File size: 15,556 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Optional, Union

import numpy as np
import pyarrow as pa

from .. import config
from ..download.download_config import DownloadConfig
from ..table import array_cast
from ..utils.file_utils import is_local_path, xopen
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict


if TYPE_CHECKING:
    import PIL.Image

    from .features import FeatureType


_IMAGE_COMPRESSION_FORMATS: Optional[list[str]] = None
_NATIVE_BYTEORDER = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_VALID_IMAGE_ARRAY_DTPYES = [
    np.dtype("|b1"),
    np.dtype("|u1"),
    np.dtype("<u2"),
    np.dtype(">u2"),
    np.dtype("<i2"),
    np.dtype(">i2"),
    np.dtype("<u4"),
    np.dtype(">u4"),
    np.dtype("<i4"),
    np.dtype(">i4"),
    np.dtype("<f4"),
    np.dtype(">f4"),
    np.dtype("<f8"),
    np.dtype(">f8"),
]


@dataclass
class Image:
    """Image [`Feature`] to read image data from an image file.

    Input: The Image feature accepts as input:
    - A `str`: Absolute path to the image file (i.e. random access is allowed).
    - A `dict` with the keys:

        - `path`: String with relative path of the image file to the archive file.
        - `bytes`: Bytes of the image file.

      This is useful for archived files with sequential access.

    - An `np.ndarray`: NumPy array representing an image.
    - A `PIL.Image.Image`: PIL image object.

    Args:
        mode (`str`, *optional*):
            The mode to convert the image to. If `None`, the native mode of the image is used.
        decode (`bool`, defaults to `True`):
            Whether to decode the image data. If `False`,
            returns the underlying dictionary in the format `{"path": image_path, "bytes": image_bytes}`.

    Examples:

    ```py
    >>> from datasets import load_dataset, Image
    >>> ds = load_dataset("AI-Lab-Makerere/beans", split="train")
    >>> ds.features["image"]
    Image(decode=True, id=None)
    >>> ds[0]["image"]
    <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x500 at 0x15E52E7F0>
    >>> ds = ds.cast_column('image', Image(decode=False))
    {'bytes': None,
     'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/healthy/healthy_train.85.jpg'}
    ```
    """

    mode: Optional[str] = None
    decode: bool = True
    id: Optional[str] = None
    # Automatically constructed
    dtype: ClassVar[str] = "PIL.Image.Image"
    pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()})
    _type: str = field(default="Image", init=False, repr=False)

    def __call__(self):
        return self.pa_type

    def encode_example(self, value: Union[str, bytes, bytearray, dict, np.ndarray, "PIL.Image.Image"]) -> dict:
        """Encode example into a format for Arrow.

        Args:
            value (`str`, `np.ndarray`, `PIL.Image.Image` or `dict`):
                Data passed as input to Image feature.

        Returns:
            `dict` with "path" and "bytes" fields
        """
        if config.PIL_AVAILABLE:
            import PIL.Image
        else:
            raise ImportError("To support encoding images, please install 'Pillow'.")

        if isinstance(value, list):
            value = np.array(value)

        if isinstance(value, str):
            return {"path": value, "bytes": None}
        elif isinstance(value, (bytes, bytearray)):
            return {"path": None, "bytes": value}
        elif isinstance(value, np.ndarray):
            # convert the image array to PNG/TIFF bytes
            return encode_np_array(value)
        elif isinstance(value, PIL.Image.Image):
            # convert the PIL image to bytes (default format is PNG/TIFF)
            return encode_pil_image(value)
        elif value.get("path") is not None and os.path.isfile(value["path"]):
            # we set "bytes": None to not duplicate the data if they're already available locally
            return {"bytes": None, "path": value.get("path")}
        elif value.get("bytes") is not None or value.get("path") is not None:
            # store the image bytes, and path is used to infer the image format using the file extension
            return {"bytes": value.get("bytes"), "path": value.get("path")}
        else:
            raise ValueError(
                f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}."
            )

    def decode_example(self, value: dict, token_per_repo_id=None) -> "PIL.Image.Image":
        """Decode example image file into image data.

        Args:
            value (`str` or `dict`):
                A string with the absolute image file path, a dictionary with
                keys:

                - `path`: String with absolute or relative image file path.
                - `bytes`: The bytes of the image file.
            token_per_repo_id (`dict`, *optional*):
                To access and decode
                image files from private repositories on the Hub, you can pass
                a dictionary repo_id (`str`) -> token (`bool` or `str`).

        Returns:
            `PIL.Image.Image`
        """
        if not self.decode:
            raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.")

        if config.PIL_AVAILABLE:
            import PIL.Image
            import PIL.ImageOps
        else:
            raise ImportError("To support decoding images, please install 'Pillow'.")

        if token_per_repo_id is None:
            token_per_repo_id = {}

        path, bytes_ = value["path"], value["bytes"]
        if bytes_ is None:
            if path is None:
                raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.")
            else:
                if is_local_path(path):
                    image = PIL.Image.open(path)
                else:
                    source_url = path.split("::")[-1]
                    pattern = (
                        config.HUB_DATASETS_URL
                        if source_url.startswith(config.HF_ENDPOINT)
                        else config.HUB_DATASETS_HFFS_URL
                    )
                    source_url_fields = string_to_dict(source_url, pattern)
                    token = (
                        token_per_repo_id.get(source_url_fields["repo_id"]) if source_url_fields is not None else None
                    )
                    download_config = DownloadConfig(token=token)
                    with xopen(path, "rb", download_config=download_config) as f:
                        bytes_ = BytesIO(f.read())
                    image = PIL.Image.open(bytes_)
        else:
            image = PIL.Image.open(BytesIO(bytes_))
        image.load()  # to avoid "Too many open files" errors
        if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None:
            image = PIL.ImageOps.exif_transpose(image)
        if self.mode and self.mode != image.mode:
            image = image.convert(self.mode)
        return image

    def flatten(self) -> Union["FeatureType", dict[str, "FeatureType"]]:
        """If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary."""
        from .features import Value

        return (
            self
            if self.decode
            else {
                "bytes": Value("binary"),
                "path": Value("string"),
            }
        )

    def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray:
        """Cast an Arrow array to the Image arrow storage type.
        The Arrow types that can be converted to the Image pyarrow storage type are:

        - `pa.string()` - it must contain the "path" data
        - `pa.binary()` - it must contain the image bytes
        - `pa.struct({"bytes": pa.binary()})`
        - `pa.struct({"path": pa.string()})`
        - `pa.struct({"bytes": pa.binary(), "path": pa.string()})`  - order doesn't matter
        - `pa.list(*)` - it must contain the image array data

        Args:
            storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`):
                PyArrow array to cast.

        Returns:
            `pa.StructArray`: Array in the Image arrow storage type, that is
                `pa.struct({"bytes": pa.binary(), "path": pa.string()})`.
        """
        if pa.types.is_string(storage.type):
            bytes_array = pa.array([None] * len(storage), type=pa.binary())
            storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_binary(storage.type):
            path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_struct(storage.type):
            if storage.type.get_field_index("bytes") >= 0:
                bytes_array = storage.field("bytes")
            else:
                bytes_array = pa.array([None] * len(storage), type=pa.binary())
            if storage.type.get_field_index("path") >= 0:
                path_array = storage.field("path")
            else:
                path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null())
        elif pa.types.is_list(storage.type):
            bytes_array = pa.array(
                [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()],
                type=pa.binary(),
            )
            path_array = pa.array([None] * len(storage), type=pa.string())
            storage = pa.StructArray.from_arrays(
                [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()
            )
        return array_cast(storage, self.pa_type)

    def embed_storage(self, storage: pa.StructArray) -> pa.StructArray:
        """Embed image files into the Arrow array.

        Args:
            storage (`pa.StructArray`):
                PyArrow array to embed.

        Returns:
            `pa.StructArray`: Array in the Image arrow storage type, that is
                `pa.struct({"bytes": pa.binary(), "path": pa.string()})`.
        """

        @no_op_if_value_is_null
        def path_to_bytes(path):
            with xopen(path, "rb") as f:
                bytes_ = f.read()
            return bytes_

        bytes_array = pa.array(
            [
                (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None
                for x in storage.to_pylist()
            ],
            type=pa.binary(),
        )
        path_array = pa.array(
            [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()],
            type=pa.string(),
        )
        storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
        return array_cast(storage, self.pa_type)


def list_image_compression_formats() -> list[str]:
    if config.PIL_AVAILABLE:
        import PIL.Image
    else:
        raise ImportError("To support encoding images, please install 'Pillow'.")

    global _IMAGE_COMPRESSION_FORMATS
    if _IMAGE_COMPRESSION_FORMATS is None:
        PIL.Image.init()
        _IMAGE_COMPRESSION_FORMATS = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys()))
    return _IMAGE_COMPRESSION_FORMATS


def image_to_bytes(image: "PIL.Image.Image") -> bytes:
    """Convert a PIL Image object to bytes using native compression if possible, otherwise use PNG/TIFF compression."""
    buffer = BytesIO()
    if image.format in list_image_compression_formats():
        format = image.format
    else:
        format = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF"
    image.save(buffer, format=format)
    return buffer.getvalue()


def encode_pil_image(image: "PIL.Image.Image") -> dict:
    if hasattr(image, "filename") and image.filename != "":
        return {"path": image.filename, "bytes": None}
    else:
        return {"path": None, "bytes": image_to_bytes(image)}


def encode_np_array(array: np.ndarray) -> dict:
    if config.PIL_AVAILABLE:
        import PIL.Image
    else:
        raise ImportError("To support encoding images, please install 'Pillow'.")

    dtype = array.dtype
    dtype_byteorder = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER
    dtype_kind = dtype.kind
    dtype_itemsize = dtype.itemsize

    dest_dtype = None

    # Multi-channel array case (only np.dtype("|u1") is allowed)
    if array.shape[2:]:
        if dtype_kind not in ["u", "i"]:
            raise TypeError(
                f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays."
            )
        dest_dtype = np.dtype("|u1")
        if dtype != dest_dtype:
            warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'")
    # Exact match
    elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
        dest_dtype = dtype
    else:  # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
        while dtype_itemsize >= 1:
            dtype_str = dtype_byteorder + dtype_kind + str(dtype_itemsize)
            if np.dtype(dtype_str) in _VALID_IMAGE_ARRAY_DTPYES:
                dest_dtype = np.dtype(dtype_str)
                warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'")
                break
            else:
                dtype_itemsize //= 2
        if dest_dtype is None:
            raise TypeError(
                f"Cannot downcast dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}"
            )

    image = PIL.Image.fromarray(array.astype(dest_dtype))
    return {"path": None, "bytes": image_to_bytes(image)}


def objects_to_list_of_image_dicts(
    objs: Union[list[str], list[dict], list[np.ndarray], list["PIL.Image.Image"]],
) -> list[dict]:
    """Encode a list of objects into a format suitable for creating an extension array of type `ImageExtensionType`."""
    if config.PIL_AVAILABLE:
        import PIL.Image
    else:
        raise ImportError("To support encoding images, please install 'Pillow'.")

    if objs:
        _, obj = first_non_null_value(objs)
        if isinstance(obj, str):
            return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
        if isinstance(obj, np.ndarray):
            obj_to_image_dict_func = no_op_if_value_is_null(encode_np_array)
            return [obj_to_image_dict_func(obj) for obj in objs]
        elif isinstance(obj, PIL.Image.Image):
            obj_to_image_dict_func = no_op_if_value_is_null(encode_pil_image)
            return [obj_to_image_dict_func(obj) for obj in objs]
        else:
            return objs
    else:
        return objs