case features is None
            )
            for key, example in self.ex_iterable:
                # don't apply feature types if already applied by ex_iterable (e.g. in case of chained with_format)
                if self.features and not self.ex_iterable.is_typed:
                    example = _apply_feature_types_on_example(
                        example, self.features, token_per_repo_id=self.token_per_repo_id
                    )
                if format_dict:
                    example = format_dict(example)
                yield key, example

    def _iter_arrow(self) -> Iterator[tuple[Key, pa.Table]]:
        if not self.features:
            yield from self.ex_iterable._iter_arrow()
        for key, pa_table in self.ex_iterable._iter_arrow():
            columns = set(pa_table.column_names)
            schema = self.features.arrow_schema
            # add missing columns
            for column_name in self.features:
                if column_name not in columns:
                    col = pa.NullArray.from_buffers(pa.null(), len(pa_table), [None])
                    pa_table = pa_table.append_column(column_name, col)
            if pa_table.schema != schema:
                pa_table = cast_table_to_features(pa_table, self.features)
            yield key, pa_table

    def shuffle_data_sources(self, generator: np.random.Generator) -> "FormattedExamplesIterable":
        """Shuffle the wrapped examples iterable."""
        return FormattedExamplesIterable(
            self.ex_iterable.shuffle_data_sources(generator),
            features=self.features,
            token_per_repo_id=self.token_per_repo_id,
            formatting=self.formatting,
        )

    def shard_data_sources(self, num_shards: int, index: int, contiguous=True) -> "FormattedExamplesIterable":
        """Keep only the requested shard."""
        return FormattedExamplesIterable(
            self.ex_iterable.shard_data_sources(num_shards, index, contiguous=contiguous),
            features=self.features,
            token_per_repo_id=self.token_per_repo_id,
            formatting=self.formatting,
        )

    @property
    def num_shards(self) -> int:
        return self.ex_iterable.num_shards


@dataclass
class ShufflingConfig:
    generator: np.random.Generator
    _original_seed: Optional[int] = None


@dataclass
class DistributedConfig:
    rank: int
    world_size: int


def _maybe_add_torch_iterable_dataset_parent_class(cls):
    """Add torch.utils.data.IterableDataset as a parent class if 'torch' is available"""
    if config.TORCH_AVAILABLE:
        import torch.utils.data

        if torch.utils.data.IterableDataset not in cls.__bases__:
            cls.__bases__ += (torch.utils.data.IterableDataset,)


def _maybe_share_with_torch_persistent_workers(value: Union[int, "torch.Tensor"]) -> Union[int, "torch.Tensor"]:
    if config.TORCH_AVAILABLE:
        import torch

        if isinstance(value, torch.Tensor):
            return value.share_memory_()
        else:
            return torch.tensor(value).share_memory_()
    else:
        return value


class IterableDataset(DatasetInfoMixin):
    """A Dataset backed by an iterable."""

    def __init__(
        self,
        ex_iterable: _BaseExamplesIterable,
        info: Optional[DatasetInfo] = None,
        split: Optional[NamedSplit] = None,
        formatting: Optional[FormattingConfig] = None,
        shuffling: Optional[ShufflingConfig] = None,
        distributed: Optional[DistributedConfig] = None,
        token_per_repo_id: Optional[dict[str, Union[str, bool, None]]] = None,
    ):
        if distributed and distributed.world_size > 1 and shuffling and shuffling._original_seed is None:
            raise RuntimeError(
                "The dataset doesn't have a fixed random seed across nodes to shuffle and split the list of dataset shards by node. "
                "Please pass e.g. `seed=42` in `.shuffle()` to make all the nodes use the same seed. "
            )

        info = info.copy() if info is not None else DatasetInfo()
        DatasetInfoMixin.__init__(self, info=info, split=split)

        self._ex_iterable = copy.copy(ex_iterable)
        self._formatting = formatting
        self._shuffling = shuffling
        self._distributed = distributed
        self._token_per_repo_id: dict[str, Union[str, bool, None]] = token_per_repo_id or {}
        self._epoch: Union[int, "torch.Tensor"] = _maybe_share_with_torch_persistent_workers(0)
        self._starting_state_dict: Optional[dict] = None
        self._prepare_ex_iterable_for_iteration()  # set state_dict
        _maybe_add_torch_iterable_dataset_parent_class(self.__class__)  # subclass of torch IterableDataset

    def state_dict(self) -> dict:
        """Get the current state_dict of the dataset.
        It corresponds to the state at the latest example it yielded.

        Resuming returns exactly where the checkpoint was saved except in two cases:

        1. examples from shuffle buffers are lost when resuming and the buffers are refilled with new data
        2. combinations of `.with_format(arrow)` and batched `.map()` may skip one batch.

        Returns:
            `dict`

        Example:

        ```py
        >>> from datasets import Dataset, concatenate_datasets
        >>> ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)
        >>> for idx, example in enumerate(ds):
        ...     print(example)
        ...     if idx == 2:
        ...         state_dict = ds.state_dict()
        ...         print("checkpoint")
        ...         break
        >>> ds.load_state_dict(state_dict)
        >>> print(f"restart from checkpoint")
        >>> for example in ds:
        ...     print(example)
        ```

        which returns:
        ```
        {'a': 0}
        {'a': 1}
        {'a': 2}
        checkpoint
        restart from checkpoint
        {'a': 3}
        {'a': 4}
        {'a': 5}
        ```

        ```py
        >>> from torchdata.stateful_dataloader import StatefulDataLoader
        >>> ds = load_dataset("deepmind/code_contests", streaming=True, split="train")
        >>> dataloader = StatefulDataLoader(ds, batch_size=32, num_workers=4)
        >>> # checkpoint
        >>> state_dict = dataloader.state_dict()  # uses ds.state_dict() under the hood
        >>> # resume from checkpoint
        >>> dataloader.load_state_dict(state_dict)  # uses ds.load_state_dict() under the hood
        ```
        """
        return copy.deepcopy(self._state_dict)

    def load_state_dict(self, state_dict: dict) -> None:
        """Load the state_dict of the dataset.
        The iteration will restart at the next example from when the state was saved.

        Resuming returns exactly where the checkpoint was saved except in two cases:

        1. examples from shuffle buffers are lost when resuming and the buffers are refilled with new data
        2. combinations of `.with_format(arrow)` and batched `.map()` may skip one batch.

        Example:

        ```py
        >>> from datasets import Dataset, concatenate_datasets
        >>> ds = Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)
        >>> for idx, example in enumerate(ds):
        ...     print(example)
        ...     if idx == 2:
        ...         state_dict = ds.state_dict()
        ...         print("checkpoint")
        ...         break
        >>> ds.load_state_dict(state_dict)
        >>> print(f"restart from checkpoint")
        >>> for example in ds:
        ...     print(example)
        ```

        which returns:
        ```
        {'a': 0}
        {'a': 1}
        {'a': 2}
        checkpoint
        restart from checkpoint
        {'a': 3}
        {'a': 4}
        {'a': 5}
        ```

        ```py
        >>> from torchdata.stateful_dataloader import StatefulDataLoader
        >>> ds = load_dataset("deepmind/code_contests", streaming=True, split="train")
        >>> dataloader = StatefulDataLoader(ds, batch_size=32, num_workers=4)
        >>> # checkpoint
        >>> state_dict = dataloader.state_dict()  # uses ds.state_dict() under the hood
        >>> # resume from checkpoint
        >>> dataloader.load_state_dict(state_dict)  # uses ds.load_state_dict() under the hood
        ```
        """
        self._starting_state_dict = state_dict

    def __repr__(self):
        return f"IterableDataset({{\n    features: {list(self._info.features.keys()) if self._info.features is not None else 'Unknown'},\n    num_shards: {self.num_shards}\n}})"

    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, d):
        self.__dict__ = d
        # Re-add torch shared memory, since shared memory is not always kept when pickling
        self._epoch = _maybe_share_with_torch_persistent_workers(self._epoch)
        # Re-add torch iterable dataset as a parent class, since dynamically added parent classes are not kept when pickling
        _maybe_add_torch_iterable_dataset_parent_class(self.__class__)

    def _head(self, n=5):
        return next(iter(self.iter(batch_size=n)))

    @property
    def epoch(self) -> int:
        return int(self._epoch)

    def _effective_generator(self):
        if self._shuffling and self.epoch == 0:
            return self._shuffling.generator
        elif self._shuffling:
            # Create effective seed using self.epoch (we subtract in order to avoir overflow in long_scalars)
            effective_seed = deepcopy(self._shuffling.generator).integers(0, 1 << 63) - self.epoch
            effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed
            return np.random.default_rng(effective_seed)
        else:
            raise ValueError("This dataset is not shuffled")

    @property
    def num_shards(self) -> int:
        if self._distributed and self._ex_iterable.num_shards % self._distributed.world_size == 0:
            return self._ex_iterable.num_shards // self._distributed.world_size
        return self._ex_iterable.num_shards

    @property
    def n_shards(self) -> int:  # backward compatibility
        return self.num_shards

    def _iter_pytorch(self):
        ex_iterable = self._prepare_ex_iterable_for_iteration()
        # Fix for fsspec when using multiprocess to avoid hanging in the ML training loop. (only required for fsspec >= 0.9.0)
        # See https://github.com/fsspec/gcsfs/issues/379
        fsspec.asyn.reset_lock()
        # check if there aren't too many workers
        import torch.utils.data

        worker_info = torch.utils.data.get_worker_info()
        if self._is_main_process() and ex_iterable.num_shards < worker_info.num_workers:
            logger.warning(
                f"Too many dataloader workers: {worker_info.num_workers} (max is dataset.num_shards={ex_iterable.num_shards}). "
                f"Stopping {worker_info.num_workers - ex_iterable.num_shards} dataloader workers."
            )
            logger.info(
                f"To parallelize data loading, we give each process some shards (or data sources) to process. "
                f"Therefore it's unnecessary to have a number of workers greater than dataset.num_shards={ex_iterable.num_shards}. "
                f"To enable more parallelism, please split the dataset in more files than {ex_iterable.num_shards}."
            )
        # split workload
        _log_prefix = f"node#{self._distributed.rank} " if self._distributed else ""
        shards_indices = ex_iterable.split_shard_indices_by_worker(
            num_shards=worker_info.num_workers, index=worker_info.id, contiguous=False
        )
        if shards_indices:
            logger.debug(
                f"{_log_prefix}dataloader worker#{worker_info.id}, ': Starting to iterate over {len(shards_indices)}/{ex_iterable.num_shards} shards."
            )
            ex_iterable = ex_iterable.shard_data_sources(
                num_shards=worker_info.num_workers, index=worker_info.id, contiguous=False
            )
            self._state_dict = {
                "examples_iterable": ex_iterable._init_state_dict(),
                "epoch": self.epoch,
            }
            if self._starting_state_dict and self.epoch == self._starting_state_dict["epoch"]:
                ex_iterable.load_state_dict(self._starting_state_dict["examples_iterable"])

            if self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table):
                formatter = get_formatter(self._formatting.format_type, features=self.features)
                if ex_iterable.iter_arrow:
                    iterator = ex_iterable.iter_arrow()
                else:
                    iterator = _convert_to_arrow(ex_iterable, batch_size=1)
                for key, pa_table in iterator:
                    yield formatter.format_row(pa_table)
                return
            else:
                for key, example in ex_iterable:
                    # no need to format thanks to FormattedExamplesIterable
                    yield example
            logger.debug(
                f"{_log_prefix}dataloader worker#{worker_info.id}, ': Finished iterating over {len(shards_indices)}/{ex_iterable.num_shards} shards."
            )
        else:
            logger.debug(
                f"{_log_prefix}dataloader worker#{worker_info.id}, ': Stopping... Number of dataset shards < num_workers ({ex_iterable.num_shards}<{worker_info.num_workers})."
            )

    def _is_main_process(self):
        if self._distributed and self._distributed.rank > 0:
            return False
        if "torch" in sys.modules:
            import torch.utils.data

            worker_info = torch.utils.data.get_worker_info()
            if worker_info is not None and worker_info.id > 0:
                return False
        return True

    def _prepare_ex_iterable_for_iteration(
        self, batch_size: int = 1, drop_last_batch: bool = False
    ) -> _BaseExamplesIterable:
        ex_iterable = self._ex_iterable
        if (
            self._formatting
            and (ex_iterable.iter_arrow or self._formatting.is_table)
            or (self.features and ex_iterable.features != self.features)
        ):
            ex_iterable = RebatchedArrowExamplesIterable(
                ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch
            )
        if self._shuffling:
            ex_iterable = ex_iterable.shuffle_data_sources(self._effective_generator())
        else:
            ex_iterable = ex_iterable

        if self._distributed:
            rank = self._distributed.rank
            world_size = self._distributed.world_size
            if ex_iterable.num_shards % world_size == 0:
                if self._is_main_process():
                    num_shards_per_node = ex_iterable.num_shards // world_size
                    plural = "s" if num_shards_per_node > 1 else ""
                    logger.info(
                        f"Assigning {num_shards_per_node} shard{plural} (or data source{plural}) of the dataset to each node."
                    )
                ex_iterable = ex_iterable.shard_data_sources(num_shards=world_size, index=rank, contiguous=False)
            else:
                if self._is_main_process():
                    logger.info(
                        f"Assigning 1 out of {world_size} examples of the dataset to each node. The others are skipped during the iteration."
                    )
                    logger.info(
                        f"It is more optimized to distribute the dataset shards (or data sources) across nodes. "
                        f"You can do that by using a dataset with number of shards that is a factor of world_size={world_size}. "
                        f"The current dataset has {ex_iterable.num_shards} which is not a factor of {world_size}"
                    )
                ex_iterable = StepExamplesIterable(ex_iterable, step=world_size, offset=rank)

        if self._formatting or (self.features and ex_iterable.features != self.features):
            ex_iterable = FormattedExamplesIterable(
                ex_iterable,
                formatting=self._formatting,
                features=self.features,
                token_per_repo_id=self._token_per_repo_id,
            )

        self._state_dict = {
            "examples_iterable": ex_iterable._init_state_dict(),
            "epoch": self.epoch,
        }
        if self._starting_state_dict and self.epoch == self._starting_state_dict["epoch"]:
            ex_iterable.load_state_dict(self._starting_state_dict["examples_iterable"])
        return ex_iterable

    def __iter__(self):
        if "torch" in sys.modules:
            import torch.utils.data

            worker_info = torch.utils.data.get_worker_info()
            if isinstance(self, torch.utils.data.IterableDataset) and worker_info is not None:
                # We're a torch.utils.data.IterableDataset in a PyTorch worker process
                yield from self._iter_pytorch()
                return

        ex_iterable = self._prepare_ex_iterable_for_iteration()
        if self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table):
            formatter = get_formatter(self._formatting.format_type, features=self.features)
            if ex_iterable.iter_arrow:
                iterator = ex_iterable.iter_arrow()
            else:
                iterator = _convert_to_arrow(ex_iterable, batch_size=1)
            for key, pa_table in iterator:
                yield formatter.format_row(pa_table)
            return

        for key, example in ex_iterable:
            # no need to format thanks to FormattedExamplesIterable
            yield example

    def iter(self, batch_size: int, drop_last_batch: bool = False):
        """Iterate through the batches of size `batch_size`.

        Args:
            batch_size (:obj:`int`): size of each batch to yield.
            drop_last_batch (:obj:`bool`, default `False`): Whether a last batch smaller than the batch_size should be
                dropped
        """

        if self._formatting:
            formatter = get_formatter(self._formatting.format_type, features=self.features)
            format_dict = formatter.recursive_tensorize if isinstance(formatter, TensorFormatter) else None
        else:
            format_dict = None

        ex_iterable = self._prepare_ex_iterable_for_iteration(batch_size=batch_size, drop_last_batch=drop_last_batch)
        if self._formatting and (ex_iterable.iter_arrow or self._formatting.is_table):
            if ex_iterable.iter_arrow:
                iterator = ex_iterable.iter_arrow()
            else:
                iterator = _convert_to_arrow(ex_iterable, batch_size=batch_size, drop_last_batch=drop_last_batch)
            for key, pa_table in iterator:
                yield formatter.format_batch(pa_table)
            return

        iterator = iter(ex_iterable)
        for key, example in iterator:
            # If batched, first build the batch
            examples = [example] + [example for key, example in islice(iterator, batch_size - 1)]
            if drop_last_batch and len(examples) < batch_size:  # ignore last batch
                return
            batch = _examples_to_batch(examples)
            # we need to format here in case we need to stack tensors together
            yield format_dict(batch) if format_dict else batch

    @staticmethod
    def from_generator(
        generator: Callable,
        features: Optional[Features] = None,
        gen_kwargs: Optional[dict] = None,
        split: NamedSplit = Split.TRAIN,
    ) -> "IterableDataset":
        """Create an Iterable Dataset from a generator.

        Args:
            generator (`Callable`):
                A generator function that `yields` examples.
            features (`Features`, *optional*):
                Dataset features.
            gen_kwargs(`dict`, *optional*):
                Keyword arguments to be passed to the `generator` callable.
                You can define a sharded iterable dataset by passing the list of shards in `gen_kwargs`.
                This can be used to improve shuffling and when iterating over the dataset with multiple workers.
            split ([`NamedSplit`], defaults to `Split.TRAIN`):
                Split name to be assigned to the dataset.

                <Added version="2.21.0"/>
        Returns:
            `IterableDataset`

        Example:

        ```py
        >>> def gen():
        ...     yield {"text": "Good", "label": 0}
        ...     yield {"text": "Bad", "label": 1}
        ...
        >>> ds = IterableDataset.from_generator(gen)
        ```

        ```py
        >>> def gen(shards):
        ...     for shard in shards:
        ...         with open(shard) as f:
        ...             for line in f:
        ...                 yield {"line": line}
        ...
        >>> shards = [f"data{i}.txt" for i in range(32)]
        >>> ds = IterableDataset.from_generator(gen, gen_kwargs={"shards": shards})
        >>> ds = ds.shuffle(seed=42, buffer_size=10_000)  # shuffles the shards order + uses a shuffle buffer
        >>> from torch.utils.data import DataLoader
        >>> dataloader = DataLoader(ds.with_format("torch"), num_workers=4)  # give each worker a subset of 32/4=8 shards
        ```
        """
        from .io.generator import GeneratorDatasetInputStream

        return GeneratorDatasetInputStream(
            generator=generator, features=features, gen_kwargs=gen_kwargs, streaming=True, split=split
        ).read()

    @staticmethod
    def from_spark(
        df: "pyspark.sql.DataFrame",
        split: Optional[NamedSplit] = None,
        features: Optional[Features] = None,
        **kwargs,
    ) -> "IterableDataset":
        """Create an IterableDataset from Spark DataFrame. The dataset is streamed to the driver in batches.

        Args:
            df (`pyspark.sql.DataFrame`):
                The DataFrame containing the desired data.
            split (`NamedSplit`, *optional*):
                Split name to be assigned to the dataset.
            features (`Features`, *optional*):
                Dataset features.

        Returns:
            [`IterableDataset`]

        Example:

        ```py
        >>> df = spark.createDataFrame(
        >>>     data=[[1, "Elia"], [2, "Teo"], [3, "Fang"]],
        >>>     columns=["id", "name"],
        >>> )
        >>> ds = IterableDataset.from_spark(df)
        ```
        """
        from .io.spark import SparkDatasetReader

        if sys.platform == "win32":
            raise OSError("IterableDataset.from_spark is not currently supported on Windows")

        return SparkDatasetReader(
            df,
            split=split,
            features=features,
            streaming=True,
            **kwargs,
        ).read()

    @staticmethod
    def from_file(filename: str) -> "IterableDataset":
        """Instantiate a IterableDataset from Arrow table at filename.

        Args:
            filename (`str`):
                File name of the dataset.

        Returns:
            [`IterableDataset`]
        """
        pa_table_schema = read_schema_from_file(filename)
        inferred_features = Features.from_arrow_schema(pa_table_schema)
        ex_iterable = ArrowExamplesIterable(Dataset._generate_tables_from_cache_file, kwargs={"filename": filename})
        return IterableDataset(ex_iterable=ex_iterable, info=DatasetInfo(features=inferred_features))

    def with_format(
        self,
        type: Optional[str] = None,
    ) -> "IterableDataset":
        """
        Return a dataset with the specified format.

        Args:

            type (`str`, *optional*):
                Either output type selected in `[None, 'numpy', 'torch', 'tensorflow', 'jax', 'arrow', 'pandas', 'polars']`.
                `None` means it returns python objects (default).

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> from transformers import AutoTokenizer
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="validation", streaming=True)
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> ds = ds.map(lambda x: tokenizer(x['text'], truncation=True, padding=True), batched=True)
        >>> ds = ds.with_format("torch")
        >>> next(iter(ds))
        {'text': 'compassionately explores the seemingly irreconcilable situation between conservative christian parents and their estranged gay and lesbian children .',
         'label': tensor(1),
         'input_ids': tensor([  101, 18027, 16310, 16001,  1103,  9321,   178, 11604,  7235,  6617,
                1742,  2165,  2820,  1206,  6588, 22572, 12937,  1811,  2153,  1105,
                1147, 12890, 19587,  6463,  1105, 15026,  1482,   119,   102,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0,     0,     0,     0,     0,     0,     0,
                    0,     0,     0,     0]),
         'token_type_ids': tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])}
        ```
        """
        type = get_format_type_from_alias(type)
        # TODO(QL): add format_kwargs
        # TODO(QL): add format_columns and return_all_columns
        # TODO(QL): add pandas format
        return IterableDataset(
            ex_iterable=self._ex_iterable,
            info=self._info.copy(),
            split=self._split,
            formatting=FormattingConfig(format_type=type),
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def map(
        self,
        function: Optional[Callable] = None,
        with_indices: bool = False,
        input_columns: Optional[Union[str, list[str]]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        drop_last_batch: bool = False,
        remove_columns: Optional[Union[str, list[str]]] = None,
        features: Optional[Features] = None,
        fn_kwargs: Optional[dict] = None,
    ) -> "IterableDataset":
        """
        Apply a function to all the examples in the iterable dataset (individually or in batches) and update them.
        If your function returns a column that already exists, then it overwrites it.
        The function is applied on-the-fly on the examples when iterating over the dataset.

        You can specify whether the function should be batched or not with the `batched` parameter:

        - If batched is `False`, then the function takes 1 example in and should return 1 example.
          An example is a dictionary, e.g. `{"text": "Hello there !"}`.
        - If batched is `True` and `batch_size` is 1, then the function takes a batch of 1 example as input and can return a batch with 1 or more examples.
          A batch is a dictionary, e.g. a batch of 1 example is {"text": ["Hello there !"]}.
        - If batched is `True` and `batch_size` is `n` > 1, then the function takes a batch of `n` examples as input and can return a batch with `n` examples, or with an arbitrary number of examples.
          Note that the last batch may have less than `n` examples.
          A batch is a dictionary, e.g. a batch of `n` examples is `{"text": ["Hello there !"] * n}`.

        If the function is asynchronous, then `map` will run your function in parallel, with up to one thousand simulatenous calls.
        It is recommended to use a `asyncio.Semaphore` in your function if you want to set a maximum number of operations that can run at the same time.

        Args:
            function (`Callable`, *optional*, defaults to `None`):
                Function applied on-the-fly on the examples when you iterate on the dataset.
                It must have one of the following signatures:

                - `function(example: Dict[str, Any]) -> Dict[str, Any]` if `batched=False` and `with_indices=False`
                - `function(example: Dict[str, Any], idx: int) -> Dict[str, Any]` if `batched=False` and `with_indices=True`
                - `function(batch: Dict[str, List]) -> Dict[str, List]` if `batched=True` and `with_indices=False`
                - `function(batch: Dict[str, List], indices: List[int]) -> Dict[str, List]` if `batched=True` and `with_indices=True`

                For advanced usage, the function can also return a `pyarrow.Table`.
                If the function is asynchronous, then `map` will run your function in parallel.
                Moreover if your function returns nothing (`None`), then `map` will run your function and return the dataset unchanged.
                If no function is provided, default to identity function: `lambda x: x`.
            with_indices (`bool`, defaults to `False`):
                Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx[, rank]): ...`.
            input_columns (`Optional[Union[str, List[str]]]`, defaults to `None`):
                The columns to be passed into `function`
                as positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
            batched (`bool`, defaults to `False`):
                Provide batch of examples to `function`.
            batch_size (`int`, *optional*, defaults to `1000`):
                Number of examples per batch provided to `function` if `batched=True`.
                `batch_size <= 0` or `batch_size == None` then provide the full dataset as a single batch to `function`.
            drop_last_batch (`bool`, defaults to `False`):
                Whether a last batch smaller than the batch_size should be
                dropped instead of being processed by the function.
            remove_columns (`[List[str]]`, *optional*, defaults to `None`):
                Remove a selection of columns while doing the mapping.
                Columns will be removed before updating the examples with the output of `function`, i.e. if `function` is adding
                columns with names in `remove_columns`, these columns will be kept.
            features (`[Features]`, *optional*, defaults to `None`):
                Feature types of the resulting dataset.
            fn_kwargs (`Dict`, *optional*, default `None`):
                Keyword arguments to be passed to `function`.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> def add_prefix(example):
        ...     example["text"] = "Review: " + example["text"]
        ...     return example
        >>> ds = ds.map(add_prefix)
        >>> list(ds.take(3))
        [{'label': 1,
         'text': 'Review: the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'Review: the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'Review: effective but too-tepid biopic'}]
        ```
        """
        if isinstance(input_columns, str):
            input_columns = [input_columns]
        if isinstance(remove_columns, str):
            remove_columns = [remove_columns]
        if function is None:
            function = identity_func
        if fn_kwargs is None:
            fn_kwargs = {}

        ex_iterable = self._ex_iterable
        # no need to apply features if ex_iterable is typed and if there was no cast_column()
        input_features = (
            None
            if (ex_iterable.is_typed and (self._info.features is None or self._info.features == ex_iterable.features))
            else self._info.features
        )

        if self._formatting and self._formatting.is_table:
            # apply formatting before iter_arrow to keep map examples iterable happy
            ex_iterable = FormattedExamplesIterable(
                ex_iterable,
                formatting=copy.deepcopy(self._formatting),
                features=input_features,
                token_per_repo_id=self._token_per_repo_id,
            )
            ex_iterable = RebatchedArrowExamplesIterable(
                ex_iterable, batch_size=batch_size if batched else 1, drop_last_batch=drop_last_batch
            )
        else:
            if self._formatting and self._ex_iterable.iter_arrow:
                ex_iterable = RebatchedArrowExamplesIterable(
                    self._ex_iterable, batch_size=batch_size if batched else 1, drop_last_batch=drop_last_batch
                )
            if self._formatting or input_features:
                # apply formatting after iter_arrow to avoid re-encoding the examples
                ex_iterable = FormattedExamplesIterable(
                    ex_iterable,
                    formatting=copy.deepcopy(self._formatting),
                    features=input_features,
                    token_per_repo_id=self._token_per_repo_id,
                )

        ex_iterable = MappedExamplesIterable(
            ex_iterable,
            function=function,
            with_indices=with_indices,
            input_columns=input_columns,
            batched=batched,
            batch_size=batch_size,
            drop_last_batch=drop_last_batch,
            remove_columns=remove_columns,
            fn_kwargs=fn_kwargs,
            formatting=self._formatting,
            features=features,
        )
        info = self.info.copy()
        info.features = features
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=info,
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def filter(
        self,
        function: Optional[Callable] = None,
        with_indices=False,
        input_columns: Optional[Union[str, list[str]]] = None,
        batched: bool = False,
        batch_size: Optional[int] = 1000,
        fn_kwargs: Optional[dict] = None,
    ) -> "IterableDataset":
        """Apply a filter function to all the elements so that the dataset only includes examples according to the filter function.
        The filtering is done on-the-fly when iterating over the dataset.

        If the function is asynchronous, then `filter` will run your function in parallel, with up to one thousand simulatenous calls (configurable).
        It is recommended to use a `asyncio.Semaphore` in your function if you want to set a maximum number of operations that can run at the same time.

        Args:
            function (`Callable`):
                Callable with one of the following signatures:

                - `function(example: Dict[str, Any]) -> bool` if `with_indices=False, batched=False`
                - `function(example: Dict[str, Any], indices: int) -> bool` if `with_indices=True, batched=False`
                - `function(example: Dict[str, List]) -> List[bool]` if `with_indices=False, batched=True`
                - `function(example: Dict[str, List], indices: List[int]) -> List[bool]` if `with_indices=True, batched=True`

                If the function is asynchronous, then `filter` will run your function in parallel.
                If no function is provided, defaults to an always True function: `lambda x: True`.
            with_indices (`bool`, defaults to `False`):
                Provide example indices to `function`. Note that in this case the signature of `function` should be `def function(example, idx): ...`.
            input_columns (`str` or `List[str]`, *optional*):
                The columns to be passed into `function` as
                positional arguments. If `None`, a dict mapping to all formatted columns is passed as one argument.
            batched (`bool`, defaults to `False`):
                Provide batch of examples to `function`.
            batch_size (`int`, *optional*, default `1000`):
                Number of examples per batch provided to `function` if `batched=True`.
            fn_kwargs (`Dict`, *optional*, default `None`):
                Keyword arguments to be passed to `function`.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> ds = ds.filter(lambda x: x["label"] == 0)
        >>> list(ds.take(3))
        [{'label': 0, 'movie_review': 'simplistic , silly and tedious .'},
         {'label': 0,
         'movie_review': "it's so laddish and juvenile , only teenage boys could possibly find it funny ."},
         {'label': 0,
         'movie_review': 'exploitative and largely devoid of the depth or sophistication that would make watching such a graphic treatment of the crimes bearable .'}]
        ```
        """
        if isinstance(input_columns, str):
            input_columns = [input_columns]

        # We need the examples to be decoded for certain feature types like Image or Audio,
        # format and type before filtering
        ex_iterable = self._ex_iterable
        if self._info.features or self._formatting:
            ex_iterable = FormattedExamplesIterable(
                ex_iterable,
                formatting=self._formatting,
                features=None if ex_iterable.is_typed else self._info.features,
                token_per_repo_id=self._token_per_repo_id,
            )

        ex_iterable = FilteredExamplesIterable(
            ex_iterable,
            function=function,
            with_indices=with_indices,
            input_columns=input_columns,
            batched=batched,
            batch_size=batch_size,
            fn_kwargs=fn_kwargs,
            formatting=self._formatting,
        )
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=self._info,
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def shuffle(
        self, seed=None, generator: Optional[np.random.Generator] = None, buffer_size: int = 1000
    ) -> "IterableDataset":
        """
        Randomly shuffles the elements of this dataset.

        This dataset fills a buffer with `buffer_size` elements, then randomly samples elements from this buffer,
        replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or
        equal to the full size of the dataset is required.

        For instance, if your dataset contains 10,000 elements but `buffer_size` is set to 1000, then `shuffle` will
        initially select a random element from only the first 1000 elements in the buffer. Once an element is
        selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element,
        maintaining the 1000 element buffer.

        If the dataset is made of several shards, it also does shuffle the order of the shards.
        However if the order has been fixed by using [`~datasets.IterableDataset.skip`] or [`~datasets.IterableDataset.take`]
        then the order of the shards is kept unchanged.

        Args:
            seed (`int`, *optional*, defaults to `None`):
                Random seed that will be used to shuffle the dataset.
                It is used to sample from the shuffle buffer and also to shuffle the data shards.
            generator (`numpy.random.Generator`, *optional*):
                Numpy random Generator to use to compute the permutation of the dataset rows.
                If `generator=None` (default), uses `np.random.default_rng` (the default BitGenerator (PCG64) of NumPy).
            buffer_size (`int`, defaults to `1000`):
                Size of the buffer.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> list(ds.take(3))
        [{'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'effective but too-tepid biopic'}]
        >>> shuffled_ds = ds.shuffle(seed=42)
        >>> list(shuffled_ds.take(3))
        [{'label': 1,
         'text': "a sports movie with action that's exciting on the field and a story you care about off it ."},
         {'label': 1,
         'text': 'at its best , the good girl is a refreshingly adult take on adultery . . .'},
         {'label': 1,
         'text': "sam jones became a very lucky filmmaker the day wilco got dropped from their record label , proving that one man's ruin may be another's fortune ."}]
        ```
        """
        if generator is None:
            generator = np.random.default_rng(seed)
        else:
            generator = deepcopy(generator)
        shuffling = ShufflingConfig(generator=generator, _original_seed=seed)
        return IterableDataset(
            ex_iterable=BufferShuffledExamplesIterable(
                self._ex_iterable, buffer_size=buffer_size, generator=generator
            ),
            info=self._info.copy(),
            split=self._split,
            formatting=self._formatting,
            shuffling=shuffling,
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def set_epoch(self, epoch: int):
        self._epoch += epoch - self._epoch  # update torch value in shared memory in-place

    def skip(self, n: int) -> "IterableDataset":
        """
        Create a new [`IterableDataset`] that skips the first `n` elements.

        Args:
            n (`int`):
                Number of elements to skip.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> list(ds.take(3))
        [{'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'effective but too-tepid biopic'}]
        >>> ds = ds.skip(1)
        >>> list(ds.take(3))
        [{'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'effective but too-tepid biopic'},
         {'label': 1,
         'text': 'if you sometimes like to go to the movies to have fun , wasabi is a good place to start .'}]
        ```
        """
        ex_iterable = SkipExamplesIterable(
            self._ex_iterable,
            n,
            block_sources_order_when_shuffling=self._shuffling is None,
            split_when_sharding=self._distributed is None,
        )
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=self._info.copy(),
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def repeat(self, num_times: Optional[int]) -> "IterableDataset":
        """
        Create a new [`IterableDataset`] that repeats the underlying dataset `num_times` times.

        N.B. The effect of calling shuffle after repeat depends significantly on buffer size.
        With buffer_size 1, duplicate data is never seen in the same iteration, even after shuffling:
        ds.repeat(n).shuffle(seed=42, buffer_size=1) is equivalent to ds.shuffle(seed=42, buffer_size=1).repeat(n),
        and only shuffles shard orders within each iteration.
        With buffer size >= (num samples in the dataset * num_times), we get full shuffling of the repeated data, i.e. we can observe duplicates in
        the same iteration.

        Args:
            num_times (`int`) or (`None`):
                Number of times to repeat the dataset. If `None`, the dataset will be repeated indefinitely.

        Example:
        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train")
        >>> ds = ds.take(2).repeat(2)
        >>> list(ds)
        [{'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'effective but too-tepid biopic'},
         {'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'},
         {'label': 1, 'text': 'effective but too-tepid biopic'}]
        ```
        """
        return IterableDataset(
            ex_iterable=RepeatExamplesIterable(self._ex_iterable, num_times=num_times),
            info=self._info,
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def take(self, n: int) -> "IterableDataset":
        """
        Create a new [`IterableDataset`] with only the first `n` elements.

        Args:
            n (`int`):
                Number of elements to take.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> small_ds = ds.take(2)
        >>> list(small_ds)
        [{'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'},
         {'label': 1,
         'text': 'the gorgeously elaborate continuation of " the lord of the rings " trilogy is so huge that a column of words cannot adequately describe co-writer/director peter jackson\'s expanded vision of j . r . r . tolkien\'s middle-earth .'}]
        ```
        """
        ex_iterable = TakeExamplesIterable(
            self._ex_iterable,
            n,
            block_sources_order_when_shuffling=self._shuffling is None,
            split_when_sharding=self._distributed is None,
        )
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=self._info.copy(),
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def shard(
        self,
        num_shards: int,
        index: int,
        contiguous: bool = True,
    ) -> "IterableDataset":
        """Return the `index`-nth shard from dataset split into `num_shards` pieces.

        This shards deterministically. `dataset.shard(n, i)` splits the dataset into contiguous chunks,
        so it can be easily concatenated back together after processing. If `dataset.num_shards % n == l`, then the
        first `l` datasets each have `(dataset.num_shards // n) + 1` shards, and the remaining datasets have `(dataset.num_shards // n)` shards.
        `datasets.concatenate_datasets([dset.shard(n, i) for i in range(n)])` returns a dataset with the same order as the original.
        In particular, `dataset.shard(dataset.num_shards, i)` returns a dataset with 1 shard.

        Note: n should be less or equal to the number of shards in the dataset `dataset.num_shards`.

        On the other hand, `dataset.shard(n, i, contiguous=False)` contains all the shards of the dataset whose index mod `n = i`.

        Be sure to shard before using any randomizing operator (such as `shuffle`).
        It is best if the shard operator is used early in the dataset pipeline.

        Args:
            num_shards (`int`):
                How many shards to split the dataset into.
            index (`int`):
                Which shard to select and return.
            contiguous: (`bool`, defaults to `True`):
                Whether to select contiguous blocks of indices for shards.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("amazon_polarity", split="train", streaming=True)
        >>> ds
        Dataset({
            features: ['label', 'title', 'content'],
            num_shards: 4
        })
        >>> ds.shard(num_shards=2, index=0)
        Dataset({
            features: ['label', 'title', 'content'],
            num_shards: 2
        })
        ```
        """
        ex_iterable = self._ex_iterable.shard_data_sources(num_shards=num_shards, index=index, contiguous=contiguous)
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=self._info.copy(),
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    @property
    def column_names(self) -> Optional[list[str]]:
        """Names of the columns in the dataset.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="validation", streaming=True)
        >>> ds.column_names
        ['text', 'label']
        ```
        """
        return list(self._info.features.keys()) if self._info.features is not None else None

    def add_column(self, name: str, column: Union[list, np.array]) -> "IterableDataset":
        """Add column to Dataset.

        Args:
            name (str): Column name.
            column (list or np.array): Column data to be added.

        Returns:
            `IterableDataset`
        """
        return self.map(partial(add_column_fn, name=name, column=column), with_indices=True)

    def rename_column(self, original_column_name: str, new_column_name: str) -> "IterableDataset":
        """
        Rename a column in the dataset, and move the features associated to the original column under the new column
        name.

        Args:
            original_column_name (`str`):
                Name of the column to rename.
            new_column_name (`str`):
                New name for the column.

        Returns:
            `IterableDataset`: A copy of the dataset with a renamed column.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> next(iter(ds))
        {'label': 1,
         'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        >>> ds = ds.rename_column("text", "movie_review")
        >>> next(iter(ds))
        {'label': 1,
         'movie_review': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """
        return self.rename_columns({original_column_name: new_column_name})

    def rename_columns(self, column_mapping: dict[str, str]) -> "IterableDataset":
        """
        Rename several columns in the dataset, and move the features associated to the original columns under
        the new column names.

        Args:
            column_mapping (`Dict[str, str]`): A mapping of columns to rename to their new names

        Returns:
            `IterableDataset`: A copy of the dataset with renamed columns
        """

        original_features = self._info.features.copy() if self._info.features else None
        ds_iterable = self.map(
            partial(_rename_columns_fn, column_mapping=column_mapping), remove_columns=list(column_mapping)
        )
        if original_features is not None:
            ds_iterable._info.features = Features(
                {
                    column_mapping[col] if col in column_mapping.keys() else col: feature
                    for col, feature in original_features.items()
                }
            )
        return ds_iterable

    def remove_columns(self, column_names: Union[str, list[str]]) -> "IterableDataset":
        """
        Remove one or several column(s) in the dataset and the features associated to them.
        The removal is done on-the-fly on the examples when iterating over the dataset.


        Args:
            column_names (`Union[str, List[str]]`):
                Name of the column(s) to remove.

        Returns:
            `IterableDataset`: A copy of the dataset object without the columns to remove.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> next(iter(ds))
        {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1}
        >>> ds = ds.remove_columns("label")
        >>> next(iter(ds))
        {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """
        original_features = self._info.features.copy() if self._info.features else None
        ds_iterable = self.map(remove_columns=column_names)
        if original_features is not None:
            ds_iterable._info.features = original_features.copy()
            for col, _ in original_features.items():
                if col in column_names:
                    del ds_iterable._info.features[col]

        return ds_iterable

    def select_columns(self, column_names: Union[str, list[str]]) -> "IterableDataset":
        """Select one or several column(s) in the dataset and the features
        associated to them. The selection is done on-the-fly on the examples
        when iterating over the dataset.


        Args:
            column_names (`Union[str, List[str]]`):
                Name of the column(s) to select.

        Returns:
            `IterableDataset`: A copy of the dataset object with selected columns.

        Example:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> next(iter(ds))
        {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .', 'label': 1}
        >>> ds = ds.select_columns("text")
        >>> next(iter(ds))
        {'text': 'the rock is destined to be the 21st century\'s new " conan " and that he\'s going to make a splash even greater than arnold schwarzenegger , jean-claud van damme or steven segal .'}
        ```
        """
        if isinstance(column_names, str):
            column_names = [column_names]

        if self._info:
            info = copy.deepcopy(self._info)
            if self._info.features is not None:
                missing_columns = set(column_names) - set(self._info.features.keys())
                if missing_columns:
                    raise ValueError(
                        f"Column name {list(missing_columns)} not in the "
                        "dataset. Columns in the dataset: "
                        f"{list(self._info.features.keys())}."
                    )
                info.features = Features({c: info.features[c] for c in column_names})

        ex_iterable = SelectColumnsIterable(self._ex_iterable, column_names)
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=info,
            split=self._split,
            formatting=self._formatting,
            shuffling=self._shuffling,
            distributed=self._distributed,
            token_per_repo_id=self._token_per_repo_id,
        )

    def cast_column(self, column: str, feature: FeatureType) -> "IterableDataset":
        """Cast column to feature for decoding.

        Args:
            column (`str`):
                Column name.
            feature (`Feature`):
                Target feature.

        Returns:
            `IterableDataset`

        Example:

        ```py
        >>> from datasets import load_dataset, Audio
        >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train", streaming=True)
        >>> ds.features
        {'audio': Audio(sampling_rate=8000, mono=True, decode=True, id=None),
         'english_transcription': Value(dtype='string', id=None),
         'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan',  'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None),
         'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR',  'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None),
         'path': Value(dtype='string', id=None),
         'transcription': Value(dtype='string', id=None)}
        >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000))
        >>> ds.features
        {'audio': Audio(sampling_rate=16000, mono=True, decode=True, id=None),
         'english_transcription': Value(dtype='string', id=None),
         'intent_class': ClassLabel(num_classes=14, names=['abroad', 'address', 'app_error', 'atm_limit', 'balance', 'business_loan',  'card_issues', 'cash_deposit', 'direct_debit', 'freeze', 'high_value_payment', 'joint_account', 'latest_transactions', 'pay_bill'], id=None),
         'lang_id': ClassLabel(num_classes=14, names=['cs-CZ', 'de-DE', 'en-AU', 'en-GB', 'en-US', 'es-ES', 'fr-FR', 'it-IT', 'ko-KR',  'nl-NL', 'pl-PL', 'pt-PT', 'ru-RU', 'zh-CN'], id=None),
         'path': Value(dtype='string', id=None),
         'transcription': Value(dtype='string', id=None)}
        ```
        """
        info = self._info.copy()
        info.features[column] = feature
        return IterableDataset(
            ex_iterable=self._ex_iterable,
            info=info,
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def cast(
        self,
        features: Features,
    ) -> "IterableDataset":
        """
        Cast the dataset to a new set of features.

        Args:
            features ([`Features`]):
                New features to cast the dataset to.
                The name of the fields in the features must match the current column names.
                The type of the data must also be convertible from one type to the other.
                For non-trivial conversion, e.g. `string` <-> `ClassLabel` you should use [`~Dataset.map`] to update the Dataset.

        Returns:
            `IterableDataset`: A copy of the dataset with casted features.

        Example:

        ```py
        >>> from datasets import load_dataset, ClassLabel, Value
        >>> ds = load_dataset("cornell-movie-review-data/rotten_tomatoes", split="train", streaming=True)
        >>> ds.features
        {'label': ClassLabel(names=['neg', 'pos'], id=None),
         'text': Value(dtype='string', id=None)}
        >>> new_features = ds.features.copy()
        >>> new_features["label"] = ClassLabel(names=["bad", "good"])
        >>> new_features["text"] = Value("large_string")
        >>> ds = ds.cast(new_features)
        >>> ds.features
        {'label': ClassLabel(names=['bad', 'good'], id=None),
         'text': Value(dtype='large_string', id=None)}
        ```
        """
        info = self._info.copy()
        info.features = features
        return IterableDataset(
            ex_iterable=self._ex_iterable,
            info=info,
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def decode(self, enable: bool = True, num_threads: int = 0) -> "IterableDataset":
        """
        Enable or disable the dataset features decoding for audio, image, video.

        When enabled (default), media types are decoded:

        * audio -> dict of "array" and "sampling_rate" and "path"
        * image -> PIL.Image
        * video -> torchvision.io.VideoReader

        You can enable multithreading using `num_threads`. This is especially useful to speed up remote
        data streaming. However it can be slower than `num_threads=0` for local data on fast disks.

        Disabling decoding is useful if you want to iterate on the paths or bytes of the media files
        without actually decoding their content. To disable decoding you can use `.decode(False)`, which
        is equivalent to calling `.cast()` or `.cast_column()` with all the Audio, Image and Video types
        set to `decode=False`.

        Args:
            enable (`bool`, defaults to `True`):
                Enable or disable features decoding.
            num_threads (`int`, defaults to `0`):
                Enable multithreading for features decoding.

        Returns:
            `IterableDataset`: A copy of the dataset with casted features.

        Examples:

        Disable decoding:

        ```py
        >>> from datasets import load_dataset
        >>> ds = load_dataset("sshh12/planet-textures", split="train", streaming=True)
        >>> next(iter(ds))
        {'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=2048x1024>,
        'text': 'A distant celestial object with an icy crust, displaying a light blue shade, covered with round pits and rugged terrains.'}
        >>> ds = ds.decode(False)
        >>> ds.features
        {'image': Image(mode=None, decode=False, id=None),
        'text': Value(dtype='string', id=None)}
        >>> next(iter(ds))
        {
          'image': {
            'path': 'hf://datasets/sshh12/planet-textures@69dc4cef7a5c4b2cfe387727ec8ea73d4bff7302/train/textures/0000.png',
            'bytes': None
          },
          'text': 'A distant celestial object with an icy crust, displaying a light blue shade, covered with round pits and rugged terrains.'
        }
        ```

        Speed up streaming with multithreading:

        ```py
        >>> import os
        >>> from datasets import load_dataset
        >>> from tqdm import tqdm
        >>> ds = load_dataset("sshh12/planet-textures", split="train", streaming=True)
        >>> num_threads = min(32, (os.cpu_count() or 1) + 4)
        >>> ds = ds.decode(num_threads=num_threads)
        >>> for _ in tqdm(ds):  # 20 times faster !
        ...     ...
        ```
        """
        if not self.features:
            raise ValueError(
                "Features decoding is only available for datasets with known features, but features are Unknown. "
                "Please set the datasets features with `ds = ds.cast(features)`."
            )
        ds = self

        def set_decoding(decode: bool, feature):
            if hasattr(feature, "decode"):
                feature.decode = decode

        if enable and num_threads > 0:
            disabled_decoding_features = self.features.copy()
            enabled_decoding_features = self.features.copy()

            _visit(disabled_decoding_features, partial(set_decoding, False))
            _visit(enabled_decoding_features, partial(set_decoding, True))
            ds = ds.cast(disabled_decoding_features)
            pool = multiprocessing.pool.ThreadPool(num_threads)
            func = partial(_apply_async, pool, enabled_decoding_features.decode_example)
            ds = ds.map(func, features=enabled_decoding_features)
            assert isinstance(ds._ex_iterable, MappedExamplesIterable)
            ds._ex_iterable.max_num_running_async_map_functions_in_parallel = 2 * num_threads
        else:
            features = ds.features.copy()
            _visit(features, partial(set_decoding, enable))
            ds = ds.cast(features)
        return ds

    def _step(self, step: int, offset: int) -> "IterableDataset":
        ex_iterable = StepExamplesIterable(self._ex_iterable, step=step, offset=offset)
        return IterableDataset(
            ex_iterable=ex_iterable,
            info=self._info.copy(),
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def _resolve_features(self):
        if self.features is not None:
            return self
        elif self._ex_iterable.is_typed:
            features = self._ex_iterable.features
        else:
            features = _infer_features_from_batch(self.with_format(None)._head())
        info = self.info.copy()
        info.features = features
        return IterableDataset(
            ex_iterable=self._ex_iterable,
            info=info,
            split=self._split,
            formatting=self._formatting,
            shuffling=copy.deepcopy(self._shuffling),
            distributed=copy.deepcopy(self._distributed),
            token_per_repo_id=self._token_per_repo_id,
        )

    def batch(self, batch_size: int, drop_last_batch: bool = False) -> "IterableDataset":
        """
        Group samples from the dataset into batches.

        Args:
            batch_size (`int`): The number of samples in each batch.
            drop_last_batch (`bool`, defaults to `False`): Whether to drop the last incomplete batch.

        Example:
        ```py
        >>> ds = load_dataset("some_dataset", streaming=True)
        >>> batched_ds = ds.batch(batch_size=32)
        ```
        """

        def batch_fn(unbatched):
            return {k: [v] for k, v in unbatched.items()}

        if self.features:
            features = Features({col: [feature] for col, feature in self.features.items()})
        else:
            features = None
        return self.map(
            batch_fn, batched=True, batch_size=batch_size, drop_last_batch=drop_last_batch, features=features
        )


def _concatenate_iterable_datasets(
    dsets: list[IterableDataset],
    info: Optional[DatasetInfo] = None,
    split: Optional[NamedSplit] = None,
    axis: int = 0,
) -> IterableDataset:
    """
    Converts a list of `IterableDataset` with the same schema into a single `IterableDataset`.
    Missing data are filled with None values.

    <Added version="2.4.0"/>

    Args:
        dsets (`List[datasets.IterableDataset]`): List of Datasets to concatenate.
        info (`DatasetInfo`, optional): Dataset information, like description, citation, etc.
        split (`NamedSplit`, optional): Name of the dataset split.
        axis (``{0, 1}``, default ``0``, meaning over rows):
            Axis to concatenate over, where ``0`` means over rows (vertically) and ``1`` means over columns
            (horizontally).

            *New in version 1.6.0*

    Example:

    ```py
    >>> ds3 = _concatenate_iterable_datasets([ds1, ds2])
    ```
    """
    dsets = [d._resolve_features() for d in dsets]

    # Perform checks (and a potentional cast if axis=0)
    if axis == 0:
        _check_if_features_can_be_aligned([dset.features for dset in dsets])
    else:
        _check_column_names([col_name for dset in dsets for col_name in dset.features])

    # TODO: improve this to account for a mix of ClassLabel and Value for example
    # right now it would keep the type of the first dataset in the list
    features = Features(
        {k: v for features in _align_features([dset.features for dset in dsets]) for k, v in features.items()}
    )

    ex_iterables = [copy.deepcopy(d._ex_iterable) for d in dsets]
    if axis == 0:
        ex_iterable = VerticallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
    else:
        ex_iterable = HorizontallyConcatenatedMultiSourcesExamplesIterable(ex_iterables)
    # Set new info - we update the features
    # setting the features also ensures to fill missing columns with None
    if info is None:
        info = DatasetInfo.from_merge([d.info for d in dsets])
    else:
        info = info.copy()
    info.features = features
    # Get all the auth tokens per repository - in case the datasets come from different private repositories
    token_per_repo_id = {repo_id: token for dataset in dsets for repo_id, token in dataset._token_per_repo_id.items()}
    # Return new daset
    return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id)


def _interleave_iterable_datasets(
    datasets: list[IterableDataset],
    probabilities: Optional[list[float]] = None,
    seed: Optional[int] = None,
    info: Optional[DatasetInfo] = None,
    split: Optional[NamedSplit] = None,
    stopping_strategy: Literal["first_exhausted", "all_exhausted"] = "first_exhausted",
) -> IterableDataset:
    """
    Interleave several iterable datasets (sources) into a single iterable dataset.
    The new iterable dataset alternates between the sources to yield examples.
    If `probabilities = None` (default) the iterable dataset will cycles through the sources in order for each next example in the iteration.
    If `probabilities` is not `None, the iterable dataset will sample a random source according to the provided probabilities for each next examples in the iteration.

    <Added version="2.4.0"/>

    Args:
        datasets (`List[IterableDataset]`): list of datasets to interleave
        probabilities (`List[float]`, optional, default None): If specified, the new iterable dataset samples
            examples from one source at a time according to these probabilities.
        seed (`int`, optional, default None): The random seed used to choose a source for each example.
        stopping_strategy (`str`, defaults to `first_exhausted`):
            Two strategies are proposed right now.
            By default, `first_exhausted` is an undersampling strategy, i.e the dataset construction is stopped as soon as one dataset has ran out of samples.
            If the strategy is `all_exhausted`,  we use an oversampling strategy, i.e the dataset construction is stopped as soon as every samples of every dataset has been added at least once.
            Note that if the strategy is `all_exhausted`, the interleaved dataset size can get enormous:
            - with no probabilities, the resulting dataset will have max_length_datasets*nb_dataset samples.
            - with given probabilities, the resulting dataset will have more samples if some datasets have really low probability of visiting.

    Output:
        `datasets.IterableDataset`
    """
    datasets = [d._resolve_features() for d in datasets]

    # Perform checks
    _check_if_features_can_be_aligned([dset.features for dset in datasets])

    # TODO: improve this to account for a mix of ClassLabel and Value for example
    # right now it would keep the type of the first dataset in the list
    features = Features(
        {k: v for features in _align_features([dset.features for dset in datasets]) for k, v in features.items()}
    )

    ex_iterables = [copy.deepcopy(d._ex_iterable) for d in datasets]

    # Use cycling or random cycling of sources
    if probabilities is None:
        ex_iterable = CyclingMultiSourcesExamplesIterable(ex_iterables, stopping_strategy=stopping_strategy)
    else:
        generator = np.random.default_rng(seed)
        ex_iterable = RandomlyCyclingMultiSourcesExamplesIterable(
            ex_iterables, generator=generator, probabilities=probabilities, stopping_strategy=stopping_strategy
        )
    # Set new info - we update the features
    # setting the features also ensures to fill missing columns with None
    if info is None:
        info = DatasetInfo.from_merge([d.info for d in datasets])
    else:
        info = info.copy()
    info.features = features
    # Get all the auth tokens per repository - in case the datasets come from different private repositories
    token_per_repo_id = {
        repo_id: token for dataset in datasets for repo_id, token in dataset._token_per_repo_id.items()
    }
    # Return new daset
    return IterableDataset(ex_iterable=ex_iterable, info=info, split=split, token_per_repo_id=token_per_repo_id)


def _split_by_node_iterable_dataset(dataset: IterableDataset, rank: int, world_size: int) -> IterableDataset:
    """
    Split an iterable dataset for the node at rank `rank` in a pool of nodes of size `world_size`.

    If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.num_shards % world_size == 0`),
    then the shards are evenly assigned across the nodes, which is the most optimized.
    Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples.

    Args:
        dataset ([`IterableDataset`]):
            The iterable dataset to split by node.
        rank (`int`):
            Rank of the current node.
        world_size (`int`):
            Total number of nodes.

    Returns:
        [`IterableDataset`]: The iterable dataset to be used on the node at rank `rank`.
    """
    if dataset._distributed:
        rank = world_size * dataset._distributed.rank + rank
        world_size = world_size * dataset._distributed.world_size
    distributed = DistributedConfig(rank=rank, world_size=world_size)
    return IterableDataset(
        ex_iterable=dataset._ex_iterable,
        info=dataset._info.copy(),
        split=dataset._split,
        formatting=dataset._formatting,
        shuffling=copy.deepcopy(dataset._shuffling),
        distributed=distributed,
        token_per_repo_id=dataset._token_per_repo_id,
    )


async def _apply_async(pool, func, x):
    future = pool.apply_async(func, (x,))
    while True:
        if future.ready():
            return future.get()
        else:
            await asyncio.sleep(0)