File size: 4,448 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Optional, Union

import pyarrow as pa


if TYPE_CHECKING:
    from .features import FeatureType


@dataclass
class Translation:
    """`Feature` for translations with fixed languages per example.
    Here for compatibility with tfds.

    Args:
        languages (`dict`):
            A dictionary for each example mapping string language codes to string translations.

    Example:

    ```python
    >>> # At construction time:
    >>> datasets.features.Translation(languages=['en', 'fr', 'de'])
    >>> # During data generation:
    >>> yield {
    ...         'en': 'the cat',
    ...         'fr': 'le chat',
    ...         'de': 'die katze'
    ... }
    ```
    """

    languages: list[str]
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "dict"
    pa_type: ClassVar[Any] = None
    _type: str = field(default="Translation", init=False, repr=False)

    def __call__(self):
        return pa.struct({lang: pa.string() for lang in sorted(self.languages)})

    def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]:
        """Flatten the Translation feature into a dictionary."""
        from .features import Value

        return {k: Value("string") for k in sorted(self.languages)}


@dataclass
class TranslationVariableLanguages:
    """`Feature` for translations with variable languages per example.
    Here for compatibility with tfds.

    Args:
        languages (`dict`):
            A dictionary for each example mapping string language codes to one or more string translations.
            The languages present may vary from example to example.

    Returns:
        - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`):
            Language codes sorted in ascending order or plain text translations, sorted to align with language codes.

    Example:

    ```python
    >>> # At construction time:
    >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de'])
    >>> # During data generation:
    >>> yield {
    ...         'en': 'the cat',
    ...         'fr': ['le chat', 'la chatte,']
    ...         'de': 'die katze'
    ... }
    >>> # Tensor returned :
    >>> {
    ...         'language': ['en', 'de', 'fr', 'fr'],
    ...         'translation': ['the cat', 'die katze', 'la chatte', 'le chat'],
    ... }
    ```
    """

    languages: Optional[list] = None
    num_languages: Optional[int] = None
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "dict"
    pa_type: ClassVar[Any] = None
    _type: str = field(default="TranslationVariableLanguages", init=False, repr=False)

    def __post_init__(self):
        self.languages = sorted(set(self.languages)) if self.languages else None
        self.num_languages = len(self.languages) if self.languages else None

    def __call__(self):
        return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())})

    def encode_example(self, translation_dict):
        lang_set = set(self.languages)
        if set(translation_dict) == {"language", "translation"}:
            return translation_dict
        elif self.languages and set(translation_dict) - lang_set:
            raise ValueError(
                f"Some languages in example ({', '.join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({', '.join(lang_set)})."
            )

        # Convert dictionary into tuples, splitting out cases where there are
        # multiple translations for a single language.
        translation_tuples = []
        for lang, text in translation_dict.items():
            if isinstance(text, str):
                translation_tuples.append((lang, text))
            else:
                translation_tuples.extend([(lang, el) for el in text])

        # Ensure translations are in ascending order by language code.
        languages, translations = zip(*sorted(translation_tuples))

        return {"language": languages, "translation": translations}

    def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]:
        """Flatten the TranslationVariableLanguages feature into a dictionary."""
        from .features import Sequence, Value

        return {
            "language": Sequence(Value("string")),
            "translation": Sequence(Value("string")),
        }