File size: 5,265 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import multiprocessing
import os
from typing import BinaryIO, Optional, Union

import fsspec

from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.csv.csv import Csv
from ..utils import tqdm as hf_tqdm
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader


class CsvDatasetReader(AbstractDatasetReader):
    def __init__(
        self,
        path_or_paths: NestedDataStructureLike[PathLike],
        split: Optional[NamedSplit] = None,
        features: Optional[Features] = None,
        cache_dir: str = None,
        keep_in_memory: bool = False,
        streaming: bool = False,
        num_proc: Optional[int] = None,
        **kwargs,
    ):
        super().__init__(
            path_or_paths,
            split=split,
            features=features,
            cache_dir=cache_dir,
            keep_in_memory=keep_in_memory,
            streaming=streaming,
            num_proc=num_proc,
            **kwargs,
        )
        path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths}
        self.builder = Csv(
            cache_dir=cache_dir,
            data_files=path_or_paths,
            features=features,
            **kwargs,
        )

    def read(self):
        # Build iterable dataset
        if self.streaming:
            dataset = self.builder.as_streaming_dataset(split=self.split)
        # Build regular (map-style) dataset
        else:
            download_config = None
            download_mode = None
            verification_mode = None
            base_path = None

            self.builder.download_and_prepare(
                download_config=download_config,
                download_mode=download_mode,
                verification_mode=verification_mode,
                base_path=base_path,
                num_proc=self.num_proc,
            )
            dataset = self.builder.as_dataset(
                split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory
            )
        return dataset


class CsvDatasetWriter:
    def __init__(
        self,
        dataset: Dataset,
        path_or_buf: Union[PathLike, BinaryIO],
        batch_size: Optional[int] = None,
        num_proc: Optional[int] = None,
        storage_options: Optional[dict] = None,
        **to_csv_kwargs,
    ):
        if num_proc is not None and num_proc <= 0:
            raise ValueError(f"num_proc {num_proc} must be an integer > 0.")

        self.dataset = dataset
        self.path_or_buf = path_or_buf
        self.batch_size = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
        self.num_proc = num_proc
        self.encoding = "utf-8"
        self.storage_options = storage_options or {}
        self.to_csv_kwargs = to_csv_kwargs

    def write(self) -> int:
        _ = self.to_csv_kwargs.pop("path_or_buf", None)
        header = self.to_csv_kwargs.pop("header", True)
        index = self.to_csv_kwargs.pop("index", False)

        if isinstance(self.path_or_buf, (str, bytes, os.PathLike)):
            with fsspec.open(self.path_or_buf, "wb", **(self.storage_options or {})) as buffer:
                written = self._write(file_obj=buffer, header=header, index=index, **self.to_csv_kwargs)
        else:
            written = self._write(file_obj=self.path_or_buf, header=header, index=index, **self.to_csv_kwargs)
        return written

    def _batch_csv(self, args):
        offset, header, index, to_csv_kwargs = args

        batch = query_table(
            table=self.dataset.data,
            key=slice(offset, offset + self.batch_size),
            indices=self.dataset._indices,
        )
        csv_str = batch.to_pandas().to_csv(
            path_or_buf=None, header=header if (offset == 0) else False, index=index, **to_csv_kwargs
        )
        return csv_str.encode(self.encoding)

    def _write(self, file_obj: BinaryIO, header, index, **to_csv_kwargs) -> int:
        """Writes the pyarrow table as CSV to a binary file handle.

        Caller is responsible for opening and closing the handle.
        """
        written = 0

        if self.num_proc is None or self.num_proc == 1:
            for offset in hf_tqdm(
                range(0, len(self.dataset), self.batch_size),
                unit="ba",
                desc="Creating CSV from Arrow format",
            ):
                csv_str = self._batch_csv((offset, header, index, to_csv_kwargs))
                written += file_obj.write(csv_str)

        else:
            num_rows, batch_size = len(self.dataset), self.batch_size
            with multiprocessing.Pool(self.num_proc) as pool:
                for csv_str in hf_tqdm(
                    pool.imap(
                        self._batch_csv,
                        [(offset, header, index, to_csv_kwargs) for offset in range(0, num_rows, batch_size)],
                    ),
                    total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,
                    unit="ba",
                    desc="Creating CSV from Arrow format",
                ):
                    written += file_obj.write(csv_str)

        return written