File size: 11,026 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Optional, TypedDict, Union

import numpy as np
import pyarrow as pa

from .. import config
from ..download.download_config import DownloadConfig
from ..table import array_cast
from ..utils.file_utils import is_local_path, xopen
from ..utils.py_utils import string_to_dict


if TYPE_CHECKING:
    from torchvision.io import VideoReader

    from .features import FeatureType


class Example(TypedDict):
    path: Optional[str]
    bytes: Optional[bytes]


@dataclass
class Video:
    """
    **Experimental.** Video [`Feature`] to read video data from a video file.

    Input: The Video feature accepts as input:
    - A `str`: Absolute path to the video file (i.e. random access is allowed).
    - A `dict` with the keys:

        - `path`: String with relative path of the video file in a dataset repository.
        - `bytes`: Bytes of the video file.

      This is useful for archived files with sequential access.

    - A `torchvision.io.VideoReader`: torchvision video reader object.

    Args:
        mode (`str`, *optional*):
            The mode to convert the video to. If `None`, the native mode of the video is used.
        decode (`bool`, defaults to `True`):
            Whether to decode the video data. If `False`,
            returns the underlying dictionary in the format `{"path": video_path, "bytes": video_bytes}`.

    Examples:

    ```py
    >>> from datasets import Dataset, Video
    >>> ds = Dataset.from_dict({"video":["path/to/Screen Recording.mov"]}).cast_column("video", Video())
    >>> ds.features["video"]
    Video(decode=True, id=None)
    >>> ds[0]["video"]
    <torchvision.io.video_reader.VideoReader object at 0x325b1aae0>
    >>> ds = ds.cast_column('video', Video(decode=False))
    {'bytes': None,
     'path': 'path/to/Screen Recording.mov'}
    ```
    """

    decode: bool = True
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "torchvision.io.VideoReader"
    pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()})
    _type: str = field(default="Video", init=False, repr=False)

    def __call__(self):
        return self.pa_type

    def encode_example(self, value: Union[str, bytes, bytearray, Example, np.ndarray, "VideoReader"]) -> Example:
        """Encode example into a format for Arrow.

        Args:
            value (`str`, `np.ndarray`, `VideoReader` or `dict`):
                Data passed as input to Video feature.

        Returns:
            `dict` with "path" and "bytes" fields
        """
        if config.TORCHVISION_AVAILABLE:
            from torchvision.io import VideoReader

        else:
            VideoReader = None

        if isinstance(value, list):
            value = np.array(value)

        if isinstance(value, str):
            return {"path": value, "bytes": None}
        elif isinstance(value, (bytes, bytearray)):
            return {"path": None, "bytes": value}
        elif isinstance(value, np.ndarray):
            # convert the video array to bytes
            return encode_np_array(value)
        elif VideoReader is not None and isinstance(value, VideoReader):
            # convert the torchvision video reader to bytes
            return encode_torchvision_video(value)
        elif isinstance(value, dict):
            path, bytes_ = value.get("path"), value.get("bytes")
            if path is not None and os.path.isfile(path):
                # we set "bytes": None to not duplicate the data if they're already available locally
                return {"bytes": None, "path": path}
            elif bytes_ is not None or path is not None:
                # store the video bytes, and path is used to infer the video format using the file extension
                return {"bytes": bytes_, "path": path}
            else:
                raise ValueError(
                    f"A video sample should have one of 'path' or 'bytes' but they are missing or None in {value}."
                )
        else:
            raise TypeError(f"Unsupported encode_example type: {type(value)}")

    def decode_example(
        self,
        value: Union[str, Example],
        token_per_repo_id: Optional[dict[str, Union[bool, str]]] = None,
    ) -> "VideoReader":
        """Decode example video file into video data.

        Args:
            value (`str` or `dict`):
                A string with the absolute video file path, a dictionary with
                keys:

                - `path`: String with absolute or relative video file path.
                - `bytes`: The bytes of the video file.
            token_per_repo_id (`dict`, *optional*):
                To access and decode
                video files from private repositories on the Hub, you can pass
                a dictionary repo_id (`str`) -> token (`bool` or `str`).

        Returns:
            `torchvision.io.VideoReader`
        """
        if not self.decode:
            raise RuntimeError("Decoding is disabled for this feature. Please use Video(decode=True) instead.")

        if config.TORCHVISION_AVAILABLE:
            from torchvision.io import VideoReader

        else:
            raise ImportError("To support decoding videos, please install 'torchvision'.")

        if token_per_repo_id is None:
            token_per_repo_id = {}

        if isinstance(value, str):
            path, bytes_ = value, None
        else:
            path, bytes_ = value["path"], value["bytes"]

        if bytes_ is None:
            if path is None:
                raise ValueError(f"A video should have one of 'path' or 'bytes' but both are None in {value}.")
            elif is_local_path(path):
                video = VideoReader(path)
            else:
                video = hf_video_reader(path, token_per_repo_id=token_per_repo_id)
        else:
            video = VideoReader(bytes_)
        video._hf_encoded = {"path": path, "bytes": bytes_}
        return video

    def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]:
        """If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary."""
        from .features import Value

        return (
            self
            if self.decode
            else {
                "bytes": Value("binary"),
                "path": Value("string"),
            }
        )

    def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray:
        """Cast an Arrow array to the Video arrow storage type.
        The Arrow types that can be converted to the Video pyarrow storage type are:

        - `pa.string()` - it must contain the "path" data
        - `pa.binary()` - it must contain the video bytes
        - `pa.struct({"bytes": pa.binary()})`
        - `pa.struct({"path": pa.string()})`
        - `pa.struct({"bytes": pa.binary(), "path": pa.string()})`  - order doesn't matter
        - `pa.list(*)` - it must contain the video array data

        Args:
            storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`):
                PyArrow array to cast.

        Returns:
            `pa.StructArray`: Array in the Video arrow storage type, that is
                `pa.struct({"bytes": pa.binary(), "path": pa.string()})`.
        """
        if pa.types.is_string(storage.type):
            bytes_array = pa.array([None] * len(storage), type=pa.binary())
            storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_binary(storage.type):
            path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_struct(storage.type):
            if storage.type.get_field_index("bytes") >= 0:
                bytes_array = storage.field("bytes")
            else:
                bytes_array = pa.array([None] * len(storage), type=pa.binary())
            if storage.type.get_field_index("path") >= 0:
                path_array = storage.field("path")
            else:
                path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_list(storage.type):
            bytes_array = pa.array(
                [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()],
                type=pa.binary(),
            )
            path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays(
                [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()
            )
        return array_cast(storage, self.pa_type)


def video_to_bytes(video: "VideoReader") -> bytes:
    """Convert a torchvision Video object to bytes using native compression if possible"""
    raise NotImplementedError()


def encode_torchvision_video(video: "VideoReader") -> Example:
    if hasattr(video, "_hf_encoded"):
        return video._hf_encoded
    else:
        raise NotImplementedError(
            "Encoding a VideoReader that doesn't come from datasets.Video.decode() is not implemented"
        )


def encode_np_array(array: np.ndarray) -> Example:
    raise NotImplementedError()


# Patching torchvision a little bit to:
# 1. store the encoded video data {"path": ..., "bytes": ...} in `video._hf_encoded``
# 2. add support for hf:// files
# This doesn't affect the normal usage of torchvision.


def hf_video_reader(
    path: str, token_per_repo_id: Optional[dict[str, Union[bool, str]]] = None, stream: str = "video"
) -> "VideoReader":
    import av
    from torchvision import get_video_backend
    from torchvision.io import VideoReader

    # Load the file from HF
    if token_per_repo_id is None:
        token_per_repo_id = {}
    source_url = path.split("::")[-1]
    pattern = config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL
    source_url_fields = string_to_dict(source_url, pattern)
    token = token_per_repo_id.get(source_url_fields["repo_id"]) if source_url_fields is not None else None
    download_config = DownloadConfig(token=token)
    f = xopen(path, "rb", download_config=download_config)

    # Instantiate the VideoReader
    vr = object.__new__(VideoReader)
    vr.backend = get_video_backend()
    if vr.backend != "pyav":
        raise RuntimeError(f"Unsupported video backend for VideoReader from HF files: {vr.backend}")
    vr.container = av.open(f, metadata_errors="ignore")
    stream_type = stream.split(":")[0]
    stream_id = 0 if len(stream.split(":")) == 1 else int(stream.split(":")[1])
    vr.pyav_stream = {stream_type: stream_id}
    vr._c = vr.container.decode(**vr.pyav_stream)
    return vr